Physics 1501 Fall 2008

Mechanics, Thermodynamics, Waves, Fluids

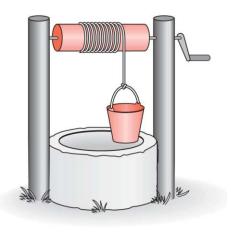
Lecture 22: Angular Momentum

Recap: rotational and linear dynamics

- In problems involving both linear and rotational motion:
 - IDENTIFY the objects and forces or torques acting.
 - DEVELOP your solution with drawings and by writing Newton's law and its rotational analog. Note physical connections between the objects.
 - EVALUATE to find the solution.
 - ASSESS to be sure your answer makes sense.

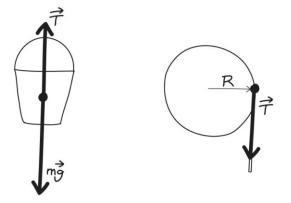
A bucket of mass *m* drops into a well, its rope unrolling from a cylinder of mass *M* and radius *R*

What's its acceleration?



Freebody diagrams for bucket and cylinder

Rope tensionT provides the connection



Newton's law, bucket:

$$F_{\text{net}} = mg - T = ma$$

Rotational analogy of Newton's law, cylinder: RT = Ia/R

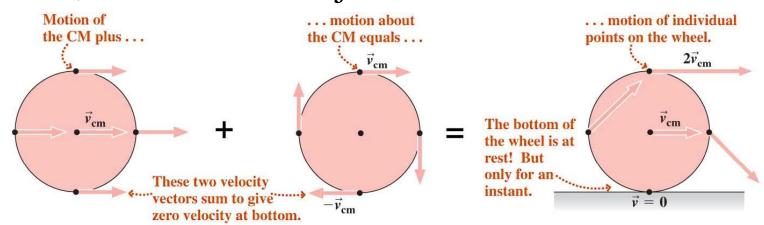
Here
$$I = \frac{1}{2} MR^2$$

Solve the two equations to get

$$a = \frac{mg}{m + \frac{1}{2}M}$$

Recap: rolling motion

- Rolling motion combines translational (linear) motion and rotational motion.
 - The rolling object's center of mass undergoes translational motion.
 - The object itself rotates about the center of mass.
 - In true rolling motion, the object moves without slipping and its point of contact with the ground is instantaneously at rest.
 - Then the rotational speed ω and linear speed v are related by $v = \omega R$, where R is the object's radius.

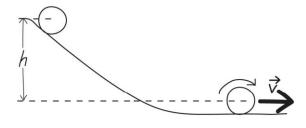


Recap: rotational energy

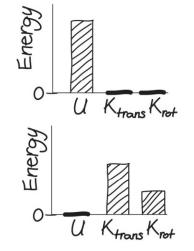
- A rotating object has kinetic energy $K_{\text{rot}} = \frac{1}{2}I\omega^2$ associated with its rotational motion alone.
 - It may also have translational kinetic energy: $K_{\text{trans}} = \frac{1}{2} M v^2$.
- In problems involving energy conservation with rotating objects, both forms of kinetic energy must be considered.
 - For rolling objects, the two are related:
 - The relation depends on the rotational inertia.

A solid ball rolls down a hill.

How fast is it moving at the bottom?



Energy bar



Equation for energy conservation

$$Mgh = \frac{1}{2}Mv^2 + \frac{1}{2}I\omega^2 = \frac{1}{2}Mv^2 + \frac{1}{2}\left(\frac{2}{5}MR^2\right)\left(\frac{v}{R}\right)^2 = \frac{7}{10}Mv^2$$

Solution

$$v = \sqrt{\frac{10}{7}} gh$$

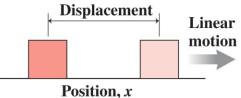
question

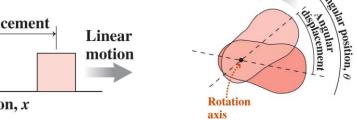
A hollow ball and a solid ball roll without slipping down an inclined plane. Which ball reaches the bottom of the incline first?

- A. The solid ball reaches the bottom first.
- B. The hollow ball reaches the bottom first.
- C. Both balls reach the bottom at the same time.
- D. We can't determine this without information about the mass.

Summary

- Rotational motion in one dimension is exactly analogous to linear motion in one dimension.
 - Linear and angular motion:



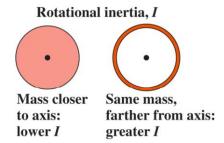


Analogies between rotational and linear quantities:

Linear Quantity or Equation	Angular Quantity or Equation	Relation Between Linear and Angular Quantities
Position <i>x</i>	Angular position θ	
Speed $v = dx/dt$	Angular speed $\omega = d\theta/dt$	$v = \omega r$
Acceleration a	Angular acceleration α	$a_t = \alpha r$
Mass m	Rotational inertia I	$I = \int r^2 dm$
Force F	Torque $ au$	$\tau = rF\sin\theta$
Kinetic energy $K_{\text{trans}} = \frac{1}{2}mv^2$	Kinetic energy $K_{\rm rot} = \frac{1}{2}I\omega^2$	

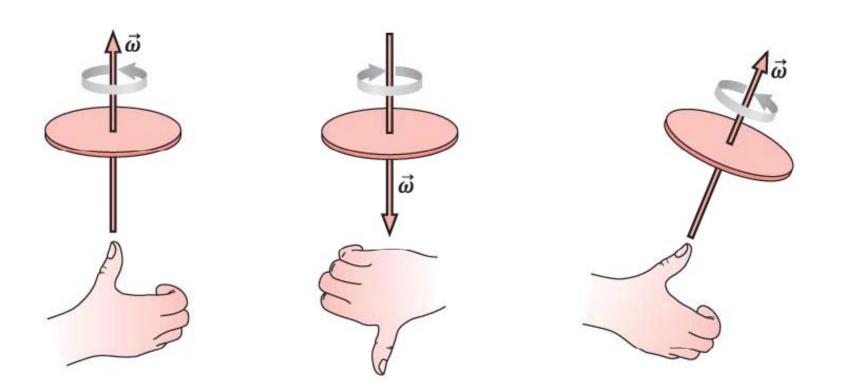
Newton's second law (constant mass or rotational inertia):

$$F = ma$$
 $au = I\alpha$



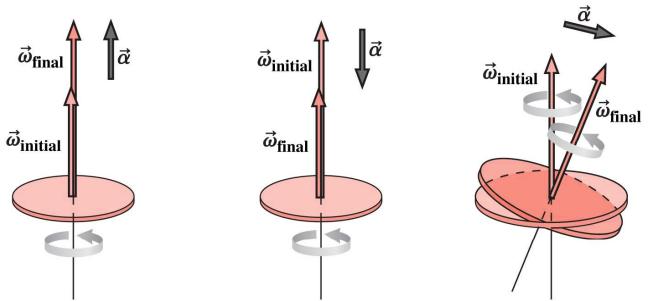
Direction of the angular velocity vector

- The direction of angular velocity is given by the right-hand rule.
 - Curl the fingers of your right hand in the direction of rotation, and your thumb points in the direction of the angular velocity vector $\dot{\boldsymbol{\omega}}$.



Direction of the angular acceleration

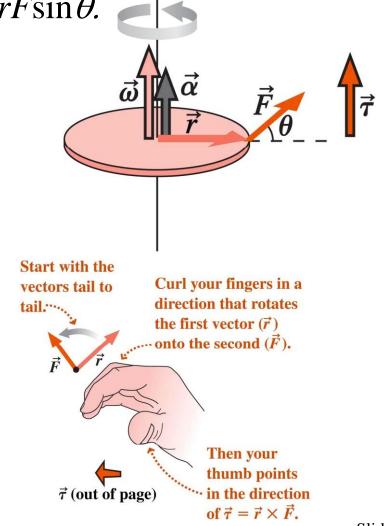
- Angular acceleration points in the direction of the change $\Delta \dot{\omega}$ in the angular velocity.
 - The change can be in the same direction as the angular velocity, increasing the angular speed.
 - The change can be opposite the angular velocity, decreasing the angular speed.
 - Or it can be in an arbitrary direction, changing the direction and speed as well.



Direction of the torque vector

- The torque vector is perpendicular to both the force vector and the displacement vector from the rotation axis to the force application point.
 - The magnitude of the torque is $\tau = rF\sin\theta$.
 - Of the two possible directions perpendicular to r and F, the correct direction is given by the right-hand rule.
 - Torque is compactly expressed using the vector cross product:

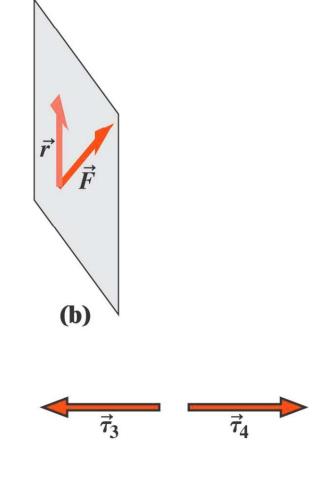
$$\tau = r \times \dot{F}$$



question

The figure shows a pair of force and radius vectors and four torque vectors. Which of the numbered torque vectors goes with the force and radius vectors?

- A. Torque vector τ_1
- B. Torque vector τ_2
- C. Torque vector τ_3
- **D.** Torque vector τ_4

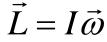


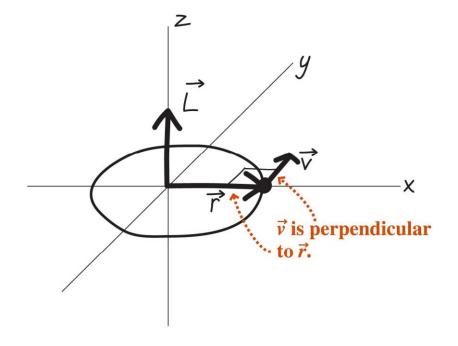
Angular momentum

• For a single particle, angular momentum \hat{L} is a vector given by the cross product of the displacement vector from the rotation axis with the linear momentum of the particle:

 $\dot{L} = \dot{r} \times \dot{p}$

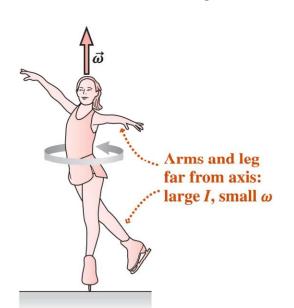
- For the case of a particle in a circular path, L = mvr, and L is upward, perpendicular to the circle.
- For sufficiently symmetric objects, *L* is the product of rotational inertia and angular velocity:



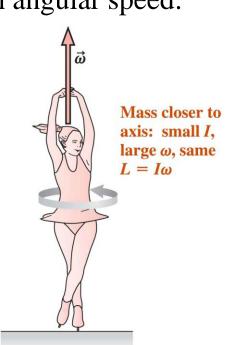


Newton's law and angular momentum

- - Therefore a system's angular momentum changes only if there's a nonzero net torque acting on the system.
 - If the net torque is zero, then angular momentum is conserved.
 - Changes in rotational inertia then result in changes in angular speed:

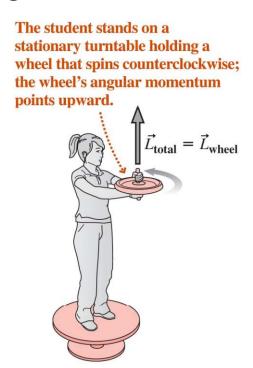


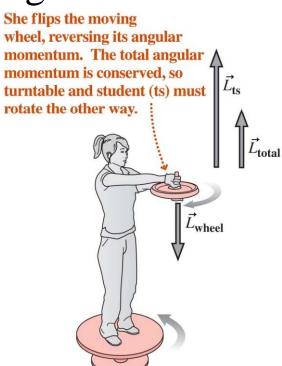
The skater's angular momentum is conserved, so her angular speed increases when she reduces her rotational inertia.



Conservation of angular momentum

- The spinning wheel initially contains all the system's angular momentum.
- When the student turns the wheel upside down, she changes the direction of its angular momentum vector.
- Student and turntable rotate the other way to keep the total angular momentum unchanged.



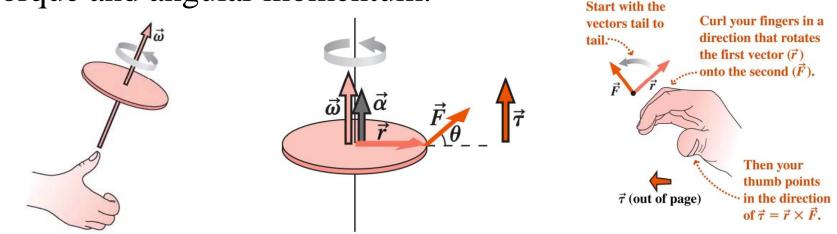


Summary

- Angular quantities are vectors whose direction is generally associated with the direction of the rotation axis.
 - Specifically, direction is given by the right-hand rule.

• The vector cross product provides a compact representation for

torque and angular momentum.



- Angular momentum is the rotational analog of linear momentum: $\dot{L} = r \times p$; with symmetry, $\dot{L} = I\omega$.
- In the absence of a net external torque, a system's angular momentum is conserved.