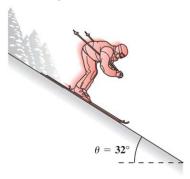
Physics 1501 Fall 2008

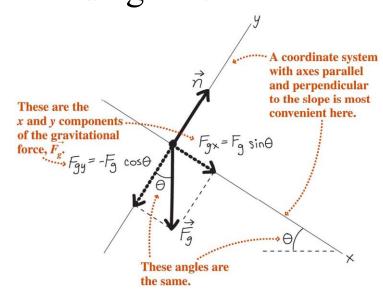

Mechanics, Thermodynamics, Waves, Fluids

Lecture 10: using Newton's laws II

Recap: A Typical Problem: What's the skier's

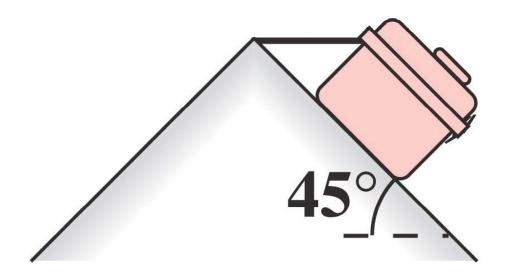
acceleration? What's the force the snow exerts on the skier?

Physical diagram:



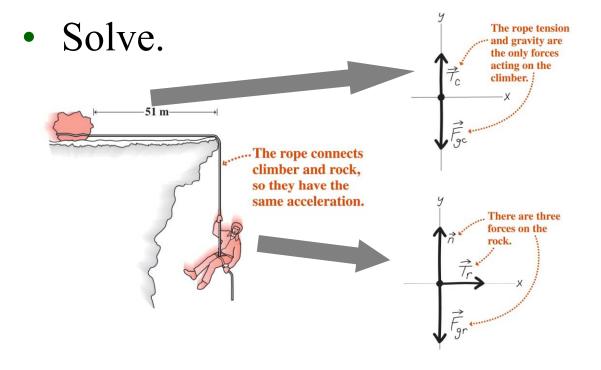
Newton's law:

$$\vec{F}_{\rm net} = \vec{n} + \vec{F}_{g} = m\vec{a}$$


- In components:
- x component: $mg \sin \theta = ma$
- y component: $n mg \cos \theta$ = 0

Free-body diagram:

- Solve to get the answers:
- $a = g \sin \theta (9.8 \text{ m/s}^2)(\sin 32^\circ) = 5.2 \text{ m/s}^2$
- $n = mg \cos \theta = 540 \text{ N}$


question

• A roofer's toolbox rests on an essentially frictionless metal roof with a 45° slope, secured by a horizontal rope as shown. Is the rope tension (A) greater than, (B) equal to, or (C) less than the box's weight?

Multiple Objects

- Solve problems involving multiple objects by first identifying each object and all the forces on it.
- Draw a freebody diagram for each.
- Write Newton's law for each.
- Identify connections between the objects, which give common terms in the Newton's law equations.

Newton's law:

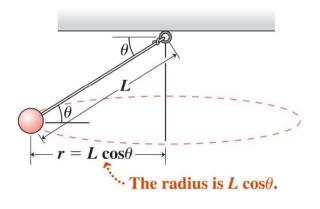
climber:
$$T_c + F_{gc} = m_c a_c$$

rock: $T_r + F_{gr} + n = m_r a_r$

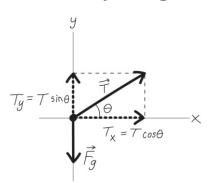
In components:

climber, y:
$$T - m_c g = -m_c a$$

rock, x: $T = m_r a$
rock, y: $n - m_r g = 0$


Solution:

$$a = \frac{m_c g}{m_c + m_r}$$


Circular Motion

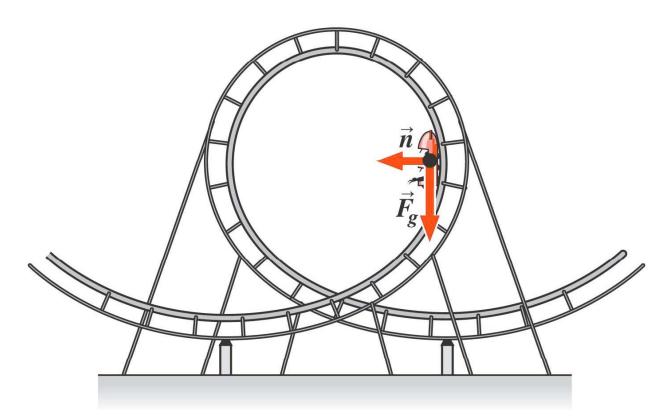
- Problems involving circular motion are no different from other Newton's law problems.
- Identify the forces, draw a freebody diagram, write Newton's law.
- Here the acceleration has magnitude v^2/r and points toward the center of the circle.

A ball whirling on a string:

Freebody diagram:

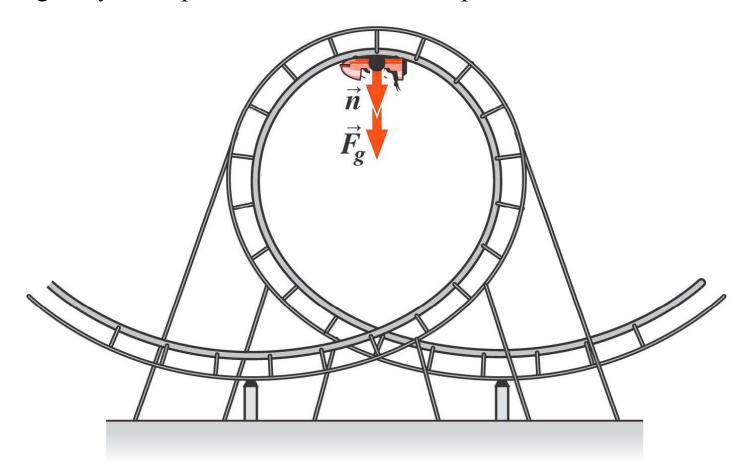
Newton's law: $\vec{T} + F_g = ma$

In components:


$$x: T\cos\theta = \frac{mv^2}{L\cos\theta}$$
$$y: T\sin\theta - mg = 0$$

Solve for the ball's speed:

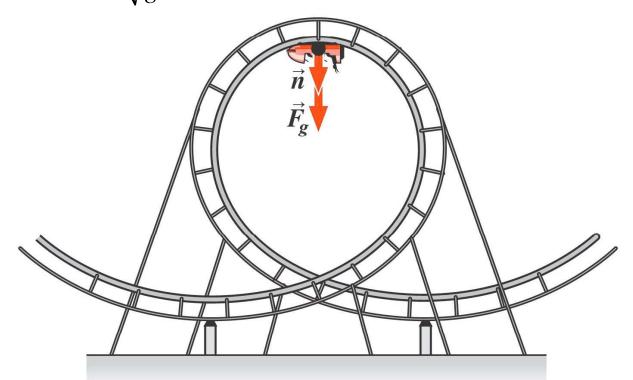
$$v = \sqrt{\frac{TL\cos^2\theta}{m}} = \sqrt{\frac{(mg/\sin\theta)L\cos^2\theta}{m}} = \sqrt{\frac{gL\cos^2\theta}{\sin\theta}}$$
Slide 10-5


Loop-the-Loop!

- The two forces acting on the car are gravity and the normal force.
- Gravity is always downward, and the normal force is perpendicular to the track.
- Here the two are at right angles:
 - The normal force acts perpendicular to the car's path, keeping its direction of motion changing.
 - Gravity acts opposite the car's velocity, slowing the car.

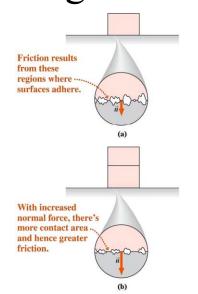
Loop-the-Loop!

- Now both forces are downward:
 - For the car to stay in contact with the track, the normal force must be greater than zero.
 - So the minimum speed is the speed that lets the normal force get arbitrarily close to zero at the top of the loop.
 - Then gravity alone provides the force that keeps the car in circular motion.

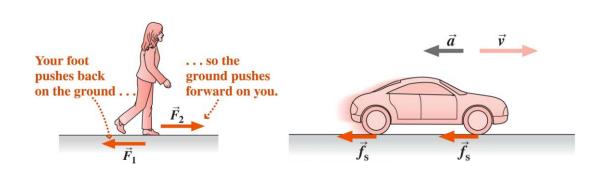


Loop-the-Loop!

• Therefore Newton's law has a single component, with the gravitational force mg providing the acceleration v^2/r that holds the car in its circular path:

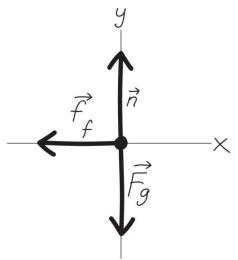

$$F = ma$$
 $\rightarrow mg = \frac{mv^2}{r}$

- Solving for the minimum speed at the loop top gives $v = \sqrt{gr}$.
- Slower than this at the top, and the car will leave the track!
- Since this result is independent of mass, car and passengers will all remain on the track as long as $v \ge \sqrt{gr}$.



Friction

- **Friction** is a force that opposes the relative motion of two contacting surfaces.
- Static friction occurs when the surfaces aren't in motion; its magnitude is $f_s \ge \mu_s n$, where n is the normal force between the surfaces and μ_s is the coefficient of static friction.
- **Kinetic friction** occurs between surfaces in motion; its magnitude is $f_k = \mu_k n$.


Friction is important in walking, driving and a host of other applications:

Solving Problems with Friction

- Problems with friction are like all other Newton's law problems.
- Identify the forces, draw a freebody diagram, write Newton's law.
- You'll need to relate the force components in two perpendicular directions, corresponding to the normal force and the frictional force.

A braking car: What's the acceleration?

Newton's law:

$$\vec{F}_g + \vec{n} + \vec{f}_f = m\vec{a}$$

In components:

$$x: -\mu n = ma_x$$

$$y: -mg + n = 0$$

Solve for *a*:

y equation gives
$$n = mg$$
,

so x equation gives
$$a_x = -\frac{\mu n}{m} = -\mu g$$