Physics 1501 Fall 2008

Mechanics, Thermodynamics, Waves, Fluids

Lecture 5: motion in two and three dimensions II

Recap: vectors

- A **vector** is a quantity that has both magnitude and direction.
 - In two dimensions it takes two numbers to specify a vector.
 - In three dimensions it takes three numbers.
 - A vector can be represented by an arrow whose length corresponds to the vector's magnitude. The v
- Position is a vector quantity.
 - An object's position is specified by giving its distance from an origin and its direction relative to an axis.
 - Here r_1 describes a point 2.0 m from the origin at a 30° angle to the axis.

Recap: adding vectors

- To add vectors graphically, place the tail of the first vector at the head of the second.
 - Their sum is then the vector from the tail of the first vector to the head of the second.

• Here r_2 is the sum of r_1 and Δr .

Recap: vector operations

- To multiply a vector by a scalar, multiply the vector's magnitude by the scalar.
 - For a positive scalar the direction is unchanged.
 - For a negative scalar the direction reverses.
- To subtract vectors, add the negative of the second vector to the first:

$$\dot{A} - \dot{B} = \dot{A} + \left(-\dot{B}\right)$$

• Vector arithmetic is commutative and associative:

Recap: unit vectors

- Unit vectors have magnitude 1, no units, and point along the coordinate axes.
 - They're used to specify direction in compact mathematical representations of vectors.
 - Unit vectors in the x, y, and z directions are designated \ddot{P} , \ddot{P} , and \ddot{R} .
 - Any vector in two dimensions can be written as a linear combination of ^p and ^p.
 - Any vector in three dimensions can be written as a linear combination of *P*, *P*, and *R*.

Recap: velocity and acceleration vectors

- Velocity is the rate of change of position.
 - The average velocity over a time interval Δt is the change in the position vector divided by the time.
 - Here dividing by Δt means multiplying by the scalar $1/\Delta t$:

$$\mathbf{\dot{r}} = \frac{\Delta \mathbf{\dot{r}}}{\Delta t}$$

- Instantaneous velocity is the time derivative of position: $\int_{\Delta t \to 0}^{r} \frac{\Delta r}{\Delta t} = \frac{dr}{dt}$
- Acceleration is the rate of change of velocity: Average: $\frac{f}{a} = \frac{\Delta v}{\Delta t}$ Instantaneous: $\frac{f}{a} = \frac{dv}{dt}$

Relative motion

- An object moves with velocity \dot{v}' relative to one frame of reference.
- That frame moves at \dot{V} relative to a second reference frame.
- Then the velocity of the object relative to the second frame is v = v' + V.
- Example:
 - A jetliner flies at 960 km/h relative to the air, heading northward. There's a wind blowing eastward at 190 km/h. In what direction should the plane fly?
- The vector diagram identifies the quantities in the equation, and shows that the angle is 11°.

Constant acceleration

- With constant acceleration, the equations for onedimensional motion apply independently in each direction.
 - The equations take a compact form in vector notation.
 - Each equation stands for two or three separate equations.

question

- An object is moving initially in the +*x* direction. Which of the following accelerations, all acting for the same time interval, will cause the greatest change in its speed?
 - A. $10\hat{j} \text{ m/s}^2$
 - B. $2\hat{i} 8\hat{j}$ m/s²
 - C. $10\hat{i} \text{ m/s}^2$
 - D. $10\hat{i} + 5\hat{j} \text{ m/s}^2$

Projectile motion

- Motion under the influence of gravity near Earth's surface has essentially constant acceleration g' whose magnitude is $g = 9.8 \text{ m/s}^2$, and whose direction is downward.
 - Such motion is called **projectile motion**.
 - Equations for projectile motion, in a coordinate system with *y* axis vertically upward:

$$v_{x} = v_{x0}$$

$$v_{y} = v_{y0} - gt$$

$$x = x_{0} + v_{x0}t$$

$$y = y_{0} + v_{y0}t - \frac{1}{2}gt^{2}$$

• Horizontal and vertical motions are independent:

Vertical spacing is the same, showing that vertical and horizontal motion are independent.

Projectile trajectories

- The trajectory of an object in projectile motion is a parabola, unless the object has no horizontal component of motion.
 - Horizontal motion is unchanged, while vertical motion undergoes downward acceleration:

• Equation for the trajectory:

Uniform circular motion

• When an object moves in a circular path of radius *r* at constant speed *v*, its acceleration has magnitude

r

• Since the direction of the acceleration keeps changing, this is *not* constant acceleration.

question

- The figure shows velocity vectors for four points on a noncircular path. Choose the correct order, from smallest to largest, of the centripetal accelerations at these points given v₁ = v₄ and v₂ = v₃.
 A. a₁>a₄>a₃>a₂
 - B. $a_2 > a_3 > a_4 > a_1$
 - C. $a_3 > a_2 > a_1 > a_4$

Summary

• In two and three dimensions, position, velocity, and acceleration become vector quantities.

120

100

80

60 -

40

20

y (m)

75

- Velocity is the rate of change of position: $\mathbf{r}_{v} = \frac{d\mathbf{r}}{dt}$
- Acceleration is the rate of change of velocity: a =
- In general, acceleration changes both the magnitude and direction of the velocity.
- Projectile motion results from the acceleration of gravity.
- In uniform circular motion, the acceleration has magnitude v^2/r and points toward the center of the circular path.

