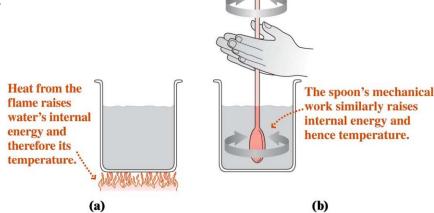
Physics 1501 Fall 2008

Mechanics, Thermodynamics, Waves, Fluids

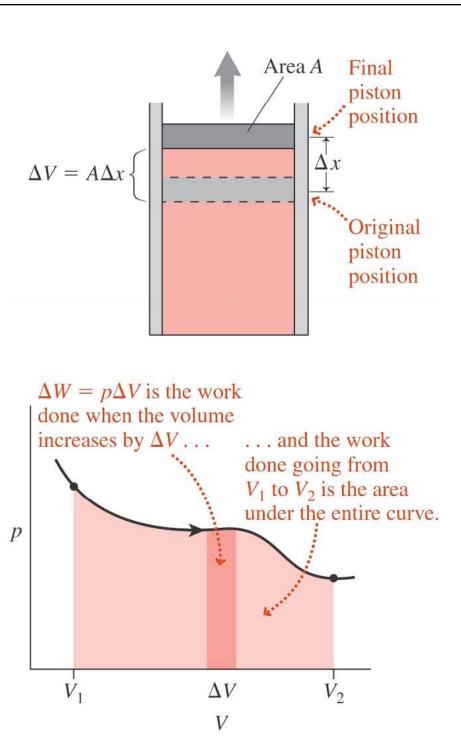
Lecture 32: Heat and Work II


Recap: the first law of thermodynamics

- Two ways to raise temperature:
 - Thermally: flow of heat
 - Energy flow resulting from a temperature difference
 - Mechanically: doing work
 - End result is the same for the same energy input:
 - An increase ΔU in the system's **internal energy** U
- First law of thermodynamics
 - Change in internal energy of a system is the heat added *to* the system minus the work done *by* the system:

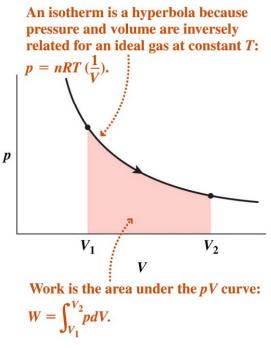
$$\Delta U = Q - W$$

• Extends conservation of energy to include thermal processes



Recap: Doing work

- A piston-cylinder system is a useful device for describing the thermodynamic behavior of a gas.
 - The piston seals the cylinder, allowing the gas volume to change without any gas escaping.
 - Work can be done on or by the gas as the piston moves.
 - If the bottom is uninsulated, heat can flow in or out.
- The work done on or by the gas is the area under the *pV* curve:


$$W = \int_{V_1}^{V_2} p \, dV$$

Recap: isothermal processes

- An **isothermal process** takes place at constant temperature.
 - One way to achieve this is to keep the system in thermal contact with a heat reservoir a much larger system held at constant temperature.
 - The ideal gas law gives P = nRT/V.
 - Then, with constant *T*, the work done is

$$W = \int_{V_1}^{V_2} p \, dV = nRT \int_{V_1}^{V_2} \frac{dV}{V} = nRT \ln \left(\frac{V_2}{V_1} \right)$$

• Since the temperature doesn't change, neither does the internal energy of an ideal gas. Therefore the first law gives

$$Q = W = nRT\ln\left(\frac{V_2}{V_1}\right)$$

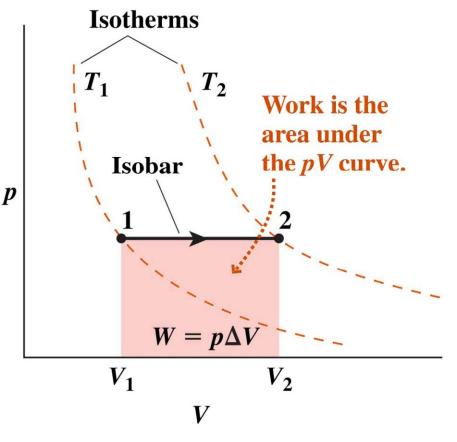
Recap: constant-volume processes

• In a constant-volume process, the heat added to the gas and the resulting temperature change are related by

$$Q = nC_V \Delta T$$

- Here C_V is the molar specific heat at constant volume.
 - Its units are J/K·mol.
- No work is done in a constant-volume process, so W = 0and so the first law reads $\Delta U = Q$.
 - Therefore $\Delta U = nC_V \Delta T$.
 - For an ideal gas, internal energy depends on temperature alone, so this relationship $\Delta U = nC_V \Delta T$ between ΔU and ΔT holds for *any* process.

Recap: isobaric processes

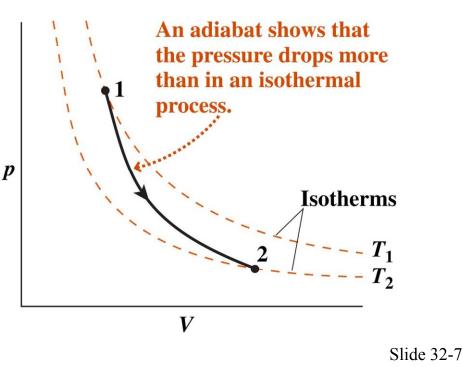

- An **isobaric process** takes place at constant pressure.
- Then the work done is $W = p \Delta V$.
- Adding heat to an ideal gas results both in a temperature change and in work being done.
 - Therefore it takes *more* heat to effect a given temperature change:

 $Q = nC_V \Delta T + p \, \Delta V$

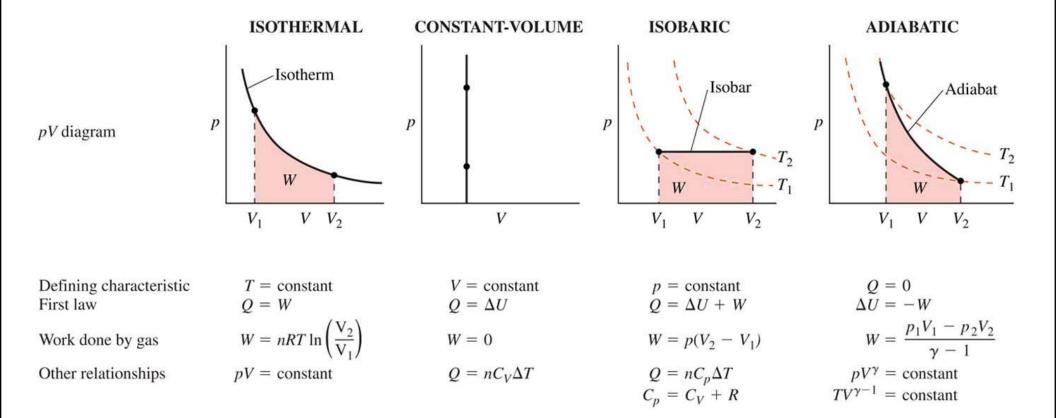
• The molar specific heat at constant pressure, C_p , expresses this extra work:

$$nC_p\Delta T = nC_V\Delta T + p\,\Delta V$$

• Here $C_p = C_V + R$.


Recap: adiabatic processes

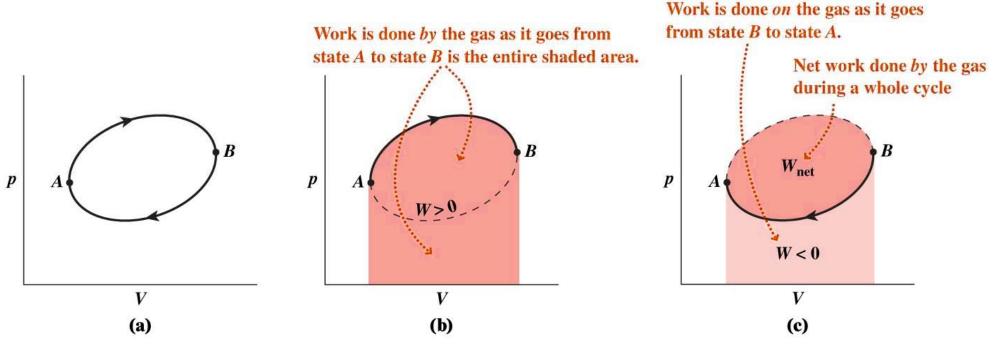
- In an **adiabatic process**, no heat flows into or out of the system.
 - Therefore Q = 0 and the first law reads $\Delta U = -W$.
 - Analysis of the adiabatic process for an ideal gas shows that


 $pV^{\gamma} = \text{constant}$

where $\gamma = C_p / C_V$ is the ratio of specific heats of the gas.

- An adiabatic curve or **adiabat** is steeper than an isotherm because the gas does work.
 - It therefore loses internal energy and its temperature drops.

Ideal-gas processes: a comparison

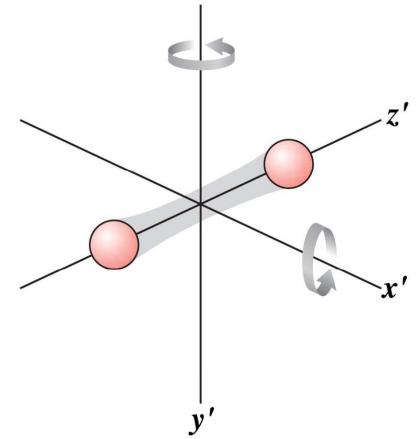


question

- The ideal-gas law states that pV = nRT but for an adiabatic process, we are taught that $pV^{\gamma} = \text{constant}$. How can we reconcile this apparent contradiction?
 - A. The ideal gas law does not apply to adiabatic processes.
 - B. The term pV in the ideal-gas law need not remain constant.
 - C. In an adiabatic process, γ changes such that pV^{γ} remains constant.

Cyclic processes

- Cyclic processes combine the basic processes of other thermodynamic processes to take a system around a complete cycle and back to its starting state.
 - Cyclic processes are important in technological systems like engines.
 - They also occur in natural systems from sound waves to oscillating stars.
 - The work done in or by the gas in a cyclic process is the area enclosed by the process curve in the pV diagram.

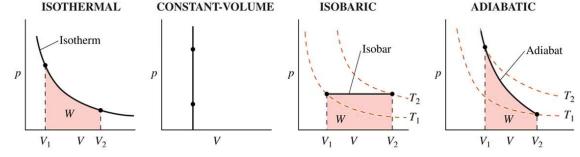

Specific heats of an ideal gas

- The specific heat of an ideal gas depends on its molecular structure.
 - More complex molecules have more **degrees of freedom**, or ways they can absorb energy.
 - Monatomic gases have 3 degrees of freedom per molecule (the three directions of translational motion), and have volume specific heat

$$C_{V} = \frac{3}{2}R$$

and adiabatic exponent $\gamma = 1.67$.

• Diatomic gases have 5 degrees of freedom per molecule (three translational and 2 rotational), and have volume specific heat $C_{_V} = \frac{5}{2}R$ and adiabatic exponent $\gamma = 1.4$.


A diatomic molecule has rotational as well as translational energy.

Summary

• The first law of thermodynamics states that the change in a system's internal energy is equal to the heat added to the system minus the work done by the system:

$$\Delta U = Q - W$$

- Thermodynamic processes take systems between states in their pV diagrams.
 - Reversible processes remain in equilibrium and follow a definite path in the pV diagram.
 - Irreversible processes result in temporary loss of equilibrium and don't follow a definite path.
- Important ideal gas processes include
 - Isothermal (constant temperature)
 - Constant volume
 - Isobaric (constant pressure)
 - Adiabatic (no heat flow)

- Cyclic processes that combine these or other processes to take a system through a complete cycle
- The specific heats of an ideal gas depend on the structure of the gas molecules.
 - More complex molecules have more degrees of freedom for absorbing energy.