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Recap: center of mass, linear momentum

A composite system behaves as though its mass Is concentrated at

the center of mass:

rooo.m oo . [ j r dm .
r = T" (discrete particles) r = Y (continuous matter)

The center of mass obeys Newton’s laws, so

I

net external

| r p
= I\/Igcm or, equivalently, F _d

net external dt

In the absence of a net external force, a system’s linear momentum
IS conserved, regardless of what happens internally to the system.

Collisions are brief, intense interactions that conserve momentum.

 Elastic collisions also conserve kinetic energy.

 Totally inelastic collisions occur when colliding objects join to make a single

composite object.
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Angular velocity

e Concept of a rigid body

I I Ti tates th I
 Angular velocity w Is the rate of i angle 01 i
so its average angular

change of angular position.

2t
A

Average: @ =—
At

dé
Instantaneous: @ = — Direction s

dt counterclockwise (CCW).'::
1 1 Linear speed is ional
« Angular and linear velocity R

e The linear speed of a point on a
rotating body is proportional
to its distance from the rotation

is: L
axis: Veor :

=l

“The point on the rim has
the same angular speed
but a higher linear speed v
than the inner point.
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Angular acceleration

* Angular acceleration « Is the rate of change of angular

velocity.

_ A g
Average: azfcto Instantaneous: @ = ——

« Angular and tangential acceleration

e The linear acceleration of a point on a

rotating body Is proportional to its
distance from the rotation axis:

a=ra
« A point on a rotating object also has
radial acceleration:

a, is the tangential
component of
acceleration @ and is
parallel to the linear

velocity v.

w

a, is the radial component,

perpendicular to v.
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Constant angular acceleration

* Problems with constant angular acceleration are exactly

analogous to similar problems involving linear motion
one dimension.

e The same equations apply, with the substitutions
X—>60, Vow, a-—->a

TABLE 10.1 Angular and Linear Position, Velocity, and Acceleration

N

Linear Quantity Angular Quantity
Position x Angular position 6
Velocity y =22 Sinenilarvelpoitysm—0
elocity v=— ngular velocity w =—
y dt e Y dt
_ dv  d*x . do d*0
Acceleration a =—=— Angular acceleration a =—=—
dt  dt* dt  dt”
Equations for Constant Equations for Constant
Linear Acceleration Angular Acceleration
v=2(v+v) (2.8) =3 (wy+ ) (10.6)
v=v,+at 2.7) ®=w,+ at (10.7)
X=X+ Vot +zas® (2.10) 0=0,+ wyt +5at’ (10.8)
vi=v5+2a(x— x,) (2.11) w*=w; +2a(0—6,) (10.9)
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Torque

* Torque zis the rotational analog of force, and results
from the application of one or more forces. ..o

at different points on the
wrench.

e Torque Is relative to a chosen rotation axis.

Closest to O, T is smallest.

e Torque depends on

e The distance from the rotation axis to the force
application point.

* The magnitude of the force F.

» The orientation of the force relative to the
displacement r from axis to force application
point: _

The same force is applied T = rF S|n 9

at different angles.

Torque decreases when F Torque is zero when
is no longer perpendicular F is parallel to 7. Farthest away, T becomes greatest.
tor - 3

Torque is greatest when F
is perpendicular to 7.

(b) © ©
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guestion

The forces In the figures all have the same magnitude.

Which force produces zero torque?

. The force In figure (a) o é l >

The force In figure (b) F

(@

ne force in figure (c)

o 0w »

. All of the forces produce

torque

%
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Rotational inertia and the analog of
Newton’s law

 Rotational inertia | is the rotational analog of mass.

 Rotational inertia depends on mass and its distance from the
rOta'[IOI’l aX|S Rotating the Farther away,

mass near the it’s harder
 Rotational acceleration, torque, """ aand
and rotational inertia combine
to give the rotational analog
of Newton’s second law:

% |—Rotation axis._

= | o
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Finding rotational inertia

* For asingle point mass m, rotational inertia is the product of mass
with the square of the distance R from the rotation axis: | = mR®.

e For a system of discrete A Rotation o
masses, the rotational nertia iIs W\ axis _
the sum of the rotational ri/
Inertias of the individual
. r
Mmasses: m, 7 3
. 2
| = Z m.r ms;
] The l.nass t?l@l]lffnt g)lm contributes
* For continuous matter, the i e,
rotational inertia Is given by an By

Integral over the distribution of
matter:

r

1 Rotation

I :jrzdm

SBted a0




guestion

Consider the dumbbell in the figure. How would its
rotational Inertia change If the rotation axis were at the
center of the rod?

A. | would Increase

B. | would decrease

C. | would remain the same
< [ ”,
L ;
%
- .

m=0.(M kg
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Rotational inertias of simple objects

Solid sphere about diameter Flat plate about perpendicular axis

’Z%MR?' IZﬁM(az-i-bz)

-

I'hin rod at;’uul center Thin ring or hollow cylinder
I= ﬁML" about its axis
I = MR*
(b Hollow spherical shell about diameter

2z I 2
=2 MR

e Q Flat plate about central axis

o 2 ! — _’JE ¢
-~ o o
.-. o - - T I l]t ()

Disk or solid cylinder
about its axis
I =+ MR?
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guestion

The figure shows two identical masses m connected by a string that passes
over a frictionless pulley whose mass is not negligible. One mass rests on a
frictionless table while the other hangs vertically, as shown. Compare the
force of tension in the horizontal and vertical sections of the string.

A. The tension in the horizontal section is greater.
B. The tension in the vertical section is greater.

C. The tensions in the two sections are equal.

Pulley mass M
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