Lecture 11: using Newton’s laws III
Circular Motion

• Problems involving circular motion are no different from other Newton’s law problems.

• Identify the forces, draw a freebody diagram, write Newton’s law.

• Here the acceleration has magnitude v^2/r and points toward the center of the circle.

A ball whirling on a string:

Freebody diagram:

Newton’s law:
$$T + F_g = ma$$

In components:
$$x: \quad T \cos \theta = \frac{mv^2}{L \cos \theta}$$
$$y: \quad T \sin \theta - mg = 0$$

Solve for the ball’s speed:
$$v = \sqrt{\frac{TL \cos^2 \theta}{m}} = \sqrt{\frac{(mg / \sin \theta)L \cos^2 \theta}{m}} = \sqrt{\frac{gL \cos^2 \theta}{\sin \theta}}$$
Loop-the-Loop!

- The two forces acting on the car are gravity and the normal force.
- Gravity is always downward, and the normal force is perpendicular to the track.
- Here the two are at right angles:
 - The normal force acts perpendicular to the car’s path, keeping its direction of motion changing.
 - Gravity acts opposite the car’s velocity, slowing the car.
Loop-the-Loop!

- Now both forces are downward:
 - For the car to stay in contact with the track, the normal force must be greater than zero.
 - So the minimum speed is the speed that lets the normal force get arbitrarily close to zero at the top of the loop.
 - Then gravity alone provides the force that keeps the car in circular motion.
Loop-the-Loop!

- Therefore Newton’s law has a single component, with the gravitational force mg providing the acceleration v^2/r that holds the car in its circular path:

$$F = ma \quad \rightarrow \quad mg = \frac{mv^2}{r}$$

- Solving for the minimum speed at the loop top gives $v = \sqrt{gr}$.
- Slower than this at the top, and the car will leave the track!
- Since this result is independent of mass, car and passengers will all remain on the track as long as $v \geq \sqrt{gr}$.
Friction

- **Friction** is a force that opposes the relative motion of two contacting surfaces.

- **Static friction** occurs when the surfaces aren’t in motion; its magnitude is $f_s \geq \mu_s n$, where n is the normal force between the surfaces and μ_s is the coefficient of static friction.

- **Kinetic friction** occurs between surfaces in motion; its magnitude is $f_k = \mu_k n$.

Friction is important in walking, driving and a host of other applications:
Solving Problems with Friction

- Problems with friction are like all other Newton’s law problems.
- Identify the forces, draw a freebody diagram, write Newton’s law.
- You’ll need to relate the force components in two perpendicular directions, corresponding to the normal force and the frictional force.

A braking car: What’s the acceleration?

Newton’s law: \(\vec{F}_g + \vec{n} + \vec{f}_f = ma \)

In components:
- \(x: \quad -\mu n = ma_x \)
- \(y: \quad -mg + n = 0 \)

Solve for \(a \):
\(y \) equation gives \(n = mg \),
so \(x \) equation gives \(a_x = -\frac{\mu n}{m} = -\mu g \)
Summary

• All Newton’s law problems are the same.
• They’re handled by
 • Identifying all the forces acting on the object or objects of interest.
 • Drawing a freebody diagram.
 • Writing Newton’s law in vector form:
 • Equating the net force to the mass times the acceleration.
 • Establishing a coordinate system.
 • Writing Newton’s law in components.
• Solving for the quantities of interest.