Physics 1501 Fall 2008

Mechanics, Thermodynamics, Waves, Fluids

Lecture 4: motion in two and three dimensions I

Recap: Velocity

- **Velocity** is the rate of change of position.
 - Average velocity over a time interval Δt is defined as the displacement divided by the time:

$$\overline{v} = \frac{\Delta x}{\Delta t}$$

• Instantaneous velocity is the limit of the average velocity as the time interval becomes arbitrarily short:

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

- In calculus, this limiting procedure defines the **derivative** dx/dt.
- **Speed** is the magnitude of velocity.

• Velocity is the slope of the position-versus-time curve.

As the interval gets shorter, average velocity approaches instantaneous velocity at time t_1 .

The slopes of 3 tangent lines give the instantaneous velocity at 3 different times.

Recap: Acceleration

- Acceleration is the rate of change of velocity.
 - Average velocity over a time interval Δt is defined as the change in velocity divided by the time:

$$\overline{a} = \frac{\Delta v}{\Delta t}$$

• Instantaneous acceleration is the limit of the average acceleration as the time interval becomes arbitrarily short:

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

• Acceleration is the slope of the velocity-versus-time curve.

Recap: Constant acceleration

 When acceleration is constant, then position, velocity, acceleration, and time are related by

$$v = v_0 + at$$

$$x = x_0 + \frac{1}{2}(v_0 + v)t$$

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

where x_0 and v_0 are initial values at time t = 0, and x and y are the values at an arbitrary time t.

- With constant acceleration
 - Velocity is a linear function of time
 - Position is a quadratic function of time

Recap: the acceleration of gravity

- The acceleration of gravity at any point is exactly the same for all objects, regardless of mass.
- Near Earth's surface, the value of the acceleration is essentially constant at $g = 9.8 \text{ m/s}^2$.
- Therefore the equations for constant acceleration apply:
 - In a coordinate system with *y* axis upward, they read

$$v = v_0 - gt$$

$$y = y_0 + \frac{1}{2}(v_0 + v)t$$

$$y = y_0 + v_0 t - \frac{1}{2}gt^2$$

$$v^2 = v_0^2 - 2g(y - y_0)$$

This strobe photo of a falling ball shows increasing spacing resulting from the acceleration of gravity.

In this lecture you'll learn

- To describe position, velocity, and acceleration in three-dimensional space using the language of vectors
- To manipulate vectors algebraically
- To transform velocities to different reference frames
- To solve problems involving constant acceleration in two dimensions
 - Including projectile motion due to the constant acceleration of gravity near Earth's surface
- To evaluate acceleration in circular motion

Vectors

- A vector is a quantity that has both magnitude and direction.
 - In two dimensions it takes two numbers to specify a vector.
 - In three dimensions it takes three numbers.
 - A vector can be represented by an arrow whose length corresponds to the vector's magnitude.
- Position is a vector quantity.
 - An object's position is specified by giving its distance from an origin and its direction relative to an axis.
 - Here r_1 describes a point 2.0 m from the origin at a 30° angle to the axis.

Adding vectors

- To add vectors graphically, place the tail of the first vector at the head of the second.
 - Their sum is then the vector from the tail of the first vector to the head of the second.

• Here r_2 is the sum of r_1 and Δr .

$$\dot{r}_2 = \dot{r}_1 + \Delta \dot{r}$$

Vector arithmetic

- To multiply a vector by a scalar, multiply the vector's magnitude by the scalar.
 - For a positive scalar the direction is unchanged.
 - For a negative scalar the direction reverses.
- To subtract vectors, add the negative of the second vector to the first:

$$\dot{A} - \dot{B} = \dot{A} + \left(-\dot{B}\right)$$

Vector arithmetic is commutative and associative:

Unit vectors

- Unit vectors have magnitude 1, no units, and point along the coordinate axes.
 - They're used to specify direction in compact mathematical representations of vectors.
 - Unit vectors in the x, y, and z directions are designated \ddot{p} , \ddot{p} , and \ddot{p} .
 - Any vector in two dimensions can be written as a linear combination of \ddot{p} and \ddot{p} .
 - Any vector in three dimensions can be written as a linear combination of \ddot{p} , \ddot{p} , and \ddot{R} .

Vector arithmetic with unit vectors

- To add vectors, add the individual components:

 - If $\vec{A} = A_x \vec{P} + A_y \vec{P}$ and $\vec{B} = B_x \vec{P} + B_y \vec{P}$ then $\vec{A} + \vec{B} = (A_x + B_x)\vec{P} + (A_y + B_y)\vec{P}$

- To multiply by a scalar, distribute the scalar; that is, multiply the individual components by the scalar:
 - If $A = A_x \ddot{P} + A_y \ddot{P}$
 - then $c\dot{A} = cA_x \ddot{p} + cA_y \ddot{p}$

Velocity and acceleration vectors

- Velocity is the rate of change of position.
 - The average velocity over a time interval Δt is the change in the position vector divided by the time.
 - Here dividing by Δt means multiplying by the scalar $1/\Delta t$:

$$\dot{v} = \frac{\Delta r}{\Delta t}$$

• Instantaneous velocity is the time derivative of position:

$$\overset{\mathbf{r}}{v} = \lim_{\Delta t \to 0} \frac{\Delta \overset{\mathbf{l}}{r}}{\Delta t} = \frac{d\overset{\mathbf{l}}{r}}{dt}$$

Acceleration is the rate of change of velocity:

Average:
$$\frac{\mathbf{r}}{a} = \frac{\Delta \dot{v}}{\Delta t}$$
 Instantaneous: $\dot{a} = \frac{d\dot{v}}{dt}$

Velocity and acceleration in two dimensions

- An acceleration \dot{a} acting for time Δt produces a velocity change $\Delta \dot{v} = \dot{a} \Delta t$.
 - The change adds *vectorially* to give the new velocity:

$$v = v_0 + a \Delta t$$

• The new velocity depends on the magnitude of the acceleration as well as its direction:

 \dot{a} and \dot{v} colinear: only speed changes

 \dot{a} and \dot{v} perpendicular: only direction changes

In general: both speed and direction change

 $\vec{v} = \vec{v}_0 + \vec{a}\Delta t$

question

• An object is accelerating downward. Which of the following must be true?

- A. The object is moving directly downward.
- B. If the object's motion is instantaneously horizontal, it can't continue to be so.
- C. The object cannot be moving in a straight line.
- D. The object cannot be moving upward.

Relative motion

- An object moves with velocity $\dot{\nu}'$ relative to one frame of reference.
- That frame moves at \dot{V} relative to a second reference frame.
- Then the velocity of the object relative to the second frame is v = v' + V.
- Example:
 - A jetliner flies at 960 km/h relative to the air, heading northward. There's a wind blowing eastward at 190 km/h. In what direction should the plane fly?
- The vector diagram identifies the quantities in the equation, and shows that the angle is 11°.

Constant acceleration

- With constant acceleration, the equations for onedimensional motion apply independently in each direction.
 - The equations take a compact form in vector notation.
 - Each equation stands for two or three separate equations.

$$\vec{v} = \vec{v}_0 + \vec{a}t$$

$$\vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2}\vec{a}t^2$$

question

• An object is moving initially in the +x direction. Which of the following accelerations, all acting for the same time interval, will cause the greatest change in its speed?

A.
$$10\hat{j} \text{ m/s}^2$$
B. $2\hat{i} - 8\hat{j} \text{ m/s}^2$
C. $10\hat{i} \text{ m/s}^2$
D. $10\hat{i} + 5\hat{j} \text{ m/s}^2$