Physics 1501 Fall 2008

Mechanics, Thermodynamics, Waves, Fluids

Lecture 20: Rotational Motion

Slide 20-1

Recap: center of mass, linear momentum

• A composite system behaves as though its mass is concentrated at the **center of mass**:

$$r_{cm} = \frac{\sum m_i r_i}{M}$$
 (discrete particles) $r_{cm} = \frac{\int r dm}{M}$ (continuous matter)

• The center of mass obeys Newton's laws, so

$$F_{\text{net external}} = Ma_{\text{cm}}^{\mathsf{r}}$$
 or, equivalently, $F_{\text{net external}} = \frac{d\dot{P}}{dt}$

- In the absence of a net external force, a system's linear momentum is conserved, regardless of what happens internally to the system.
- Collisions are brief, intense interactions that conserve momentum.
 - Elastic collisions also conserve kinetic energy.
 - Totally inelastic collisions occur when colliding objects join to make a single composite object.

Angular velocity

- Concept of a **rigid body**
- Angular velocity ω is the rate of change of angular position. Average: $\overline{\omega} = \frac{\Delta \theta}{\Delta t}$

Instantaneous:
$$\omega = \frac{d\theta}{dt}$$

- Angular and linear velocity
 - The linear speed of a point on a rotating body is proportional to its distance from the rotation axis: $v = \omega r$

Angular acceleration

• Angular acceleration α is the rate of change of angular velocity.

Average:
$$\bar{\alpha} = \frac{\Delta \omega}{\Delta t}$$
 Instantaneous: $\alpha = \frac{d\omega}{dt}$

- Angular and tangential acceleration
 - The linear acceleration of a point on a rotating body is proportional to its distance from the rotation axis:

$$a_{t} = r \alpha$$

• A point on a rotating object also has radial acceleration:

$$a_{\rm r} = \frac{v^2}{r} = \omega^2 r$$

Constant angular acceleration

- Problems with constant angular acceleration are exactly analogous to similar problems involving linear motion in one dimension.
 - The same equations apply, with the substitutions $x \rightarrow \theta$, $v \rightarrow \omega$, $a \rightarrow \alpha$

TABLE 10.1 Angular and Linear Position, Velocity, and Acceleration

Linear Quantity	Angular Quantity			
Position <i>x</i>	Angular po	Angular position θ		
Velocity $v = \frac{dx}{dt}$	Angular velocity $\omega = \frac{d\theta}{dt}$			
Acceleration $a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$	Angular acceleration $\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$			
Equations for Constant Linear Acceleration	Equations for Constant Angular Acceleration			
$\overline{v} = \frac{1}{2}(v_0 + v)$	(2.8)	$\overline{\omega} = \frac{1}{2}(\omega_0 + \omega)$	(10.6)	
$v = v_0 + at$	(2.7)	$\omega = \omega_0 + \alpha t$	(10.7)	
$x = x_0 + v_0 t + \frac{1}{2}at^2$	(2.10)	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$	(10.8)	
$v^2 = v_0^2 + 2a(x - x_0)$	(2.11)	$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$	(10.9)	

Torque

- Torque τ is the rotational analog of force, and results from the application of one or more forces. The same force is a
 - Torque is relative to a chosen rotation axis.
 - Torque depends on
 - The distance from the rotation axis to the force application point.
 - The magnitude of the force F.
 - The orientation of the force relative to the displacement *r* from axis to force application point:

The same force is applied at different points on the wrench.

Farther away, τ becomes larger.

Farthest away, τ becomes greatest.

Slide 20-6

question

The forces in the figures all have the same magnitude. Which force produces zero torque?

- A. The force in figure (a)
- B. The force in figure (b)
- C. The force in figure (c)
- D. All of the forces produce torque

Rotational inertia and the analog of Newton's law

- Rotational inertia *I* is the rotational analog of mass.
 - Rotational inertia depends on mass and its distance from the rotation axis.
 Rotating the Farther away,
- Rotational acceleration, torque, and rotational inertia combine to give the rotational analog of Newton's second law:

$$\tau = I \alpha$$

Finding rotational inertia

- For a single point mass *m*, rotational inertia is the product of mass with the square of the distance *R* from the rotation axis: $I = mR^2$.
- For a system of discrete masses, the rotational inertia is the sum of the rotational inertias of the individual masses:

$$I = \sum m_i r_i^2$$

• For continuous matter, the rotational inertia is given by an integral over the distribution of matter:

$$I=\int r^2\,dm$$

question

Consider the dumbbell in the figure. How would its rotational inertia change if the rotation axis were at the center of the rod?

- A. *I* would increase
- B. I would decrease
- C. *I* would remain the same

Rotational inertias of simple objects

question

The figure shows two identical masses *m* connected by a string that passes over a frictionless pulley whose mass is *not* negligible. One mass rests on a frictionless table while the other hangs vertically, as shown. Compare the force of tension in the horizontal and vertical sections of the string.

- A. The tension in the horizontal section is greater.
- B. The tension in the vertical section is greater.
- C. The tensions in the two sections are equal.

