# Physics 1501 Fall 2008

Mechanics, Thermodynamics, Waves, Fluids

**Lecture 15: Conservation of Energy II** 

#### Recap: conservative forces

- Examples of conservative forces include
  - Gravity
  - The static electric force
  - The force of an ideal spring
- Nonconservative forces include
  - Friction

#### Recap: potential energy

- The "stored work" associated with a conservative force is called **potential energy.** 
  - Potential energy is stored energy that can be released as kinetic energy.
- The change in potential energy is defined as the negative of the work done by a conservative force acting over any path between two points:

$$\Delta U_{AB} = -\int_{A}^{B} \vec{F} \cdot d\vec{r}$$

- Potential energy change is independent of path.
- Only *changes* in potential energy matter.
- We're free to set the zero of potential energy at any convenient point.

#### Recap: conservation of mechanical energy

- By the work-energy theorem, the change in an object's kinetic energy equals the net work done *on* the object:  $\Delta K = W_{\text{net}}$
- When only conservative forces act, the net work is the negative of the potential-energy change:  $W_{\rm net} = -\Delta U$
- Therefore when only conservative forces act, any change in potential energy is compensated by an opposite change in kinetic energy:

$$\Delta K + \Delta U = 0$$

• Equivalently,

$$K + U = \text{constant} = K_0 + U_0$$

 Both these equations are statements of the law of conservation of mechanical energy.

## Two common forms of potential energy

• Gravitational potential energy stores the work done against gravity:

$$\Delta U = mg \Delta y$$

- Gravitational potential energy increases linearly with height y.
- This reflects the *constant* gravitational force near Earth's surface.
- Elastic potential energy stores the work done in stretching or compressing springs or spring-like systems:

$$U = \frac{1}{2}kx^2$$

- Elastic potential energy increases *quadratically* with stretch or compression *x*.
- This reflects the *linearly increasing* spring force.
- Here the zero of potential energy is taken in the spring's equilibrium configuration.





#### **Clicker question**

A bowling ball is tied to the end of a long rope and suspended from the ceiling. A student stands at one side of the room, holds the ball to her nose, and then releases it from rest. Should she duck as it swings back?

- A. She should duck!
- B. She does not need to duck.





#### **Potential-energy curves**

- Potential-energy curves depict a system's potential energy as a function of position or other quantities representing the system's configuration.
- An object with a given total energy can be "trapped" in a "potential well" established by points where its total energy equals its potential energy.
- These points are turning points, beyond which the object cannot move given its fixed total energy.

# Potential-energy curves for a roller-coaster car with three different total energies:







#### Potential-energy curve for a molecule

- Potential-energy curves help determine the structure of systems, from molecules to engineered systems to stars.
- The potential-energy curve for a pair of hydrogen atoms shows potential energy as a function of atomic separation.
  - The minimum in the graph shows the equilibrium separation of the H<sub>2</sub> molecule.
  - It's convenient to take the zero of potential energy at infinite separation.
  - Then negative energies represent bound states of the hydrogen molecule.
  - Positive states represent separated hydrogen atoms.



#### Force and potential energy

- Force is greatest where potential energy increases most rapidly.
- Mathematically, the component of force in a given direction is the negative derivative of the potential energy with respect to position in that direction:

$$F_{x} = -\frac{dU}{dx}$$



#### **Clicker question**

This figure shows the potential energy for an electron in a microelectronic device. From among the labeled points, find the point where the force on the electron is greatest.

- A. Point A
- B. Point B
- C. Point C
- D. Point D
- E. Point E



## **Summary**

- **Potential energy** is stored energy that can be converted to kinetic energy.
- The change in potential energy is the negative of the work done by a conservative force as an object is moved on any path between two points:  $\Delta U = -\int_A^B F \cdot dr$ .
- When only conservative forces act, the total mechanical energy K + U is conserved:



- **Potential-energy curves** describe potential energy as a function of position or configuration.
- Force is the negative derivative of potential energy:  $F_x = -dU/dx$ .