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The work presented in this dissertation represents a comprehensive study on long-

range interactions between alkali Rydberg atoms. As a consequence of their size, 

Rydberg atoms possess very large dipole moments, making them highly sensitive 

to external fields and to other Rydberg atoms. The strong dipole-dipole interac

tion between two Rydberg atoms results in a mixing of their angular momentum 

characters, which is the cornerstone of the work presented here. We describe the 

^-mixing between various local molecular asymptotes through a residual Coulomb 

potential, assuming no electron cloud overlap. We then directly diagonalize an 

interaction Hamiltonian consisting of these Rydberg-Rydberg interactions and 

spin-orbit (fine structure) coupling in the Hund's case (c). In this manner, we 

calculate potential energy curves for various molecular symmetries and find that 

some of these curves exhibit deep potential wells, capable of supporting very ex

tended bound molecular states (macrodimers). We analyze the specific structure 

of the ^-mixing for these potential wells and derive convenient n-scaling relations 

for both their equilibrium separations Re and well depths De. We also explore 



various properties of the macrodimers, including their response to small electric 

fields and stability with respect to predissociation. We note throughout the dis

sertation that the detection of such extended dimers could help progress studies 

in a variety of areas such as exotic, ultracold chemistry and quantum information 

and computing. To facilitate detection, we propose a scheme to form and study 

the macrodimers via photoassociation (PA). We present calculated PA lineshapes 

from two different electronic ground states based on a harmonic trapping model. 

We find that both PA signals vary significantly with the laser detunings, indicat

ing that different ^-characters could be probed at different equilibrium lengths. 

Finally, we extend the two-body formalism to the case of three interacting Ryd-

berg atoms and present preliminary results for triply excited 58p rubidium atoms 

along a common axis. We provide a few examples of surface plots corresponding 

to different local asymptotes, each with a unique three-dimensional "landscape" 

and discuss the relevance of the physical features. The highlight of our analysis 

is the appearance of a potential well, which indicates the formation of a linear 

t rimer. 
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Chapter 1 

Introduction 

1.1 Rydberg atoms 

A Rydberg atom is an excited atom in which the valence electrons have very high 

principle quantum numbers. Although Rydberg states have been achieved via the 

excitation of multiple electrons [1], this dissertation studies the more traditional 

Rydberg atom: a single valence electron that has been excited very far from the 

core. In principle, any atom can be excited into a Rydberg state, but neutral al

kali atoms are the most common candidates. Alkali metals are ideal for Rydberg 

atoms because they inherently have one electron in their outermost shell, making 

the excitation to a high orbital easier to perform experimentally. The excitation 

of a single electron leads to exaggerated atomic properties, such as long lifetimes, 

large cross-sections and very large polarizabilities [2], yet the atoms' neutrality al

lows for minimal interaction with the environment while in the ground state [3, 4]. 

The ability to control these atomic interactions by exciting trapped atoms at will 

has led to quantum information proposals involving entangled states [5]. 

Exciting a single electron to such a high orbital state leads to the Rydberg atom 

being very similar to hydrogen: one valence electron orbits a nucleus of overall +1 

charge. For this reason, the potential energy of the atom is conveniently described 
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by the 1/r Coulombic potential and thus the total energy of the Rydberg atom is 

very similar in form to that of the hydrogen atom (see Chapter 2). This similarity 

to hydrogen also means that the semi-classical Bohr model can be used to ana

lyze many of their atomic properties. For example, equating the centripetal force 

of the orbiting electron with the Coulombic force between the electron and the 

core leads to a scaling relation between the orbital radius of the electron rn and 

principal quantum number n, i.e. rn — aon2, where a^ is the Bohr radius. This 

expression indicates that the electron's excitation to a high n level corresponds to 

it being very far away from the nucleus. This makes the Rydberg atom especially 

responsive to electric and magnetic fields, as well as to other Rydberg atoms. 

1.2 S u m m a r y of previous work 

Strong Rydberg-Rydberg interactions have fueled immense interest in the field of 

quantum computing and over the past ten years, proposals such as fast quantum 

gates [6, 7] and quantum random walks [8] have been developed. Also of particu

lar interest is the excitation blockade effect [9], where one Rydberg atom actually 

prevents the excitation of other nearby atoms in an ultracold sample [10-14]. This 

phenomenon was recently observed in microtraps [15, 16] and a C-NOT gate was 

implemented using this behavior [17]. A comprehensive review of the major works 

of the past decade in quantum information with regard to Rydberg atoms was re

cently published in [18]. 

Another interesting area of research involving atomic Rydberg interactions is the 

formation of long-range "exotic molecules." In one scenario, one atom remains 

in its ground state while a second atom is excited to a Rydberg state. The 
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most famous examples of this type of interaction are the trilobite and butterfly 

states, so-called because of the resemblence of their respective wave functions to 

these creatures. The theoretical framework for such interactions was first proposed 

in [19], but evidence of their existence was not observed until more recently in [20]. 

The second type of interaction occurs when both atoms are excited to Rydberg 

states and interact with each other via multiple long-range forces. It was origi

nally proposed in [21] that two interacting rubidium (Rb) Rydberg atoms could 

form very extended bound molecular states, labeled macrodimers. Specifically, 

long-range potential curves for various symmetry states were calculated using per

turbation theory; some of these curves illustrated shallow potential wells, capable 

of supporting a few bound levels. Although these specific macrodimers have not 

been detected to date, other proposals involving Stark-shifted cesium atoms [22] 

have led to an experimental signature [23]. This will be discussed further in Chap

ter 3. 

Another signature of strong interactions between two Rydberg atoms is that of 

molecular resonance features in excitation spectra. Such resonances were first ob

served in rubidium atoms [24], but have been more recently observed in cesium 

atoms as well [25]. In the rubidium experiment, the excitation of 5s ground state 

atoms to high np Rydberg states (n = 50 — 90) yielded pronounced molecular 

resonances corresponding to the average energy of the (n — l)d + ns state pair. 

According to dipole transition rules, such s —> s' and s —» d excitations should 

not be allowed. It turned out that describing these observed resonances with 

the standard perturbation theory model [26] was not sufficient, mainly because 
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the interaction energies of the Rydberg atom pairs contributing to the resonances 

were many times (~ 20) greater than the region of energy for which perturbation 

theory was applicable. Therefore, to properly describe the observed resonances, a 

much more accurate description of the long-range interactions was needed. 

A detailed theoretical treatment describing these molecular resonances was given 

in [27, 28], in which an interaction Hamiltonian matrix was directly diagonalized. 

To properly describe the resonance features, the Hamiltonian contained not only 

the long-range Rydberg-Rydberg interaction potential, but atomic fine structure 

as well. The spin-orbit coupling of each atom causes an extensive mixing of their 

respective electronic wave functions [29] and results in the fine structure split

ting of asymptotic energy levels. This is properly described by the Hund's case 

(c) coupling scheme. The potential curves presented in these works illustrated 

avoided crossings and strong ^-mixing between different electronic states, making 

for an interesting interaction picture. Due to the mixing of the asymptotic states, 

molecular states other than the directly excited 70p + 70p states became accessi

ble. Thus, ^-mixing explained how access to normally forbidden states could be 

achieved via such excitations. 

1.3 This dissertation 

The theoretical model explaining the molecular resonances underscored an im

portant point regarding long-range Rydberg-Rydberg interactions: perturbation 

theory is not enough to accurately describe the physical situation. The potential 

energy curves that result from diagonalizing the interaction Hamiltonian reveal 

details of complicated interactions not seen in curves calculated using perturba-



5 

tion theory, including avoided crossings and as we will see, new potential wells. 

We thus propose that the macrodimers predicted in [21] have not yet been realized 

becajj.se the physical model describing the interactions is incomplete. 

In this dissertation, we adopt the same calculational methods used in [27] and [28] 

to produce interaction curves for various molecular symmetries and excited asymp

totes of different alkali elements. All of these calculated curves demonstrate strong 

-^-mixing between molecular electronic states, but only some of them lead to deep 

potential wells. The wells we calculate here differ from those in [21] in two main 

respects: Our wells are significantly deeper for equivalent n values, and are formed 

via the mixing of different electronic character due to permanent multi-pole mo

ments, not via induced van der Waals interactions. 

This dissertation represents a comprehensive study of the long-range Rydberg-

Rydberg interactions leading to bound molecular states. As such, we focus on the 

potential curves correlated to large potential wells and find that such wells are evi

dent in the cases of rubidium and cesium. In our discussion of these macrodimers, 

we analyze a variety of properties such as responsivity to small electric fields, 

stability and scaling relations. We also propose a possible formation mechanism 

based on photoassociation, and include numerical calculations of lineshapes for 

that model. 

1.3.1 Overview 

In Chapter 2, we review the basic principles of molecular group theory and how 

group theory is useful to us in constructing properly symmetrized asymptotic ba-

http://becajj.se
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sis states. We discuss the long-range Rydberg-Rydberg interaction potential and 

derive an analytical expression for the matrix elements. Finally, we discuss the 

potential curves that result from the diagonalization of the interaction matrix and 

provide examples of these curves. 

In Chapter 3, we describe in detail several properties of the macrodimers. We 

begin by discussing the effect of a small electric field and show that the wells we 

focus on are stable with respect to such fields. We then calculate the energy lev

els and radial wave functions for the bound levels inside each potential well. We 

examine the effects of the ^-mixing by analyzing the eigenvectors of the potential 

curves. The electronic character of the wells will be important when describ

ing formation properties in Chapter 4. We derive simple n-scaling relations for 

the dissociation energy and the equilibrium separation and conclude by showing 

that the bound excited states we predict are stable with respect to predissociation. 

In Chapter 4, we review photoassociation and present a two-photon formation 

scheme to realize our marodimers. We derive the photoassociation rate expres

sion for this two-photon process based on dipole transitions from two ground state 

atoms to two Rydberg state atoms. Finally, we provide calculated line shapes 

based on a collection of ground state atoms initially confined to a harmonic trap 

for two different electronic levels. 

Finally, in Chapter 5, we provide an outlook of future work toward the exten

sion of the two-body physics to a three-body system. We assume three identi

cal Rydberg atoms along a common axis and calculate potential energy surfaces 
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describing their interactions. We derive properly symmetrized asymptotic three-

atom basis states and (assuming long-range conditions) use multiple two-body 

potentials to define the three-body interaction. We provide multiple surface plots 

illustrating various features for different basis states and discuss the relevance of 

these features. 



Chapter 2 

Molecular Potentials 

Ultracold Rydberg atoms provide a very interesting avenue of study: translation-

ally, the atoms are very slow, yet at the same time they have very high internal 

energies. For short experimental times, it has been shown [30, 31] that the trans

lational motion of Rydberg atoms can be completely ignored and the sample can 

be treated as a "frozen Rydberg gas." Ignoring the translational dynamics of the 

atomic cores significantly simplifies the calculations of the interaction energies. 

Thus, the potential curves that we calculate in this chapter represent the internal 

energy of the Rydberg atoms as defined by their electronic energies. 

In this chapter, we present potential energy curves associated with the long-

range interactions of two identical ultracold Rydberg atoms. These curves are 

calculated by diagonalizing the interaction Hamiltonian in a basis set constructed 

in the Hund's case (c) coupling scheme. Hund's case (c) is appropriate when 

the spin-orbit coupling becomes significant and fine structure cannot be ignored, 

which is exactly the scenario we consider (see Chapter 1). This basis more accu

rately describes the molecular asymptotes at R —>• oo and it more easily allows 

for a proper description of the ^-mixing at shorter R. 

8 
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The strong coupling of the orbital l% and spin s% angular momenta of each elec

tron % (labeled 1 and 2) means that the only good quantum number in the Hund's 

case (c) basis is the projection U of the total angular momentum of the two-atom 

system J = ji + J2 along the internuclear axis (see Fig. 2.1). Here, jz = t% + s% 

is the total angular momentum of electron i. This means that the interaction 

Hamiltonian we consider will be diagonal in the basis of properly symmetrized 

|^i,^i)Ji,"T'ji)|^2)^2,j2,^ — mji) states, where nt is the principal quantum num

ber of electron i. 

n 

Fig. 2 .1 : Angular momenta of a diatomic molecule and their projections for both 
the coupled case (Hund's case (c)) and the uncoupled case (Hund's case 
(a)). Here, A is the projection of the total orbital angular momentum 
L = £i + £2, S is the projection of the total spin angular momentum 
S = S1 + S2 and ft is the projection of the total angular momentum J = 
Ji + J2- We discuss the Hund's case (a) coupling scheme in Section 2.4. 
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In this chapter, we review the basics of molecular symmetries as applied to 

homonuclear dimers and show how this leads to properly symmetrized asymp

totic basis states. We discuss the long-range interactions between two Rydberg 

atoms and derive an analytical expression for the matrix elements of the interac

tion Hamiltonians that we diagonalize. These diagonahzations lead to long-range 

potential energy curves. We present examples of such curves at the end of this 

chapter and include many more in Appendix A. 

2.1 Molecular Symmetries and Symmetry Operations 

Group theory has proven to be very useful in the study of molecules. Assigning 

molecules to groups based on their symmetry operations allows for considerable 

insight into their properties based solely on the properties of the individual sym

metry group. For example, spatial symmetries of a molecule lead directly to 

energy and momentum conservation laws [32], which govern the dynamics of that 

molecule. 

Molecules that possess the same spatial symmetries are classified according to 

their symmetry operations in what are called point groups, which is a symmetry 

group whose elements are the symmetry operations of molecules. Molecules in the 

same point group share the same symmetries and are therefore all invariant with 

respect to the same symmetry operations. The operators O that perform these 

symmetry operations leave the energy of the system unchanged, i.e. they com

mute with the Hamiltonian operator H. This means that the set of eigenfunctions 

common to both H and O will form the basis for the matrix representation of the 

molecule's point group operations [29]. 
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The homonuclear dimers discussed in this dissertation belong to the Ax>fr point 

group, for which the relevant symmetry operations are rotations about the in

ternuclear axis (Cn), reflections through a plane containing the internuclear axis 

(cr„), and an inversion through the central spatial point of the two nuclei (?) [29]. 

Given two identical atoms A and B, with respective electrons 1 and 2, the projec

tion of the total electronic angular momentum ft = rrij1 +rrij2 onto the internuclear 

axis is conserved as a consequence of the dimer's rotational symmetry [29, 32]. 

For ft ^ 0, a reflection through a plane containing the internuclear axis (see Fig

ure 2.2) changes the direction of precession of the electron's angular momentum 

and thus changes the orientation of ft [33]. Since the energy of this reflected 

state is the same as the original state, the two are degenerate. Consequently, 

symmetrizing the ft ^ 0 basis states with this reflection operator a„ is redun

dant and unnecessary. For ft = 0, however, the (anti)symmetrization can give 

non-degenerate states and so this operation becomes mandatory when defining 

properly symmetrized basis states. 

The inversion operator i acts to invert the electronic states of each electron rela

tive to their respective atomic core and then exchange the two inverted electrons. 

The net result is that electron 1 is located around core B and electron 2 is located 

around core A (see Fig. 2.2). Since i2 = 1 (performing the inversion operator twice 

yields the original orientation), the eigenvalues p of i are + 1 and —1. States that 

remain invariant under the inversion operator are known as gerade (g) states, 

while states that become negative under inversion are known as ungerade (u) 
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Fig. 2.2: Molecular symmetry operations for homonuclear dimers (Doo^ symme

try) . The top panel illustrates an inversion of the electrons through a 
central point, while the bottom panel illustrates a reflection across a 
plane containing the internuclear axis. 

2.2 The Basis 

2.2.1 Basis States 

As with any interaction picture, choosing an appropriate basis is crucial. The 

basis states must take into account the symmetries of the system, as well as the 

interactions of the physical problem. It has been shown [34] that the proper 

symmetrized Hund's case (c) basis states for Vt ^ 0 take on the following form 

(we also review the derivation in Appendix B): 

|ai ;a2 ;f i9 / u) = - ^ [ h ) | a 2 ) - p(-l)l^a2)\ai)] . (2.2.1) 
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Here, \a-\) = \n,i,£i, j\,mn) and \a2) = |n 2 ,^2, j2 ,^ — rnn) a r e the states of two 

free Rydberg atoms described by the principle quantum number nt, the orbital 

angular momentum quantum number £l} and the projection mJi of the total an

gular momentum jt = £t + st onto the internuclear axis (assumed to be in the 

z-direction). Q is the total angular momentum projection as defined previously 

and p represents the eigenvalues of the inversion operator, also described previ

ously. 

For f2 = 0, Equation (2.2.1) does not sufficiently define the basis states. Addition

ally, we need to account for the reflection symmetry through a plane containing 

the internuclear axis. Such a reflection will either leave the wave function unaf

fected or it will change the sign of the wave function. We distinguish between the 

symmetric and antisymmetric states under the av operator via 

lO^H^ItW, (2.2.2) 

where ov behaves according to the following rules [29, 35]: 

a„\A) = (-1)A\ - A), (2.2.3) 

&V\S,Ms) = (-l)s~Ms\S, -Ms) . (2.2.4) 

When A = 0, Equation (2.2.3) does not properly describe the effect of a„, which 

is to affect the orbital part of the electron wave function for the atomic states, i.e. 

av\l,mi) = (—l)me\£, —me). Using these rules that describe the uncoupled case, 
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we can formulate a convenient expression for the coupled case that we consider: 

av\n,£J,mJ)\n',£',j',(Q-m:i)) = 

( - l ^ ' K ^ - m ^ n V ' ^ K - f t ) ) . (2.2.5) 

2.2.2 Basis sets 

To fully explore the ^-mixing, we build basis sets comprised of the properly sym

metrized basis states discussed in Section 2.2.1. Of course, the physical parameters 

of the problem (such as the quantum state of the Rydberg atoms and the resulting 

Q value) dictate which molecular states will be included in the basis set. In gen

eral, though, the basis sets consist of properly symmetrized states corresponding 

to those molecular asymptotes with significant coupling to both the molecular Ry

dberg level being considered and to other nearby asymptotes. Although dipolar 

coupling represents the strongest interaction between local asymptotes, quadrupo-

lar coupling is significant for certain molecular levels and is thus taken into account 

when constructing the basis. 

References [27] and [28] give the technical details for determining which asymp

totic levels are used to build the basis states for the various symmetries in the 

case of np + np rubidium. Although the procedure to find the basis states for 

different Rydberg molecular levels (such as ns + ns and nd + nd) is the same, the 

relevant asymptotes upon which each basis set is constructed will be different. To 

gauge the relevance of nearby asymptotes, we compare their relative interaction 
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strengths via the C6 coefficient for dipole-dipole coupling: 

°e ~ (El + E3) - (E2 + E4) ' ( 2-2-6 ) 

and the C5 coefficient for quadrupole-quadrupole coupling: 

C5^(0i |r2 |02)((/»3|r2^4) • (2.2.7) 

In these expressions, E% is the asymptotic energy of atom i in state (j)% and ((/>j|rfc| </>,,) 

is the matrix element between atoms i and j . The fact that there are contribu

tions from four atoms stems from the asymptotic nature of the two interacting 

molecular levels (two atomic states per molecular asymptote). 

For Rydberg atoms, the energy Et is given in atomic units by 

E* = - 0 ( „ 1 ^ 2 > ( 2 - 2 - 8 ) 

where n% is the principal quantum number and 5gt represents a small corrective 

term known as the quantum defect. The quantum defect accounts for the fact 

that Rydberg electrons with small angular momenta have highly elliptical orbits 

that allow for penetration into the core. This exposes the electron to unshielded 

protons, increasing the electron's binding energy [2]. We calculate the quantum 

defect via [2]: 

oe = oo + 7 Y~Y? + 7 7T7 + 7 Y^e + 7 F^s > (2.2.9) 
(n - 5QY (n - S0)

4 (n - <50)
6 (n - 50)

8 
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where the Si values are found experimentally and given in Table 2.1 for the alkali 

elements that we consider in this dissertation. We note that as the electron's 

angular momentum £ increases, the quantum defect decreases and for £ > 4, the 

Rydberg atom is modeled as perfectly hydrogenic. 

Using the relations given in Equations (2.2.6) and (2.2.7), we examine asymptotes 

within the vicinity (~ ±20 GHz) of the molecular Rydberg level being considered 

and compare their relative interaction strengths. Again, we not only include the 

asymptotes that couple strongly to the molecular Rydberg level, we also include 

asymptotes that couple strongly to these levels. The matrix elements {(f)i\rk\(f)j) 

are calculated using an inward-integrating Numerov method, as in [38] (see Ap

pendix B for details). As shown in Table 2.2, we find that the dipole strength 

between two atomic states decays rapidly with the relative difference in their ef

fective principal quantum numbers An* = \n* — n'*\, where n* = n — Si and 

n'* = n' — Si>. We therefore only consider nearby asymptotic levels whose two 

constituent atoms have n* values in the range (n* — 3) < n* < (n* + 3), where n* 

is the effective principal quantum number of the Rydberg level being studied. 

Once the relevant molecular asymptotes are determined from the above method, 

the properly symmetrized basis states are constructed from these asymptotes. We 

note that each molecular symmetry Vt , results in a different set of basis states. 

As an example, Table 2.3 lists the basis set for the 0+ symmetry near the Rb 

70p + 70p molecular asymptote. For this Q = 0 symmetry, the basis states have 

been additionally symmetrized by the av operator given in Equation (2.2.2). In 

this table, each |ai;a2;0g) state is defined by Equation (2.2.1). 
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Table 2.1: Quantum defects for the first five alkali elements All values are 
taken from [2], except for the 5o and 52 values of 85Rb, which are 
taken from [36] and [37] 

Series <5Q 52 5^ <56 <58 

ns1/2 

npi/2 3/2 

nd3/2 5/2 

nfb/2 7/2 

nsi/2 

npi/2 

np3/2 

nd3/2 5/2 

nfs/2 7/2 

nsi/2 

npi/2 

np3/2 

nd3/2 

nd5/2 

nf 5/2 7/2 

ns1/2 

npi/2 

np3/2 

nd3/2 

nd5/2 

nfc/2 

nf7/2 

nsi/2 

npi/2 

npi/2 
nd3/2 

nd5/2 

nf5/2 

nf7/2 

0 399468 
0 47263 
0 002129 
0 0003055 

1 3479692 
0 855424 
0 854608 
0 015543 
0 001663 

2 180197 
1 713892 
1 710848 
0 276970 
0 277158 
0 010098 

3 1311804 
2 6548849 
2 6416737 
1 34809171 
1 34646572 
0 0165192 
0 0165437 

4 049325 
3 591556 
3 559058 
2 475365 
2 466210 
0 033392 
0 033537 

0 030233 
-0 02613 
-0 01491 
-0 00126 

0 06137 
0 1222 
0 1220 

-0 08535 
-0 0098 

0 136 
0 2332 
0 2354 

-1 0249 
-1 0256 
-0 100224 

0 1784 
0 2900 
0 2959 

-0 60286 
-0 59600 
-0 085 
-0 086 

0 246 
0 3714 
0 374 
0 5554 
0 0167 

-0 191 
-0 191 

-0 0028 
0 0221 
0 01759 

0 7958 

0 0759 
0 16137 
0 11551 

-0 709174 
-0 59201 
1 56334 

-18 
-7 904 
-0 97495 
-1 5017 
-1 5017 
-0 36005 
-0 36005 

0 0115 
-0 0683 
-0 8507 

-4 0513 

0 117 
0 5345 
1 105 
11839 
10 0053 

-12 6851 

116 437 
14 6001 
-2 4206 
-2 4206 
3 2390 
3 2390 

-0 206 
-0 234 
-2 0356 
-26 689 
-19 0244 

-405 907 
-44 7265 
19 736 
19 736 
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Table 2.2: Dipole matrix elements for atomic transitions from Rb 7Qpz/2- We 
highlight the two largest elements and note the rapid decrease in 
coupling strength as An* = \n* — n'*\ increases. 

(70P3/2|r|74s) = 
(70P3/2|r|73S) = 
(70p3/2 |r|72s) = 
(70p3/2|r|71s) = 
(70p3/2|r|70s) = 
(70p3/2|r|69s) = 
(70p3/2|r|68s) = 
(70p3/2|r|67s) = 
(70p3/2|r|66S) = 

-162.74 
286.53 

-689.15 
4953.7 
4082.5 
-690.75 
243.06 

-131.75 
83.375 

2.3 Long-range Interactions 

In general, the interaction energy between two random charge distributions with 

centers A and B is calculated by summing over a bipolar expansion of the Coulom-

bic potential [39, 40] between successive pairs of individual charges, i.e. 

,/ J <Yt rp 

hJ 

OO OO 

E ^ E E E KTA%(^ry,R)Yr/(R)Ye-B^(u, (2.3.1; 
*>J eA=ot =0 mi= 

Here, fk = r^fk is the location of charge e^, R — RR is the vector connect

ing the origins of the two charge distributions, uv is the direction of the vector 

u. >tj f\ — fj, K™e
e is a function determined by the physical orientation of the 

charge distributions, £A(B) represents the ^-th electric pole of charge distribution 

A(B), and £< represents the smaller value of I A and £B-

The "long-range" scenario that we focus on in this dissertation refers to the case 
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Table 2.3: Asymptotic 0+ molecular states included in the Rb 70p+70p basis set, 
which diagonalize the interaction Hamiltonian (see text). The basis 
states have been symmetrized with respect to the reflection operator 
(Eq. (2.2.2)) and each |ax; a2; 0S) state is defined by Equation (2.2.1). 

^{|704,f,7l4,4,09)- |70s±, 
!70p| ,f ,70pf,-f ,09) 

|70p | , i ,70pf , - | ,0 s> 

^ { | 7 0 p | , I , 7 0 p i , - I , 0 9 ) + |70p|, 

|70p | , i ,70p | , - | ,0 g > 

^ {|69p|, |,71pf, - | , 0ff) - 169^, 

^ { | 6 9 p f , i , 7 1 p f , - | , 0 9 > - | 6 9 P | , 

^ { | 6 9 p f , i , 7 1 p i , - | , 0 9 > + |69pf, 

^ { | 6 9 p i , i , 7 1 p f , - | , 0 9 ) + |69pi, 

^ { | 6 9 p | , § , 7 1 p i , - | , 0 9 ) - | 6 9 p | , 

^ { | 6 9 4 , i , 7 2 s i , - i , 0 9 ) - | 6 9 S i , 

^ { | 6 8 p f , | , 7 2 p | , - | , 0 9 ) - | 6 8 p | , 

i { | 6 8 p f , i , 7 2 p f , - | , 0 9 ) - | 6 8 p | , 

i { | 6 8 p f , i , 7 2 p i , - | , 0 9 ) + |68pf, 

^ { | 6 8 p i , i , 7 2 p f , - | , 0 9 ) + |68pl) 

^ { | 6 8 p i , i , 7 2 p | , - | , 0 9 } - | 6 8 p i , 

^ { | 6 9 d f , i , 7 0 S i , - | , 0 9 ) + |69d|, 

^ { | 6 9 d f , | , 7 0 s i , - | , 0 s ) - |69df, 

-±,71Sf i,09>} 

- i 7 0 p | , | , 0 9 > } 

_§,71pf,§,09)} 

-§,71p§,§,09)} 

- i , 7 1 p i , | , 0 9 ) } 

- i , 7 1 p | , | , 0 9 ) } 

- i , 71p | , i , 0 9 >} 

- | , 72s i , i , 0 9 >} 

- | , 7 2 p | , | , 0 , ) } 

4,72pf,±,09>} 
~ i 7 2 p i , | , 0 9 ) } 

- | , 7 2 p f , i , 0 g ) } 

- i , 72p | , i , 0 9 >} 

- | , 7 0 S i , i , 0 9 ) } 

- i , 70 S | , i , 0 9 >} 

1 
V2 
1 

1 
x/2 
1 

V2 
1 

V2 
1 

x/2 
1 

s/2 
1 

1 
s/2 
1 

V2 
1 

V2 
1 

V2 
1 

s/2 
1 

s/2 
1 

V2 
1 

1 
N/2 
1 

V2 
1 

s/2 

{|68d|,i,71s|, 
{j68df,f,71s§, 

{|67d|,i,72S | , 

{|67d|,i ,72S | , 

{|70d|,i,69S | , 

{|70df,|,69Si, 

; |68s | , | ,73s | , 

; |67/f , | ,70pi , 

{|67/f,|,70pf, 

{|67/|,|,70pf, 

{|67/ | , | ,70pi, 

[ |67/| , | ,70pf, 

[167/2, f,70pf, 

{|68/f, | ,69pi, 

( |68/ f , | ,69p | , 

{|68/f,f,69pf, 

{|68/ | , | ,69pi, 

{|68/|,|,69pf, 

[|68/|,§,69p§, 

- 3 A > 

-1%) 
4 A) 
4 A) 
4 A) 
4 A) 
4A> 
4 A) 
4 A) 
4 A) 
4 A) 
"2 A ) 

4 A) 
4 A) 
4 A) 
4 A) 
4 A) 
4 A) 
4 A) 

+ |68d|, 
- |68d|, 

+ |67d§, 

- |67d§, 

+ |70d|, 

- |70d§, 

- | 6 8 s | , -

- |67/f, 

+ |67 / | , 

+ |67 / | , 

+ 167/2, 

- 167/2, 

- 167/2, 

- | 68 / f , 

+ |68/f, 

+ |68/f, 

+ 168/2, 

" 168/2, 

" 168/2, 

_ I 71 e l I n ) 
2' , 1 S 2 » 2 U 9 / 

_ 1 7 1 S I I 0 ) 
2 , 1 J .a 2 , 2 , u 9 / 

~2> 2 ' 2 ' " 9 / 

4 7 2 S i , i , 0 9 ) 
- | , 6 9 s | , | , 0 a > 

- i 69 S 2 , | , 0 9 > 

- 2 , 7 3 S 2 , 2 ' "9 ) . 

- 2 , 7 0 p | , | , 0 , > 

- 2 . 7 0 p | , | , 0 9 > 

- | , 70p | , | , 0 9 > 

- 5 . 7 0 p i | , 0 , > 

- i ,70pf ,2 ,0 9 ) 

-f,70pf,f,09> 

-2 ,69p | , i ,0 9 ) 

- | , 69p | , i , 0 9 > 

-f ,69pf, | ,09> 

- 2 , 6 9 P 2 , 2 , 0 , } 

-i6 9pf.i°9> 
- | , 6 9 p f , | , 0 9 ) 

where no electron exchange takes place between the atoms. This occurs when the 

distance between the two nuclei is greater than the LeRoy Radius [41]: 

RLR = 2 [{n1e1\r
2\nle1)V

2+ (n 2 4 | r 2 | n 2 ^) 1 / 2 ] , (2.3.2) 

where (rij^|r2 |nj4) is the radial matrix element of r2 belonging to valence elec

tron 1 of an alkali atom. When the nuclear distance between two atoms is larger 

than RLR, their electron distributions do not overlap and the K function in Equa-
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tion (2.3.1) is shown to be [42]: 

+rrn rtlB+rai \ ' ATV / nlA+mt Fr 

KtA/B-t V RtA+tB+l \(2£A+l)(2eB+l) % 3 ' ' ' 

where B% = k](^_k)] is the binomial coefficient. In the case of two Rydberg atoms, 

we assume that the nucleus of each atom is located at A and B, respectively and 

we eliminate the sums over i and j in Equation (2.3.1). Thus, we consider just the 

interactions of the two Rydberg electrons, labeled 1 and 2. If we further assume 

that the internuclear axis lies in the z-direction, i.e. R = Rz, Equation (2.3.1) 

becomes: 

t-A / jjlA+me uiB+mt \ l/2 

zA=otB=o me=^eA 

A <-A / r>tA-tme r>t 
47r V^ / \\1B [ eA+eB

 n£A+iB 

ReA+iB+i 2^ ^ ) 1 {2£A + i) (2£B + 1) 

xrlAr?Ye
m

A
e(h)YfB

mt(f2). (2.3.4) 

(Note: A full derivation of this expression is given in Appendix B). We examine 

the first few terms of Equation (2.3.4) and find that the dipole-dipole (£A = 

£B = 1) and quadrupole-quadrupole (£A = (-B = 2) terms are the most dominant. 

Higher order terms (£A(B) > 3) and "cross-terms" (e.g. £A = 1, &B = 2) are not 

significant and not included in our calculations. We thus define the Rydberg-

Rydberg interaction energy as: 

VL{R) = (2L + l ) i ^ £ BtimY?(rr)YL-m(r2), (2.3.5) 

where L = 1(2) for dipole-dipole (quadrupole-quadrupole) interactions and the 

limits of m are — L to L. 
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The Hund's case (c) basis sets we built m the previous section are used to diagonal-

lze interaction Hamiltonians consisting of these long-range Rydberg interactions 

and atomic fine structure, % e 

H(R) = VL{R) + Hfs (2 3 6) 

Because the molecular basis states are linear combinations of the atomic states de

termined through symmetry considerations (see Eq (221)) , each matrix element 

will actually be a sum of multiple interactions 

(a,a',Qg/u\VL\b,b',Qg/u) (a, a'\VL\b, b') - P o ( - l ) '»+4<a ' , a\VL\b, b') 

-Pb(-lY^(a,a'\VL\b',b) 

+PaPb(-lY^+e^(a\ a\VL\b', b) , (2 3 7) 

where |a,a') = \a)\\a')2 and so on An analytical expression for the long-range 

interactions is obtained using angular momentum algebra in terms of 3-j and Q-j 

symbols 

( 1 , 2 1 ^ ) 1 3 , 4 ) 

0 0 0 

m=—L 

/v13 /v24 

J2 L J4 

—ft + mn —m Q — ^ 3 / 

(2 3 8) 
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4 

where j t o t = ] T ^ , 4 = 24 + 1 ,^ = 2^ + 1, and 7 ^ = ^ | r L | j ) is the radial 

matrix element calculated as before. This expression is derived in Appendix B. 

The diagonal matrix elements are given by Equation (2.3.8) with |1;2) = |3;4) 

plus the sum of the two Rydberg atoms' asymptotic energy values. That is: 

(1; 2; Qg/U\H(R)\1; 2; Qg/u) = (1; 2; ng/u\VL\l; 2; fiff/u) + E1 + E2 , (2.3.9) 

with Et given by Equation (2.2.8). Due to the Wigner symbols in Equation (2.3.8), 

A£ = 0 dipole transitions are forbidden and so only quadrupole-quadrupole inter

actions are present along the diagonal of the Hamiltonian. 

Although we only consider long-range interactions here, the case where R < RLR 

could be analyzed by using the appropriate K™\ coefficient (see [40]) to con

struct the proper "short-range" Rydberg potential. The interaction Hamiltonian 

describing this situation would also need to be diagonalized using a more general 

form of the basis states, i.e. a form that does not assume non-overlapping charge 

distributions (see Appendix B). 

2.4 Interaction Potentials and Symmetries 

Equation (2.3.8) illustrates how the long-range interactions depend on the molecu

lar symmetry ft. Thus, each value of Q, will result in a different interaction matrix 

(Eq. (2.3.6)) and a new set of interaction potential curves. The value of Q, is of 

course determined by the quantum state of the Rydberg atoms. For example, two 

interacting nps/2 atoms can yield Q, values of 0^, , lg/u, 2g/u, or 3g/u. However, 
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only some of these symmetries lead to strongly attractive potentials. The rele

vance of the molecular symmetries is determined by whether or not the proposed 

symmetry allows for strong mixing between the asymptotic Rydberg level being 

considered and the other nearby molecular asymptotes. Since coupling strength 

does not depend on spin, we can temporarily neglect spin effects and examine 

the molecular symmetries in the Hund's case (a) notation. In the Hund's case 

(a) coupling scheme, the spin component of each electron's angular momentum 

is separable and can either be excluded from the analysis or added retroactively 

if needed [34]. The good quantum numbers in this scheme are the projection A 

of the total orbital angular momentum L = t\ + £2 along the internuclear axis, 

the total spin angular momentum S = s*i + $2, and its projection E along the 

internuclear axis (see Fig. 2.1). 

When ignoring spin effects, Rydberg-Rydberg interactions do not mix states with 

different A = m^ + m^2, nor do they mix states with different eigenvalues of i 

and av [34]. Therefore, only configurations of the same symmetry can be coupled 

together. This means that only common symmetries between the asymptotic Ry

dberg state and the molecular state to which it is most strongly coupled will be 

relevant. As an example, we consider the case of Rb np + np. 

Using the relation defined in Equation (2.2.6), it can be shown that the rubidium 

np + np asymptote couples the most strongly to ns + (n + l)s. Upon compar

ing the molecular symmetries of these two states (see [26] or [43] for example), 

we note that the only common symmetry between np + np and ns + (n + l)s is 

1Si"—3S+. The relevant molecular symmetries in the Hund's case (c) are then 
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determined by adding in the effects of spin via fl = |A + E|, where A and E are as 

defined before. For a two-electron system, E can be —1, 0, or +1 . Adding these 

to the common A = 0 symmetries described above yields Q, = 0j~, 0~ and lu as 

the common molecular symmetries in the Hund's case (c) coupling scheme; thus, 

these are the only relevant symmetries. Although we only consider the np + np 

case an an example here, we identify the significant symmetries for ns + ns and 

nd + nd in an identical manner. The results are given in Table 2.4. Of course, 

all of these symmetries have their own unique interaction matrices that must be 

diagonalized. 

Table 2.4: Doubly excited ns, np, and nd Rydberg states, the nearby asymptotes 
to which each is most strongly coupled (see text) and the relevant 
molecular symmetries in both the Hund's case (a) and (c) coupling 
schemes. 

Rydberg state Coupling asymptote Common symmetries Common symmetries 
(Hund's case (a)) (Hund's case (c)) 

ns + ns np+(n-l)p XS+ - 3 E+ 0 + , u n , l n 

np + np ns + (n + l)s XS+ - 3 E+ 0+, 0", lu 

nd + nd (n + l)p + (n - 1)/ XS+ - 3S+ 0+, 0", lg/u, 2g/u, 3g/u, 4 9 / u , 5„ XK 
3y-

3 n , 
^ 
3A, 
*\ 

^9 

^9 
xr 

- 3Y+ 
- 1 y -

- L n u 
- 3 n „ 
- ^ 
- 3A 
- x $ 

- 3 r 



25 

The numerical diagonalization of the interaction matrix defined by Equation (2.3.6) 

was carried out using the Jacobi algorithm given in [44], which relies on a suc

cessive sequence of similarity transformations (plane rotations) to remove the 

off-diagonal matrix elements. The algorithm diagonalizes the input matrix (to 

machine precision) and yields an array of eigenvalues and a matrix of their as

sociated eigenvectors. Although this diagonalization scheme is slower than other 

routines, it preserves the original input order of the basis states and does not nu

merically sort the eigenenergies/eigenvectors during the diagonalization process. 

This allows us to more easily extract important information about the curves, 

such as which electronic states most strongly contribute to the creation of the 

potential wells (see Section 3.2). 

The procedures outlined in this chapter were applied to doubly excited1 ns, np 

and nd Rydberg atoms for all relevant symmetries of the first five alkali elements. 

At shorter range, the significant amount of avoided crossings due to the ^-mixing 

results in potential curves that are very complex. In Figure 2.3, we show the 

0~ symmetry curves resulting from the interactions between ns + ns (top row), 

np+np (middle row), and nd + nd (bottom row) Rydberg atoms for the first three 

alkali elements (lithium, sodium, and potassium). Larger versions of these curves 

are also shown in Appendix A. These curves exemplify the complex nature of the 

interaction systems that we study, and analyzing them can help explain physical 

behaviors of the systems. For example, molecular resonances observed in [24] were 

explained by the mixing of a set of rubidium curves [27, 28]. 

1 Throughout the dissertation we use the term "doubly excited" to describe the scenario where 
both atoms are excited to the same Rydberg state and not the scenario where one atom has 
been excited twice. 
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40 60 80 100 120 40 60 80 100 120 40 60 80 100 120 

Nuclear separation (1000 a ) 

Fig. 2.3: Long-range interaction curves for the 0~ symmetry of doubly excited 
ns (top row), np (middle row) and nd (bottom row) Rydberg atoms 
for lithium (left), sodium (middle), and potassium (right). We point 
out the complex nature of the curves resulting from the £-mixing (see 
text). 

In this dissertation, however, we choose to focus our attention on interaction 

curves that exhibit deep potential wells, capable of supporting bound vibrational 

states. After analyzing all of the interaction curves that we calculated, we find 

that deep (~ 1 — 2 GHz) potential wells exist for doubly excited ns and np rubid

ium atoms (see Fig. 2.4) and doubly excited np cesium atoms (see Fig. 2.5). In 

Appendix A, we display the remainder of our calculated potential curves that do 

not exhibit such deep wells. We note that in the case of doubly excited nd states, 
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Fig. 2.4: Long-range interaction curves for the 0~ (left), 0+ (middle) and lu 

(right) symmetries of doubly excited ns (top row) and np (bottom 
row) Rb Rydberg atoms near n = 70. We highlight each potential well 
and label its corresponding asymptotic level. 

the relevant asymptotes comprising the basis sets include states with larger angu

lar momenta values, i.e. f and g states. These higher angular momenta quickly 

lead to significantly more asymptotically degenerate states, which seem to prohibit 

the formation of deep potential wells in these nd + nd curves. 

2.5 Conclusions 

In this chapter, we have presented the theoretical framework from which we cal

culate long-range molecular potentials for various symmetries of doubly excited 

Rydberg states of different alkali elements. We calculate these wells by directly 

diagonalizing interaction Hamiltonians in the Hund's case (c) basis. We use prop-
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Fig. 2.5: Long-range interaction curves for the 0+ (a), 0~ (b), and lu (c) symme
tries of doubly excited np Cs Rydberg atoms near n = 70. We highlight 
each potential well and label its corresponding asymptotic level. 

erly symmetrized asymptotic basis states derived from molecular group theory, 

and a Rydberg-Rydberg interaction energy derived from a long-range Coulombic 

expansion. This yields a convenient analytical result for homonuclear dimers. We 

have found that of the five alkali elements we studied, only potential curves as

sociated with rubidium and cesium feature large potential wells. Such potential 

wells are important because they indicate extended molecular states, which we 

study in detail in the subsequent chapters. 

It is important to point out that the procedure given in this chapter is only 

valid in the long-range case, i.e. when the distance R between the two atomic 

nuclei is greater than the Le-Roy radius RLR, although we have outlined how to 



29 

investigate interactions at distances shorter than this value. We also note that 

this method assumes the Born-Oppenheimer approximation, which ignores the 

motion of the two nuclei. Since the motion of the electrons is much faster than 

that of the heavy nuclei, the two cores are treated as stationary with respect to 

the valence electrons and to each other. Due to the particularly large masses of 

rubidium and cesium, any contributions from their respective nuclei should be 

negligible to our interaction picture. 



Chapter 3 

Macrodimers 

In this chapter, we study features found in potential energy surfaces. For example, 

Figures 2.4 and 2.5 highlighted at the end of chapter 2 are intriguing to us because 

the exhibited wells are deep enough (~ 1 GHz) to support many bound vibra

tional states. As we will show, the equilibrium positions of these bound states are 

extremely large, on the order of 1—2 //m. Hence, we use the term macrodimers 

to describe them. This size of molecular dimer could facilitate research in a wide 

variety of areas, provided they exist for a long enough period of time. 

Of other interest to us is how the macrodimers would respond to an electric field. 

Any experiment that is performed to produce and/or detect these macrodimers 

will require equipment that produces electric fields. Since even the best exper

imental techniques cannot completely shield the atoms from undesired fields, it 

is important to predict ahead of time how the theoretical curves calculated in 

Chapter 2 will be affected by such fields. Our motivation here is strictly to ensure 

that small, stray electric fields do not inhibit the formation of the macrodimers 

before we commit ourselves to a detailed exploration of other bound state proper

ties. We note that the work we do here with the electric field is in contrast to the 

work done in [22] and [23], which relied on an applied electric field to physically 

30 
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create the potential wells they were to study. In our treatment, the electric field 

is considered a perturbative effect to the pre-existing potential wells. 

In this chapter, we first show that the macrodimers we predict are indeed sta

ble with respect to a small applied electric field. We then go on to examine and 

explore several properties of the bound states, including their energies, equilibrium 

separations, scaling relations, and lifetimes. 

3.1 Electric Fields 

Strictly speaking, applying an external electric field F breaks the D^h symmetry 

of homonuclear dimers and consequently, the basis states defined by Eq. (2.2.1) 

are no longer valid. In principle, one then needs to diagonalize the interaction 

matrix in a basis set containing every possible Stark state, as was done in [22]. 

However, since the effects of an electric field should be adiabatic, we assume that 

the -DQO/J symmetry is still approximately valid for small electric fields, and apply 

the framework discussed in Chapter 2. 

Due to the large size of Rydberg atoms and their high sensitivity to electric fields, 

we can use a semi-classical model for our discussion. In this section, we adopt 

methods taken from [38] and describe in detail how we obtain the molecular Stark 

states. By diagonalizing the new interaction matrix in the Stark basis, we pro

duce potential curves similar to those in Chapter 2. The theoretical framework 

we present here is applicable to any two identical interacting Rydberg atoms, but 

our results detail the interactions between two 70p rubidium Rydberg atoms. 
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In the semi-classical treatment, the electric field's energy is considered a per

turbation to the original Hamiltonian. For Rydberg atoms, this perturbation lifts 

the energy degeneracy of eigenstates corresponding to the same n and t values 

and separates the energy levels. The shifted energies correspond to the eigenval

ues of the perturbed Hamiltonian matrix, which are calculated by diagonalizing 

the matrix in a new set of basis states called Stark states. 

In general, the applied electric field defines a quantization axis in the lab-fixed 

frame (LF), while the quantum states of the macrodimers are defined in the body-

fixed frame (BF). One then needs to project Q, onto the field axis, typically via 

Wigner-D rotation matrices, i.e. 

Wi,r2)= E E K'n,mJr\) D^mJ?2)*(r\r\) , (3.1.1) 

where primed variables indicate the lab-fixed frame, unprimed variables indicate 

the body-fixed frame, r\ = (9l,tpl) are the rotated angular coordinates of the 

wave function ^(fi,f2) (defined in ket form by Equation (2.2.1)), and D% (r) are 

the Wigner-D functions. Details of performing such rotations are given in [45-

48]. Since such mathematical exercises are not particularly instructive to the 

physical problem we wish to study, we do not explicitly carry out the rotations 

here. Rather, we simplify the calculations by assuming that the two Rydberg 

atoms are first confined in an optical lattice, such that the quantization axes 

of the macrodimer and the electric field align. This could be accomplished by 

trapping the Rydberg atoms wthin different sites of the lattice and aligning the 

electric field parallel to the lattice (see Figure 3.1). Such one-dimensional optical 
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lattices have already been used to experimentally excite Rydberg atoms from 

small Bose-Einstein condensates located at individual sites [49]. We envision a 

similar scheme, with the distance between adjacent (or subsequent) sites adjusted 

to coincide with the equilibrium length Re, while containing only a single atom 

per site. The optical lattice could be switched off during the Rydberg excitation 

to allow a cleaner signal. 

R 
ax,kxy 

• 
CD2, k2y 

Laser 1 Laser 2 

Fig. 3 .1: Two Rydberg atoms confined within a harmonic optical lattice. The 
electric field F is directed along the z-axis, coinciding with the molec
ular axis of the dimer. We also indicate in this cartoon that the two 
excitation lasers (see Chapter 4) propagate in the y-direction, but the 
polarization directions of both lasers are along the z-axis. 

For an electric field directed along the z-axis, the perturbation Hamiltonian is 

given by Fr cos 9, where F is the magnitude of the field, r is the distance of 
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the valence electron from its nucleus and 9 is the angle between F and r. The 

eigenvalue equation is of course written as: 

H\V) = E\V) , (3.1.2) 

where H is the perturbed Hamiltonian, E is the corresponding perturbative energy 

and |\&) = 2_]ca\a)i with \a) = \na£amea) being the atomic basis states that 
a 

diagonalize the unperturbed Hamiltonian. For convenience, we write Eq. (3.1.2) 

in matrix form: 

HbaCa = Ecb, (3.1.3) 

where 

Hba = (b\Frcos6\a) 

= (b\Fr\J—Y?{6A)\a) (3.1.4) 

= FJ — {nbeb\r\nJa)(ebmtb\Y?(d,<l>)\eamea) . 
V «J 

Here, the dipole matrix element (nb£b\r\na£a} is calculated as in Chapter 2 and the 

angular matrix element (£i,meb\Yi (0, (f))\£amea) is carried out using basic Spherical 

Harmonic algebra. 

Multiplying both sides of Equation (3.1.3) from the left by a rotation matrix 

R_1 and inserting the identity matrix I = RR_1, we can write: 

R-1Hba(RR-1)ca = ER-1cb . (3.1.5) 
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From Equation (3.1.5), we make the following observations: 

1. A rotation matrix R that is composed of the eigenvectors of Ht,a will diago-

nalize Hba, 

2. The eigenvalues resulting from diagonalization will be the Stark-shifted en

ergies of the atomic states, and 

3. The eigenstates of the diagonalized Stark Hamiltonian (Stark states) will be 

a series expansion of the "undressed" states: 

\a)k = ^rbkjl(F)\az)k, (3.1.6) 

where \at)k = \nl)(-l.,jl,mJ )& are the undressed atomic states and bitk(F) are the 

field-dependent eigenvectors of atom k. For the small field values that we consider, 

each Stark state \a)k c a n be expressed as \a)k = bk,i(F)\ai)k + / J bk,i(F)\at)k, 
1=2 

where bk,i(F) ~ (1 — C\F) and bkj%{F) ~ c%F, with each c coefficient being very 

small. The summation index i runs over the quantum numbers nt, £lt and j%. 

Although the limits of this summation are technically n% —> nm a x (where nm a x is 

the highest n value in the basis) and lx —>• [n% — 1), we restrict the summation to 

in — 2) < n% < (n + 2) and £z < 3; the b%(F) coefficients are insignificant (three 

to four orders of magnitude smaller) for states lying outside these bounds (see 

Figure 3.2). 

We diagonalize the Stark Hamiltonian for varying F and calculate the Stark-

shifted energies and the Stark states as was done in [38]. Figure 3.3 shows an 

example of a "Stark map," which illustrates how the asymptotic energies of Ry-

dberg atoms vary with an applied electric field. In particular, this plot shows a 
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Fig. 3.2: Eigenvector coefficients for the 69s Stark state. In this range of electric 
field values, the |69s) Stark state is mostly composed of the undressed 
169s) atomic state shown in the top panel. The bottom panel shows the 
next highest contributing undressed states in the Stark state expansion 
(see Equation (3.1.6)). The collection of states labeled 67-71 include 
the remaining s, p, d and / states for these n values not highlighted in 
the figure. 

collection of states for \mi\ = 0 rubidium near the n = 69 manifold. 

In Figure 3.2, we plot some of the eigenvector coefficients bk,i{F) against the elec

tric field F for the |69s) Stark state. As would be expected for a small electric 

field, 169s) is composed mainly of the undressed |69s) state, although other states 

do contribute as well. We use Fig. 3.2 to illustrate two major points: (1) our 

argument for truncating the summation in Equation (3.1.6) is justified and (2) 

by comparing this figure with Figure 3.3, it is clear that the electric field has a 
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Fig. 3.3: Atomic Rydberg energies vs. the electric field for Rb with \mg\ = 0 
near the n = 69 manifold: the curves labeled as n = 69 include all 
states with £ > 3. 

much more noticable effect on the asymptotic energies than it does on the Stark 

states. Thus, for future considerations, diagonalizing a Hamiltonian containing 

the Stark-shifted energies in the undressed basis should be sufficient for small 

electric fields. 

We replace the atomic states defined in Eq. (2.2.1) with the dressed states in 

Eq. (3.1.6) and define the dressed molecular basis states as: 

la>i|a>2 = J^2bhl{
F)b2,3{F)\al)i\aJ)2 • (3.1.7) 

n 
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We then use this definition to express the properly symmetrized dressed molecular 

basis, given in Table 2.3 and to diagonalize the Rydberg-Rydberg interaction 

matrix. In Fig. 3.4, we illustrate the effect of F on the curves near 70p + 70p of 

the 0J~ symmetry for rubidium in a side-by-side comparison of the curves for (a) 

F = 0 and (b) F — 0.3 V/cm. This value of F is chosen so that the ns states 

are still mostly ns with only small amounts of higher I-values (see Fig. 3.3), i.e. 

below the "crossing" of the 72s state with the higher 0, states. We note that 

the Stark effect is most notable in the shifting of the potential curves, especially 

the asymptotic energies. However, the relative shapes of the curves are mostly 

unchanged and most importantly, the large potential well we wish to focus on 

is robust against small electric fields. Since the effects of the electric field are 

relatively small, our discussion will proceed assuming zero-field conditions. 

3.2 Bound States 

We describe the wave function of a bound level v inside a given potential well A 

by the tensor product: 

\¥v"\R)) = \UR))®\xx{R)), (3.2.1) 

where \<f>v(R)) is the radial portion of the bound level v and \x\{R)) is the elec

tronic quantum state associated with the potential curve A. 

We calculate the radial wave functions \<f)v(R)) using the mapped Fourier Grid 

Method, developed in [50]. In Figure 3.5, we show an example of such a wave 

function for the v = 500 eigenstate of the well corresponding to the 0J" symmetry 
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Fig. 3.4: 0+ molecular curves for Rb 70p + 70p: (a) F = 0, and (b) F = 0.3 
V/cm. We highlight the large potential well correlated to the 69s + 
72s asymptotic curve and zero the energy scale at the unperturbed 
70p3/2 + 70^3/2 asymptote. We acknowledge the significant shifting of 
the asymptotic levels due to the Stark effect (see text), but note that 
the well remains relatively unaffected by the applied electric field. 

of Rb 70p + 70p. The figure is not to scale, but we note the oscillatory nature 

of the wave function inside the well: this behavior will be important later in our 

photoassociation discussion (see Chapter 4). 

Using the mapped Fourier Grid Method, we also calculate the energy levels of 

all bound states within the wells. In Tables 3.1 and 3.2, we list the first few vibra

tional levels bound within the potential wells highlighted in Figures 2.4 and 2.5. 

We also illustrate the first few bound levels for the Rb 70p + 70p well (0+ symme

try) in the inset of Figure 3.5. The MHz energy levels correspond to oscillation 
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45 
R(1000a0) 

Fig. 3.5: Radial wave function for the v = 500 bound state in the Rb 70p + 70p 
0+ potential well (not to scale). We note the sinusoidal behavior inside 
the well. Inset: Energy levels for the first six bound states. 

periods between 1 and 10 /is, which are rapid enough to be detected during the 

lifetime of these Rydberg atoms (roughly a few hundred fis for n = 70 at ultra-

cold temperatures) [51]. We also note that since the energy levels are separated 

by about 1.5 MHz, they should provide favorable resolution in spectroscopy ex

periments. Tables 3.1 and 3.2 also list the classical turning points of each level, 

confirming that these are very extended bound states. 

As mentioned throughout this dissertation, the potential wells that we predict 
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Table 3.1: Energies of the six deepest bound levels (measured from the bottom 
of the well) and corresponding classical turning points for the 0+, 
0~ and lu symmetries near doubly excited 70s and 70p Rb Rydberg 
« 

atoms 

Asymptote Symmetry v Energy (MHz) R\ (a u ) R2 (a u 
70s + 70s 

70s + 70s 

70s + 70s 

70p + 70p 

70p + 70p 

70p + 70p 

0: 

o: 

1« 

0+ 

K 

lu 

0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 

1035 
3 122 
5 353 
7 478 
9 567 
11 645 
1034 
3 161 
5 263 
7 332 
9 369 
11392 
0 918 
2 699 
4 468 
6 241 
7 988 
9 748 

0 831 
2 499 
4 167 
5 825 
7 477 
9 125 
0 801 
2 415 
4 023 
5 632 
7 235 
8 833 
0 709 
2 212 
3 722 
5 220 
6 735 
8 239 

46,137 
45,985 
45,870 
45,780 
45,702 
45,630 
45,072 
44,913 
44,803 
44,716 
44,639 
44,569 
36,181 
36,038 
35,938 
35,859 
35,789 
35,730 

40,228 
40,068 
39,959 
39,870 
39,795 
39,728 
39,753 
39,590 
39,479 
38,390 
39,312 
39,244 
36,907 
36,752 
36,632 
36,545 
36,467 
36,399 

46,538 
46,688 
46,800 
46,888 
46,963 
47,032 
45,488 
45,650 
45,761 
45,854 
45,934 
46,008 
36,600 
36,755 
36,868 
36,963 
37,046 
37,121 

40,679 
40,849 
40,970 
41,068 
41,154 
41,233 
40,212 
40,381 
40,509 
40,610 
40,699 
40,778 
37,361 
37,535 
37,635 
37,780 
37,870 
37,954 
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Table 3.2: Energies of the six deepest bound levels (measured from the bottom 
of the well) and corresponding classical turning points for the 0J~, 0~ 
and l u symmetries near doubly excited 70p Cs Rydberg atoms. 

Asymptote 
70p + 70p 

70p + 70p 

70p + 70p 

Symmetry 

°,+ 

o« 

1« 

V 

0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 

Energy (MHz) 
0.819 
2.458 
4.092 
5.720 
7.344 
8.961 
0.948 
2.838 
4.717 
6.591 
8.458 
10.315 
0.900 
2.667 
4.422 
6.164 
7.882 
9.608 

Ri (a.u.) 
37,457 
37,326 
37,236 
37,162 
37,099 
37,042 
36,110 
35,987 
35,901 
35,833 
35,773 
35,720 
39,062 
38,920 
38,819 
38,733 
38,659 
38,591 

R2 (a.u.) 
37,821 
37,956 
38,052 
38,197 
38,197 
38,257 
36,451 
36,577 
36,665 
36,739 
36,802 
36,859 
39,408 
39,526 
39,604 
39,667 
39,720 
39,768 
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are a direct result of the ^-mixing that occurs between the electronic states. This 

means that each electronic \x\(R)) state is actually a composition of every elec

tronic molecular state in the basis set (see Section 2.2). The exact amount of 

mixing varies with R and is given by an expansion of the asymptotic basis states: 

ixA(i?)) = E 4 A ) ( ^ b ) ' (3-2-2) 
j 

where c^ (R) are the eigenvectors after diagonalization and \j) = |<2j;aj} are the 

asymptotic electronic molecular basis states defined in Eq. (2.2.1). In general, j 

spans the entire basis set, but we can truncate the sum on a case-by-case basis, 

keeping only the states that significantly contribute to the formation of the po

tential wells. As an example, we consider the large potential wells highlighted in 

the 0J~ symmetry curves for Rb 70p + 70p and Rb 70s + 70s shown in Figure 2.4. 

In Figure 3.6(a), we replot these two sets of curves near the respective wells and 

highlight the asymptotic states that contribute the most to each well. In part (b) 

of the plots, we show the corresponding probabilities \CJ(R)\2 of the highlighted 

states against the nuclear separation R. 

As we would expect from Fig. 3.6(a), Figure 3.6(b) illustrates that the right sides 

of each well (near the 69s + 72s asymptote for 70p + 70p and the 70pi/2 + Q9pi/2 

asymptote for 70s + 70s) are composed mostly of the |69s72s) and |70pi/269pi/2) 

states, respectively. In the 70p + 70p case, this trend continues smoothly towards 

the |cj=69S72s|2 = 1 asymptote. However, in the 70s+70s plot, we note that there is 

some abrupt "spiking" behavior in the curves around R ~ 78 000 ao, correspond

ing to the avoided crossing between the |70pi/269pi/2) state and the |70p3/269pi/2) 
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state above it We point out that as the \7Qpi/2§§Pi/2) contribution decreases 

in this region, the largest increasing contribution is from the |69s71s) state and 

not the |70p3/269p1/2) state, as could bp expected for an "avoided crossing " This 

illustrates that the crossing is not simply due to quadrupole interactions as would 

normally be the case between two pp' molecular states, but rather via a compli

cated dipole-mixmg of the ^-states 

From the shapes of the curves m Fig 3 6(a), we would expect the left side of 

each well to be mostly composed of a state whose asymptote is below that of the 

wells, ^ e |68p72p) (|68p71p)) for np + np (ns + ns) However, we note for the left 

sides of both wells that the contributing states all correspond to asymptotes that 

he above each well In the case of 70p + 70p, the 69s + 72s molecular level couples 

strongly to both the 69p + 71p states (above) and the 6Sp + 72p states (below) 

However, the relative energy differences between the asymptotes results in a much 

stronger interaction between 69s + 72s and the 69p + 71p states than with the 

68p + 72p states This is why there is little contribution from the 68p + 72p states 

m the formation of the well In the case of ns + ns, the states directly below the 

well correlated to the 69pi/2 + 71pi/2 asymptote are 68p + 71p states In general, 

the strength of the quadrupole coupling between np states and n'p states is very 

weak Combining this with the large spacing between the asymptotic energy levels 

results m minimal contributions from the 68p + 7\p states in the formation of the 

well 
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Fig. 3.6: (a) 0+ symmetry curves of the rubidium 70p + 70p molecular asymp
tote localized near the 70p3/2 + 70p3/2 asymptote (top panel), and of the 
70s + 70s molecular asymptote localized near the 70s + 70s asymptote 
(bottom panel). For both panels, we highlight the molecular curves 
corresponding to the electronic states contributing the most to the for
mation of the well (see text), (b) Composition of the 69s+72s well 
(top panel) and of the 69pi/2 + 70p\/2 well (bottom panel): probabil
ities \c3(R)\2 of the electronic states that contribute the most to the 
formation of the well vs. the nuclear distance R. Inset: zoom of the 
inner region near the minimum of the potential well. 
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3.3 Scaling 

For asymptotic coupling that is dominantly dipolar in nature, the interactions be

tween the electronic states depend on the spacing between each state's asymptotic 

energy level and the strength of the dipole-dipole coupling between the asymp

totes (see Equation (2.2.6)). Although our calculations include both dipole-dipole 

and quadrupole-quadrupole interaction terms, the dipolar term dominates the in

teraction picture and thus we assume pure dipole coupling in this discussion. To 

derive a simple n-scaling behavior for both the well depth De and the equilibrium 

separation Re, we also assume that the potential wells are formed as the result 

of an avoided crossing between two curves (see Figure 3.7(a)). Although the real 

situation is much more complex, these assumptions allow for a simple treatment. 

The energy difference AEa/3 = Ea — Ep is defined by the difference between the 

asymptotes of the two crossing states a and j3. Here, a — nai£i + na2£2 and 

(3 = n^t'-y + np2£'2, with energies (in a.u.) 

E« = -I (i—V^ + ?—l-ir^) (3-3-la) 
2 \{nai -5h)2 (nQ2 - 6t2)

2 J 

and 
Ef> = ~\(-(—^r^ + 7 — ^ - 1 2 ) - (3-3- l b) 

respectively. To derive a simple n-scaling relation, it will be convenient to de

scribe the principal quantum number of each asymptotic atomic state n7i in terms 

of the principal quantum number n of the doubly-excited Rydberg state; i.e. 

n7l = n ± An7 i . For example, the 69s + 72s asymptote corresponding to the po

tential well for the Rb 70p + 70p asymptote can be written as (n — l)s + (n + 2)s, 
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Fig. 3.7: (a) Isolated avoided crossing in the 0^ symmetry curves of double ex
cited 70s rubidium atoms, which result in the potential well correlated 
to the 69pi/2 + 70pi/2 asymptote. We assume the interactions at the 
crossing are mostly dipolar in nature (see text) and label the depth 
De and the equilibrium separation Re at the "avoided crossing". We 
also demonstrate that at long-range the curves behave as ~ 1/.R6, but 
in the i?-range of the well, the 1/R3 description is appropriate, (b) 
Scaling relations for the well depth De vs n for the 0~ symmetry of 
ns + ns (top) and np + np (bottom) rubidium, (c) Scaling relations for 
the equilibrium separation Re vs n for the same curves as in (b). 

where n = 70. When we additionally account for the quantum defects, we find 

that each n1% can be expressed as n7t = n — A7 t , where A7t contains the differences 

in the principal quantum numbers and the quantum defects. 
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The energy difference between the asymptotes of the crossing states is then given 

by: 

AE, a/3 
1 

[n -A*)' (n-AA)' (n-Aair ( n A )2 (3.3.2) 

where we then factor out the common n from each energy term: 

AEap = 
1 

2n2 1 -
n 

A /32 

n 

A <*i 

n 

1 AQ 2 

n 
(3.3.3) 

Since all A7i are of order unity and thus n 3> A7 t , we Taylor expand each term 

in Equation (3.3.3) as: 

1 - ^ - ) = 1 + 2 ^ - 6 
n J n 

(3.3.4) 

and express AEap as: 

A JP Aft + Aft - A a i - Aa2 A2
ai 

^a/3 

A2 - A2 - A2 

A « 2 ^/3i Aft> 

n° n^ 
(3.3.5) 

In the cases leading to our wells, we find that A a i + Aa2 ~ Aft + Aft, so that 

the leading dependence in Eq. (3.3.5) is AEap oc n~4. We point out that this is 

in contrast to the normal n-scaling law for Rydberg atoms: expanding to the n~3 

term is sufficient for atomic Rydbergs [2]. 

From the sketch depicted in Fig. 3.7(a), assuming leading dipole-dipole interac

tions, the equilibrium separation Re occurs at the "intersection" of two curves: one 
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attractive and one repulsive, separated by AEap} i.e. —Ca/R
3 ~ AEap — CpjR\. 

Rearranging this expression gives Re ~ {{Cp — C^/AEap}1/3, where (Cp — Ca) 

scales as n4 [2] and AEap scales as n~4 from above; this yields Re ~ n8/3. Our 

assumption that the two crossing curves behave as ~ l/R3 is valid in the region 

of the intersection; at larger values of R, however (R > 80 000 a0), the curves 

behave more like ~ 1/R6 (see Figure 3.7(a)). We also see from this figure that 

the dissociation energy De is given simply by De ~ AEap — Ca/R?e, where AEap 

and CajR\ both scale as n~A. Therefore, we conclude that De oc n~A. 

Figure 3.7(b) shows a plot of De vs n for the 0~ symmetry of the ns+ns and np+np 

asymptotes for rubidium and indicates that De indeed scales more like ~ n~3+n~4 

(blue curve) than purely n - 3 (red curve). For the same wells, Fig. 3.7(c) shows 

that Re follows the predicted n8/3 scaling. 

Although the analytical derivations give good agreements with numerically deter

mined values of De and Re, slight discrepencies reflect the more complex nature 

of the interactions. For example, quadrupole coupling is present in our calcula

tions (although its effect is generally small). We also point out that in the three 

Rb np + np cases, the formation of each well is not clearly given by an avoided 

crossing of two curves, but rather by three interacting curves. Nonetheless, the 

good agreement depicted in Figs. 3.7(b) and (c) for the Rb np + np case indicates 

that these more complicated interactions act only as small corrections. 
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3.4 Lifetimes 

In the previous section, we showed that assuming the potential wells are formed 

as a result of an avoided crossing between two curves yields accurate results; we 

therefore continue with this assumption in the following discussion. In general, 

avoided crossings can lead to predissociation of bound energy levels if the meta-

stable state has strong coupling to a repulsive (unstable) state below it. The result 

of such predissociation would be two free Rydberg atoms with additional kinetic 

energy, which could heat the ultracold sample through collisions and ionization, 

an undesirable situation. In addition, experimental detection would be difficult or 

impossible if the predissociation rate is too rapid. However, as we demonstrated 

in Section 3.2, there is very little coupling between the wells that we calculate and 

the asymptotes that lie below them. Therefore, we should expect very small pre

dissociation rates from the bound levels and consequently long-lived macrodimers. 

For the potential wells that are clearly formed from an avoided crossing of two 

curves (i.e., the wells associated with Rb ns + ns and Cs np + np), we can adopt a 

simple Landau-Zener treatment [33, 52-54], in which we calculate the probability 

PLZ to make a transition from the electronic state |xi) to the electronic state |%2) 

(see Figure 3.8): 

F L Z = exp ( - 2 T T , 7 1 2 ' . , | . (3.4.1) 

Here, H\2 is the matrix element connecting the two crossing states, e% are the 

nonadiabatic energy levels (assumed to be linear in R), and v is the relative ve

locity of the two nuclei, determined by the energy of the molecule at some bound 

level inside the well. Figure 3.8 shows a close-up of the avoided crossing of the 
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Fig. 3.8: Isolated close up of the avoided crossing between the \7Qpi/2§9pi/2) 
state (|xi)) a n d the |68p3/271p3/2) state (IX2}) for the 0+ symmetry of 
rubidium, ei, £2, and Hi2 are defined as in [52] and [53]. 

|70pi/269pi/2) and |68p3/271p3/2) electronic states for the 0+ symmetry of doubly-

excited ns rubidium atoms. In this figure, |xi) represents the \70pi/2Q9pi/2) state 

and |x2) represents the |68p3/271p3/2) state; we also label the other relevant fea

tures from Equation (3.4.1). By equating the energy level of the bound state (see 

Tables 3.1 and 3.2) to the molecule's kinetic energy at the equilibrium position Re, 

we calculate the relative velocity v, which is treated as a constant in the Landau-

Zener approximation. Of course, in reality, the relative velocity varies periodically 

as the macrodimer vibrates, so the velocity we calculate is actually the maximum 
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velocity, but [53] and [52] show that treating this velocity as constant is valid in 

the region of the avoided crossing. 

Since the result of expression (3.4.1) represents the probability that the macrodimer 

will predissociate into two free atoms, then 1 — Piz is the probability that the 

macrodimer will not predissociate. We match this probability to remain in \x\) 

to an exponential decay over the time t for a full oscillation inside the well, i.e. 

1 — PLZ = e~*/r, and find r , which is the "predissociation lifetime" of the state. 

Ultimately, the r values need to be larger than the lifetimes of the individual 

Rydberg atoms (tRyd ~ 100 /is) [51]. In Tables 3.3 and 3.4, we list the relative ve

locities v, the Landau-Zener transition probabilities PLZ, and the predissociation 

lifetimes r for bound levels corresponding to the six wells that we analyzed using 

the Landau-Zener method. Our calculations show that the vast majority of the 

bound levels have very small PLZ values, leading to extremely long (~ oo) predis

sociation lifetimes. The three exceptions are for the upper bound levels of the 0+ 

and 0~ symmetries for the rubidium ns + ns asymptote and the lu symmetry for 

the cesium np + np asymptote. Although we note that the lifetimes of the states 

for all three of these cases get very short (< Is) as the vibrational levels of the 

bound states increase, only the lifetimes of the Rb 0+ states ever get smaller than 

the lifetime of the Rydberg atom tRya-

At the end of Section 3.3, we noted that the potential wells associated with the 

doubly excited np atoms for rubidium are not obviously formed from an avoided 

crossing of two asymptotic curves. Therefore, using the Landau-Zener treatment 

on these curves would be neither straightforward nor necessarily accurate. In [55], 
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Table 3.3: Vibrational energies, relative velocities v, Landau-Zener transition 
probabilities PLZ, and predissociation lifetimes r tor the bound levels 
of the 0+, 0~ and lu symmetries near doubly excited 70s Rb Rydberg 
atoms. We note that most of the bound levels have near-infinite 
predissociation lifetimes, but we indicate the cases that do not (see 
text). 

Element Asymptote Symmetry Level Energy (MHz) ?jmax (m/s) PLZ T (S) 
rubidium 70s + 70s 0+ 0 1035 0 138 4 377xl0~126 

oo 

oo 1 3 122 0 239 9 841xl0"7 3 

2 5 353 0 314 1030xl0~5 5 oo 
3 7 478 0 371 2 981xl0~47 oo 
4 9 567 0 419 7 378xl0~42 oo 
5 11645 0 462 5 226xl0-3 8 oo 

100 157 771 1702 7 433X10"11 84 91 

150 218 088 2 001 2 426xl0~9 18817 

500 538 566 3 145 3 295xl0~6 5 611xl0"4 

>500 < t R y d 

70s + 70s 0~ 0 1034 0 138 2 179 xlO"181 

1 3 161 0 241 4 545X10"104 

2 5 263 0 311 8 030xl0~81 

3 7 332 0 367 1384xl0~6 8 

4 9 369 0 415 9 310xl0-6 1 

5 11392 0 457 3 645xl0~55 

oo 
00 

oo 

oo 

oo 

00 

300 315 641 2 408 4 5 4 7 x l 0 - n 69 368 

430 426 744 2 800 1 275xl0~9 18305 

1200 912 485 4 094 8 266xl0~7 132x10^ 
70s + 70s 1^ 0 0 918 0 130 5 709xl0^571 oo 

1 2 699 0 222 3 269xl0-3 3 3 oo 
2 4 468 0 286 3 724xl0~259 oo 
3 6 241 0 339 2 186xl0-2 1 9 oo 
4 7 989 0 383 5 315xl0"194 oo 
5 9 748 0 423 1 lOOxlO"175 oo 
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Table 3.4: Vibrational energies, relative velocities v, Landau-Zener transition 
probabilities PLZ, a n d predissociation lifetimes r for the bound levels 
of the OJ", 0~ and lu symmetries near doubly excited 70p Cs Rydberg 
atoms We note that most of the bound levels have near-infinite 
predissociation lifetimes, but we indicate the cases that do not (see 
text) 

Element Asymptote Symmetry Level Energy (MHz) timax (m/s) PLZ T {$] 
cesium 70p + 70p 0+ 0 0 819 0 123 2 81x10 746 oo~ 

oo 1 2 458 0 212 3 72x10 431 

2 4 092 0 274 2 39xl0" 3 3 4 oo 
3 5 720 0 324 6 77xl0~2 8 3 oo 
4 7 343 0 367 9 09X10"250 oo 
5 8 961 0 405 3 60x10 226 oo 

70p + 70p 0T 0 0 948 0 131 6 39x10 694 

401 
OO 

OO 1 2 838 0 228 2 53x10 
2 4 717 0 294 186x10 3 U oo 
3 6 591 0 347 131x10 263 oo 
4 8 458 0 394 8 93x10 233 oo 
5 10 32 0 435 7 3 9 x l 0 " 2 u oo 

70p + 70p lu 0 0 900 0 129 9 78xl0~212 oo 
oo 1 2 667 0 221 2 79x10 123 

2 4 422 0 285 6 55x10 96 oo 
3 6 164 0 336 2 39x10 81 oo 
4 7 882 0 380 5 04xl0" 7 2 oo 
5 9 608 0 420 2 67x10 65 oo 

275 376 019 2 628 4 762x10-" 55 61 

375 493 829 3 012 9 835x10 10 2 050 

1250 118295 4661 1515x l0" 6 556x10 4 

>1250 ~ iRyd 
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we employed a different method in which we assume that the total probability of 

nonadiabatic transitions is just a sum of transition probabilities to individual adi-

abatic curves (a reasonable assumption for the low transition probabilities that we 

expect). Calculating the nonadiabatic transition probability to a single potential 

curve is mathematically equivalent to the two-channel problem in the treatment 

of Feshbach resonances, where the adiabatic potential that supports bound states 

is the closed channel (labeled as channel 1) and the other potential is the open 

channel (labeled as channel 2). 

The nonadiabatic coupling V12 between the two channels originates from the ki

netic term of the nuclei 

but since Vu is small in our problem, we can keep only the linear term 

mf 

V 

d 
dR 

V12(R) = --Z(xM ^ X2(R))^. (3.4.3) 
d 

dR 

Here, \x\,2{R)) a r e the electronic basis states corresponding to the closed and open 

channel respectively. 

The resonance width of the bound vibrational state (f>v(R) due to the coupling 

V12 is derived using a Green's function method [56]: 

T12 = 2vr 
2 

Vnl&ez) , (3.4.4) 

where 4>reg(R) is the regular, energy normalized solution of the open channel (in the 

absence of channel coupling). In our approximation, the total resonance width r \ 
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is just r \ = 2_. Tii, where the sum is over all relevant adiabatic states. The width 
i 

Tu vanishes very fast as the separation between the potentials of the channels in

creases. In part, this happens because the nonadiabatic coupling is negligible for 

well-separated potential curves, but also because 4>reg(R) becomes a highly oscil

lating function and hence the integral in Eq. (3.4.4) quickly diminishes. 

For the three Rb np + np symmetries, the 69s72s curve is well separated from 

other potentials, so again we expect the related nonadiabatic effects to be very 

small. We calculate lifetimes due to nonadiabatic coupling for the lowest v = 0,1, 2 

vibrational levels (see Table 3.1) to the two potential curves immediately below 

69s72s. For the potential curve closest to the well, we find lifetimes in the range 

of 102 — 103 years, while the probability of transitioning to the second curve below 

69s72s is even more reduced, corresponding to lifetimes of about 106 years. 

With the exception of the upper levels of the wells associated with the 0+ symme

try of doubly excited ns rubidium atoms, our calculations show that the bound 

levels are stable with respect to predissociation. These calculations verify our 

initial assertion that the lack of coupling between the wells and the asymptotes 

below them should result in stable states. Since the predissociation lifetimes are 

so high, we safely conclude that the lifetimes of our macrodimers are limited only 

by the lifetimes of the Rydberg atoms themselves. 

3.5 Conclusions 

In this chapter, we established that the potential wells we predict are stable with 

respect to small electric fields. We have identified and described key aspects of 
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the bound molecular levels of the potential wells, including their vibrational ener

gies, their radial wave functions, n-scaling relations, and predissociation lifetimes. 

The fact that the probability of the excited states predissociating is almost zero is 

very encouraging. The long-lifetimes of Rydberg atoms means that there should 

be adequate time to experimentally probe the macrodimers before the atoms de

cay or ionize. We also described in detail how the ^-mixing manifests itself in the 

potential energy curves corresponding to the potential well. As we will see in the 

next chapter, the different electronic characters contained in the wells will lead to 

very interesting results. 

As indicated by Tables 3.1 and 3.2, the equilibrium separations of the bound 

levels are very large compared to traditional molecular states. As the vibrational 

level inside the well increases, so does the equilibrium separation, ranging from 

1-2 /im. Over the years, there have been various proposals for observing quan

tum mechanical behaviors in macroscopic systems, such as the diffraction of large 

molecules [57] and using a small mirror to study superpositions as it interacts 

with a photon [58]. These proposals have been an attempt to find a regime or 

boundary where quantum mechanics transitions into classical mechanics. In light 

of their macroscopic sizes, it would be interesting to see if the macrodimers we 

predict could be used in these efforts. 



Chapter 4 

Formation Properties 

In the previous chapters, we reviewed the theory behind the long-range interac

tions of two Rydberg atoms and showed that stable bound vibrational levels can 

exist between identical rubidium and cesium atoms. We also showed that these 

energy levels are separated enough (~ 1—2 MHz) to give favorable resolution in 

spectroscopy experiments. In this chapter, we propose a formation scheme similar 

to the molecular resonance experiment described in Chapter 1 [24], which could 

produce the predicted macrodimers. Since this formation mechanism is based 

on a photoassociative process, we first review photoassociation and photoassocia-

tion spectroscopy and then use these physical principles to develop our formation 

scheme. 

4.1 Photoassociation 

Photoassociation is the process whereby laser light is incident upon two ground 

level atoms approaching each other. One of the atoms absorbs a photon and forms 

an excited molecule with the second (ground level) atom. In general, these ex

cited molecular states are not long-lived and can spontaneously decay into either 

an unbound free state or a bound ground-state molecule; however, because the 

vibrational period of the formed molecule is much less than the decay time Tdecayj 

58 
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one can experimentally probe these bound levels. As we described in Section 3.4, 

the same is true for macrodimers. 

go 
<D 
C 
CD 

A*+B 

A-f-B 

internuclear separation R 

Fig. 4 . 1 : Schematic of a PA scheme taken from [59], describing the process A + 
B+'j -> (AB)*. The upward arrow labeled 'PA' is the photoassociation 
transition, while the downward dashed arrow labeled 'decay' indicates 
radiative decay from the excited molecular state. Eat represents the 
energy to excite atom A at infinite separation (from atom B), Ef, is the 
binding energy of the vibrational level, and Eth is the incident thermal 
collision energy of the ground state atom pair (greatly exaggerated in 
the figure). 

First proposed in [60], photoassociation (PA) spectroscopy has become an invalu

able tool in the understanding of long-range molecular potentials for ultracold 

atoms (see [59, 61, 62], for example). Currently, the two most common experimen

tal detection techniques are radiative trap loss and ion detection. As mentioned 

above, an excited molecular state formed through photoassociation is not long-
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lived and quickly fluoresces (see Fig. 4.1). The two decaying atoms are then either 

too fast to be contained in the trap or they form ground level molecules that are 

not trapped. Either way, the experiment results in a loss of trapped atoms. By 

measuring the fluorescence level emitted by the atoms within the trap, the number 

of trapped atoms can be monitored. For a large sample of atoms, the incident 

PA laser light is swept through the resonant frequencies of different bound levels, 

resulting in a spectrum of trap losses. Figure 4.2(a) shows such a spectrum for 

the 0~, 0+, and lg symmetries of 39K2, as an example case. The sharp decreases 

in the fluorescence signal correspond to the bound vibrational levels within the 

excited molecule; in this instance, the levels immediately below the 4p3/2 + 4si/2 

asymptote. 

Ionization detection, on the other hand, relies on a second excitation laser to ion

ize the molecule before it decays through fluorescence. The resulting molecular 

ions are counted using a microchannel plate or some other ion detector. This 

method is often used for the deeper levels of potential wells that are unobservable 

by trap loss [62]. The main advantages of the ionization method are that there 

is no background signal and the scan rates are very high because of the produc

tion rate of the ionization process. The disadvantage, however, is that there can 

be difficulties relating the detected ion signals to a PA rate due to the unknown 

ionization probability [59]. As an example, Figure 4.2(b) shows the ion detection 

signal of the rotational states corresponding to the v' = 0 vibrational level of 

the 4^3/2 + 4si/2 molecular state (0~ symmetry) for the same trapped potassium 

atoms as in Fig. 4.2(a). 
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4.2: Examples of photoassociation spectra for (a) radiative trap loss and 
(b) ion detection, both taken from [62]. Figure (a) shows a high-
resolution trap-loss spectrum for the bound levels immediately below 
the 4p3/2-|-451/2 asymptote of 39K2. The y-axis corresponds to three dif
ferent molecular symmetries. Figure (b) shows a direct ionization spec
trum of the rotational structure of the 0~(4p3/2 + 4s1/2)^' = 0 level for 
the potassium atoms. The inset shows the photoassociation/ionization 
scheme. 
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4.2 Excitation Scheme 

Traditional photoassociation is a one-photon process in which one of the ground 

state atoms becomes excited, but the second atom remains in the ground state. 

The formation scheme that we propose, however, is a two-photon process whereby 

both ground state atoms each absorb a photon to become Rydberg atoms, as was 

done in [24]. In our discussion, we consider excitations to the 70^3/2 Rydberg 

state. The second major difference between our proposal and most PA schemes 

is that we assume the ground state atoms are essentially at rest with respect to 

each other. Typical PA experiments rely on the relative velocities of the two 

ground state atoms to give the system some initial energy. The excitation is then 

from some continuum level of the ground state (see Fig. 4.1). Since the bound 

states that we predict correspond to extremely large equilibrium positions, we 

seek to exercise some control over the relative distance between the atoms. As 

such, we assume that the atoms are initially confined to a harmonic trap. This 

means that the initial energies of the ground state atoms are given by the discrete 

bound levels within the trap, rather than by a level of the ground state continuum. 

To facilitate our PA process, the ground state atoms are initially excited to in

termediate ns, np, or nd Rydberg states. We choose electronic states that have 

strong dipole coupling with the electronic states composing the well and whose 

curves have good overlap with the potential well. Since these intermediate states 

are Rydberg states, we can expect interaction curves similar to those in Chapter 2 

and Appendix A to result from this initial excitation (see left panel of Fig. 4.3). 

It is therefore important to consider the behavior of the molecular curves when 

choosing appropriate intermediate states. To make the calculations easier, we seek 
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electronic curves that are asymptotically flat in the overlapping R region of the 

potential well that we consider. As we will see, the PA rate depends on an integral 

over the separation R. Therefore, choosing electronic curves that are independent 

of R considerably simplifies the numerical analysis. 

Fig. 4 .3: Left column: Asymptotic curves associated with the interactions of two 
np (black) and two ns (red) rubidium Rydberg atoms (0+ symmetry) 
for various values of n. As we decrease in energy, the interaction picture 
shifts to lower values of R (see Section 3.3). Right column: We isolate 
two ns + ns and np3/2 + np3/2 curves to show their specific behaviors in 
the R region of our potential well in the top panel. We choose the n = 
40 curves for our intermediate states because they are asymptotically 
flat in the region we are concerned with. In both panels, the energy is 
zeroed at the 70p3/2 + 70ps/2 asymptote. 
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The left panel of Figure 4.3 shows curves for several 0+ rubidium states located 

around the np3/2 + np3/2 (black) and ns + ns (red) asymptotes near n = 70, 69, 

68, as well as near the lower asymptotes n ~ 58 and 40. These plots depict the 

strong mixing of the different ^-characters, as well as the /^-dependence on the 

n value. We note that as n decreases, the R range over which the significant 

^-mixing occurs also decreases, corresponding to a downward shift on the R axis. 

The result is that the curves correlated to lower n values are asymptotically flat in 

the R region of the potential well (for the same energy scale). In the right panel of 

Figure 4.3, we focus in on and enlarge some of the key features of the plots in the 

left panel. Specifically, we highlight the potential well correlated to the 69s + 72s 

asymptote as well as lower asymptotes that we consider for the intermediate states. 

In Section 3.2, we discussed in detail how the potential wells are composed of 

several molecular electronic states, resulting from the mixing of their respective 

^-characters. In general, these different electronic characters can be probed and ex

plored by exciting different intermediate Rydberg states. From Figure 3.6, we see 

that the well highlighted in Fig. 4.3 is mainly composed of \np;n'p) and \ns; n's) 

electronic states. To probe the |ns;n's) character of the well, we assume transi

tions from a lower \n"p;n"p) state; likewise, to probe the \np;n'p) character, we 

assume transitions from a lower \n"s;n"s) state. Using the results of Figure 4.3, 

we choose 4:0p3/2 + 40^3/2 and 41s + 41s to be the intermediate Rydberg states in 

our PA scheme. We note that these energy curves are asymptotically flat in the 

overlapping R region of the potential well and that the dipole couplings between 

these states and the desired pp' and ss' components are strong enough to facilitate 

a transition. In the following discussion, we consider these intermediate Rydberg 
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states to be the "ground states" of our PA scheme (see Fig. 4.4). 

20 

70p._+70p 3/2 ^3/2 

69s1/2+72s]/2 

40 60 80 100 
Separation (1000 a.u.) 

Fig. 4.4: Our proposed two-photon photoassociation scheme for the formation 
of rubidium Rydberg macrodimers. The ground state atoms are popu
lated to a bound level v inside the well by dual lasers, each of which is 
red-detuned from the resonance signal of the 70p3/2 + 70p3/2 molecular 
Rydberg state. Inset: Each rubidium atom is initially excited to an 
intermediate Rydberg state, considered to be the "ground" state in our 
discussion (see text). We note that the atomic single detuning levels 
are not to scale. 

In Figure 4.4, we show a schematic diagram for our two-photon PA process. De

pending on which electronic character is to be probed, the two interacting atoms 

would begin in either the |41s;41s) or the |40£>3/2;40p3/2) electronic state (see 
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above). Each excitation laser should be red-detuned from the resonant frequency 

with the 70p3/2 + 70p3/2 asymptote. As the total detuning 2A is swept through 

the resonant frequencies of the bound levels cf)v, these bound levels will be pop

ulated. In Section 3.4, we showed that the deepest bound levels of the potential 

wells have the longest lifetimes. It is therefore desirable to populate these levels to 

ensure maximum probing time: thus, we envision an ionization method for exper

imental detection. Due to the high excitations of Rydberg atoms, they are easily 

ionized and so we do not anticipate the usual problems associated with ionization 

detection in traditional PA experiments. 

4.3 Calculations and Results 

4.3.1 Single photon photoassociation rate 

For two ground state atoms approaching along a ground state molecular potential 

curve with relative velocity vie\ and asymptotic kinetic energy e, the PA rate 

coefficient describing the transition into a bound level v is given by [63]: 

K* = ( ^ E ( 2 ^ + 1) \SttV(etI, A)|2 \ , (4.3.1) 

where the sum is over all partial waves £. In this expression, K obeys the dispersion 

relation %*- = \jjiv^eh with fj, being the reduced mass, and \SeiV(e, I, A)| being the 

scattering matrix that depends on e, the laser intensity / , and the laser detuning 

from resonance A. The (• • •) indicates the thermal average over the velocities, 

which are assumed to obey a Maxwellian distribution. Assuming ultracold con

ditions (s-wave scattering only), it is readily shown that the PA rate is expressed 
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as an integral over the kinetic energies: 

1 /"OO 

K- = T7T dse-^\Si=0!V(eJ,A)\2 , (4.3.2) 
" V T Jo 

where f3 = ksT is the standard constant and QT = (27r/j,(3/h2) is the partition 

function. 

At MOT temperatures, the scattering matrix 1^1 is well approximated by [63]: 

l * ( ^ A ) | ' - [ ( e _ A ^ ( 7 / 2 ) r (4.3.3) 

where 7 = 7„ + 7s is the total decay rate of the process, with 7^ being the detection 

rate of product v and j s being the stimulated rate between the ground level and 

the bound level. 

4.3.2 Two-photon photoassociation rate 

Two-photon photoassociation schemes have been described in great detail [61, 64, 

65]. Figure 4.5 (taken from [64]) illustrates the two main formation mechanisms 

utilized in two-photon photoassociation. We note that both treatments consider a 

single ground state atom absorbing two incident photons and that a bound level is 

achieved with each photon absorption. That is to say, these processes all involve 

photoassociating twice. 

The two-photon scheme that we propose varies from these processes in the fol

lowing respects: (a) we assume that each ground state atom absorbs one photon 

to become a Rydberg state and (b) we assume that the excitation of the first 
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Intemuclear Separation (arb.) 

Internuclear Separation (arb.) 

4.5: Two photon PA schematic, including energy levels and laser properties, 
taken from [64]. (a) One ground state atom absorbs a photon to form 
bound level b\ with the ground state atom. The excited atom is then 
de-excited via the second photon and the two atoms form a ground state 
molecule described by level 62. (b) One ground state atom absorbs a 
photon to form bound level bi with the ground state atom. The excited 
atom is then further excited via the second photon to form bound level 
62 with the ground state atom. In this scenario, b2 is more energetic 
than b\. 
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atom does not result in a bound state. Since the distance between the atoms 

is significant, there will be no bonding between the first excited atom and the 

ground state atom. A bound level v will only be achieved once both atoms have 

been excited. In other words, despite being a two-photon process, we are only 

photoassociating once. We therefore treat our PA scheme as a "modified" single 

photon PA process, with scattering matrix \SV\ given by: 

I c I2 Jail (4 14) 
lSv] " [(s - A„)2 + ( 7 / 2 ) r (4-3'4) 

where Av = 2A — huv is the detuning from resonance with bound level v via laser 

frequency vv and 7 = 71 + 72 + 7„ + 7S is the total decay rate during the two 

photon process. Here, 2A is the total atomic detuning defined in Figure 4.4, ryl 

represents the spontaneous decay rate of Rydberg atom i, j v is the detection rate 

of product v as before, j s is the stimulated rate between the molecular ground 

level and the molecular bound level. For this scheme, the stimulated rate is given 

by an "effective" two-Rabi product, 

Is 2n ^ ^ W ) { R m m g { R ) ) ^ ; ( 4 . 3 . 5 ) 

where | ^ (R)) = \4>V(R)) <g) \xv(R)) is the bound state wave function, |^ s(i?)) = 

\4>9{R)) ® \xg(R)) is the ground state wave function, I% is the intensity of laser 

i and D(R) is the molecular dipole moment connecting the ground and excited 

electronic states. From our earlier discussion, the electronic state of the ground 

level will either be |41s;41s) or |40p3/2;40p3/2). Therefore, we represent the elec

tronic ground state wave function as \Xv{R)) = \&g'iO-g), where ag = ng£gjgmJg. 



70 

Applying Equation (3.2.2) for \xv(R)), we write: 

js = 2TT 
to?hh 

Y,\{3\D{R)\ag]ag)\
2\{UR)\c]{R)\UR))\2 • (4-3.6) 

Given the large separation between the atoms, we treat the "molecular" dipole 

transition as a product of the two atomic transitions, i.e. 

(j\D(R)\ag;ag) = ( n ^ | e r i | n 9 ^ ) < n ^ | e r 2 | V 9 ) 

= di,A,j , (4.3.7) 

where e = 1 in atomic units. The stimulated rate then takes the final form: 

7s = 2TT 
47r2 /1V ) £ K A , | 2 JdR^(R)c](R)4>g{R) (4.3.8) 

Here, the integral is calculated via a simple trapezoidal numerical integration 

scheme. Due to the sinusoidal nature of 4>V(R) (see Section 3.2), the trapezoid 

method converges very quickly and so the error is minimal [66]. The radial ground 

state wave functions are determined by the experimental parameters; we give an 

example in the next section. 

As we showed in Section 3.4, the macrodimer lifetime is dictated by the life

times of the two Rydberg atoms that compose it. We can thus assume that the 

rate of detection j v is on the same order as the spontaneous decay rates 71 and 

72, i.e. 71 + 72 + j v ~ 3jv. Under the weak field limit, we can also assume that 

7t> 3> 7s, since 7S oc I\I2 and the lifetimes of Rydberg atoms are very long. This 

means that the total decay rate in the denominator of Equation (4.3.4), is given 
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by 7 ~ 37„. Letting (s — A„) = x and 2/(37^) = n in Eq. (4.3.4), it is trivial to 

show that the scattering matrix takes the form 

\SV\ = y 7 s n 
7T/ 1 + n2x2 (4.3.9) 

where the term inside the square brackets approximates a dirac delta function 

5(x) = 5(e — A„). Therefore, we define the PA rate for our two photon process as 

K„ = 
2TT 

jsS(e- Av) (4.3.10) 

where the (• • •) indicate a thermal average over the kinetic energies, as in Eq. (4.3.2). 

4.3.3 Harmonic trap 

Typical photoassociation experiments excite free atoms from a continuum level of 

the ground state into a bound molecular level v. However, to exercise better con

trol over the Rydberg atoms, we envision confining the atoms to a one-dimensional 

harmonic trap and exciting them from bound levels within this trap. Such trap

ping could be achieved via optical tweezers [67], a 1-D optical lattice, or a 1-D 

MOT. The thermal average in Equation (4.3.10), is then defined by a summation 

over the energies, not an integral: 

2TT 

3Z 
n 

Y, \di,AA2 JdR <fv{R)c){R)<l>W{R) -PEn 
'En,Av , , (4.3.11) 
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where Z = V^ exp (—/3En) is the partition function, we have let A = - , 
^—' 6CZ 

n 

and we have changed the dirac delta function to the kronecker delta function, 

consistent with the discrete case. We have also rewritten the detuning A„ as AVi7l 

to explicitly denote the dependence of the detuning on the ground level n. For a 

one dimensional harmonic trap, the energies are given by En = ftw(n + 1/2) and 

the ground state wave functions are the solutions to the harmonic oscillator, i.e. 

• < * > - ^ S ) MVx*)'-**- (4-3-12) 

In this expression, m is the mass of a single rubidium atom and u is the trap 

frequency. In the following analysis, we have assumed a trap frequency u> ~ 60 

kHz, leading to a trap width roughly equivalent to that of the potential well, and 

a temperature of 100 fxK. Both values are within experimental parameters but 

can be adjusted as needed. In Figure 4.6, we show PA signals for thermally av

eraged transition rates from the 41s + 41s electronic curves (turquoise) and the 

40^3/2 + 40^3/2 electronic curves (red) for the 0 < n < 50 harmonic levels on a lin

ear scale in (a) and a logarithmic scale in (b) plotted against the atomic detuning 

A. Inset (c) focuses on the rate signals between A = —1.15 GHz and A = —0.93 

GHz. 

From Figure 4.6, we note that the strengths of both rate signals are strongest in 

the deepest part of the well, where the atomic detuning is largest. As the detuning 

decreases, the relative signal strengths also decrease. Although the 40p3/2 + 40p3/2 

signal is stronger overall (corresponding to the larger ss1 character inside the well), 

we point out that there are regions where the 41s + 41s signal is stronger. In par

ticular, we zoom in on the detuning range between —1.15 GHz and —0.93 GHz. 
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Fig. 4.6: PA rate vs. the detuning A from the 70£>3/2 atomic state on (a) a linear 
scale and (b) a logarithmic scale for thermally averaged transitions 
from harmonic oscillator bound states. We assume transitions from 
the 41s + 41s electronic state (turquoise) to access the pp' character 
inside the well and the 40p3/2 + 40p3/2 electronic state (red) to access 
the ss' character (see text). The signals are strongest in the deepest 
part of the well and gradually decrease as the detuning decreases. In 
(c), we zoom in on the portion between A = —1.15 GHz and A = —0.93 
GHz, highlighting the behavior of the two signals. 

In this region of the well, the two signals essentially flip back and forth based on 

the relative pp' and ss' characters of the well. This indicates a possibility of con

trolling the formation of macrodimers based on the equilibrium separation of the 

two nuclei and the electronic character of the ground state. Such control could be 

useful in developing a "switch" for quantum information processes and quantum 
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computing. 

Finally, we point out that that at A ~ —1.05 GHz, the two rate signals (but 

particularly the 4:0p3/2 signal) decay towards zero, even though there are still a 

significant number of bound states left to populate. The sharp decreases in the 

strengths of the signals are due to the assumed width of the harmonic trap. Al

though we used a harmonic trap of width roughly equal to that of the well for 

our calculations, the potential well clearly widens anharmonically towards the top, 

leading to equilibrium separations beyond the range of the trap. The higher bound 

levels could be more easily accessed by widening the trap width. For example, the 

isolated 69s + 72s character at R > 55 000 a0 could be probed in this manner. 

4.4 Conclusions 

In this chapter, we have presented a theoretical formation scheme that, in princi

ple, could realize the macrodimers we predict in Chapter 2. Our formation mech

anism consists of a two-photon excitation procedure, where each ground state 

atom is excited to a Rydberg state. Unlike most photoassociation experiments, 

we assume that the ground state atoms are initially confined to a harmonic trap 

and are thus excited from discrete energy levels and not from continuum levels. 

By red-detuning the excitation lasers off of the resonance signal of the n£ Ryd

berg state, we should be able to populate the bound energy levels calculated in 

Tables 3.1 and 3.2. 

One of the key aspects of our formation scheme is that we are able to consider ex

citations from multiple "ground states" to populate the same bound levels within 
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the well. Due to the electronic mixing described in Chapter 3, the potential 

well takes on various ^-characters, which support transitions from any state hav

ing good dipole transitions to any of the electronic states composing the well. 

The flexibility to use different ground states is encouraging from an experimental 

standpoint. 

We have presented photoassociation rates for transitions from 41s + 41s states 

to populate the pp1 character inside the well and from 40p3/2 + 40p3/2 to populate 

the ss' character, based on a harmonic trapping potential. We find that the behav

iors of the rate signals reveal details of the well's electronic composition. What is 

particularly interesting is the decay of the 40^3/2 signal around A ~ —1.15 GHz, 

where the 41s signal increases. Being able to control the excitations of bound 

molecules indicates the possibility of a quantum mechanical "switch." Combining 

this effect with the Rydberg blockade phenomena [9] could have consequences in 

quantum information and quantum computing. 



Chapter 5 

Three-body Interactions 

With the discoveries of laser cooling and trapping [68] and then evaporative cool

ing [69, 70], the study of new physical systems at ultracold temperatures has 

exploded. The realizations of Bose-Einstein Condensation [71-73] and photoas-

sociation spectroscopy [61, 62] led to great strides in the understanding of the 

interactions between atoms and many-body physics in degenerate quantum sys

tems with strongly interacting particles. 

However, over the past five years or so, the focus of study has moved away 

from binary interactions and toward few-body interactions, such as between atom-

diatom interactions [74-76] and diatom-diatom interactions [77, 78]. Extending 

our two-body calculations to a three-body interaction picture is a logical next step. 

Although there have been proposals for such ultra-long-range Rydberg atom inter

actions [79-81], these works focus on the interactions between one Rydberg atom 

and multiple ground state atoms. Here, we describe the long-range interactions 

between three Rydberg atoms. 

76 
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5.1 Formulation 

5.1.1 The Basis 

In general, adding a third atom to the interaction picture will change the symmetry 

of the system. However, to simplify the calculations, we assume three identical 

Rydberg atoms along a common (z-) axis, which preserves the D^ symmetry. 

This also permits the use of much of the two-body physics from Chapter 2 for the 

three-body system. Obtaining properly symmetrized basis functions for the three-

atom case is very similar to that of the two-atom case, but much more technically 

demanding. In Appendix B, we show that the symmetrized three-atom wave 

functions for long-range Rydberg atoms with non-overlapping electronic clouds 

(no exchange) have the form: 

\a1]a2;a3) = -y= [ ( | a i ) i | a 2 ) 2 | a 3 ) 3 + \a2) i\a3) 2\ai) 3 + K h K ^ K h ) 

- p ( - l / 1 + ' 2 + ' 3 ( | a i ) i l « 3 ) 2 | a 2 ) 3 + |a2)i|ai)2|a3)3 + |a3>i|a2)2|a1)3)] - (5.1.1) 

Here \az)k = \nl,i%)jl,mn)k represent the quantum states of the free Rydberg 

atom k (as in Chapter 2) with principal quantum number nt7 orbital angular 

momentum quantum number 4> and the projection mJi of the total angular mo

mentum j j = £l + sl onto the internuclear axis. As defined previously, p = +1(—1) 

for gerade (ungerade) molecular states. We note the similarity between Equa

tion (5.1.1) and its two-body counterpart (Equation (2.2.1)). Both expressions 

show that the total wave function is a superposition of the cyclic and non-cyclic 

permutations of the individual atomic states, and that the non-cyclic states are 

(anti-)symmetrized via — p{ — 1)^«£\ 
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To construct the interaction picture for the three-atom system, we build basis 

sets with which to diagonahze the interaction Hamiltonian. As in the two-atom 

case, each basis set consists of the excited Rydberg molecular level and nearby 

asymptotes with significant coupling to this level and to each other. However, due 

to the number of three-atom combinations, there are many more local asymptotes 

to consider than in the two-body case. This results in basis sets that are signifi

cantly larger than their two-atom counterparts. In this chapter, we consider the 

case of triply excited 58p rubidium atoms as an example. 

5.1.2 Long-range Interactions 

Following the methodology of the two-body case, we assume that the Rydberg 

atoms interact via long-range dipole-dipole and quadrupole-quadrupole couplings, 

resulting in the mixing of different electronic states. As before, we diagonahze an 

interaction Hamiltonian consisting of long-range Rydberg interactions and atomic 

fine structure, i.e. Hmt = V3_body + Hfs. Using the wave functions defined by 

Equation (5.1.1), we write the matrix elements of the Hamiltonian as the sums of 

multiple interactions. We define the matrix elements of the interaction Hamilto

nian as: 

(ai;a2;a3\V3-body\b1;b2;b3) = 

- 2_^ \at aj ak 1^3-bodylOj' 0y bk, ) (b.i.2J 
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where each summation index is over the total number of atoms, i.e. from 1 to 3 

and we have defined 

— 1 for cyclic permutations I 0 for cyclic permutations 
0 C = { and GA = < 

0 for anti-cyclic permutations —1 for anti-cyclic permutations 

and \at a3 ak) = \a^)l\aJ)2\ak)z^ etc. In the case tha t \ai]a2;a3) = |£»i; 62! ̂ 3) 

(i.e. along the diagonal of the matrix), the matrix element is given by: 

(ai; a2; a3\Hmt\ai;a2; a3) = (aa; a2; a3|V3-body|ai; a2] a3) + £123 , (5.1.3) 

with £'123 = Ei + E2 + £3, where Ek = — — ——- are the atomic Rydberg 
2{nk-5ek)

2 

energies. 

The long-range assumption that the distance R between any two atoms is greater 

than the LeRoy Radius RLR assures that these are three free atoms interacting via 

the long-range two-body potentials defined by Eq. (2.3.5). Thus, the transition 

element (a^'af' ak \V3^hody\b^by bw ) ^ r o m Equation (5.1.2) is defined as a sum 

of two body interactions, i.e. 

\ai aj ak 1^3-bodylOj, by bk, ) - (a% aJ \VL{tLi2)\o%, by ) 

+ {af]af\VL{R2,)\bfbt)) (5.1.4) 

+ (a^\VL(Rn)\b?bP) . 

Since we are assuming that the three atoms lie along a common axis, each inter

action term (a^'a^P\VL(Rap)\b" by) is the long-range Rydberg-Rydberg transi-
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tion element, as defined previously in Equation (2.3.8), with L = 1(2) for dipole 

(quadrupole) interactions, and Rap being the distance between atoms a and f3. 

5.2 Results 

In this section, we provide preliminary results on triply excited 58p rubidium Ry-

dberg atoms. We include a few examples of potential energy surfaces (PES), each 

of which coresponds to a different asymptotic level with a different physical "to

pography." Although we ultimately seek surfaces that illustrate potential wells 

(indicating bound three-atom systems), much can be learned about the long-range 

interactions from other types of surfaces. In what follows, Ri represents the dis

tance between atom 1 and atom 2 in ao, i?2 represents the distance between atom 

2 and atom 3 in ao, and the z-axis measures the energy in GHz. The respective 

color schemes for each plot are also given in the scale to the right of each surface 

plot. 

Figures 5.1 and 5.2 illustrate potential surfaces analogous to two-dimensional at

tractive and repulsive potential curves, respectively. The attractive PES shown in 

Fig. 5.1 corresponds to the |57si/2; 57^5/2; 58d3/2) state, while the repulsive PES 

shown in Fig. 5.2 corresponds to the |58j>3/2; 56ps/2', 60p3/2) state. We see that in 

both cases, the distance of the third atom has very little effect on the other two 

atoms: as either R\ or R2 is increased (while keeping the other distance fixed), the 

two stationary atoms consistently demonstrate an attractive/repulsive behavior. 
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5.1: (top) Potential energy surface (PES) and (bottom) two-dimensional 
projection correlated to the |57si/2; 5 7d5/2; 58^3/2) asymptotic state. 
This surface is analogous to an attractive potential curve for the two-
body case: As the distance of either the first (Ri) or last (R2) atom in 
the linear chain is increased, the two local atoms are attracted. 
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. 5.2: PES (top) and projection (bottom) correlated to the 
|58p3/2; 56p3/2,60p3/2) asymptotic state This surface is analo
gous to a repulsive potential curve for the two-body case: As the 
distance of either the first (i?i) or last (R2) atom in the linear chain is 
increased, the two local atoms are repulsed. 
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Figure 5.3 shows the PES for the triply excited 58^3/2 state, i.e. |58p3/2; 58^3/2; 58£>3/2). 

This surface illustrates the obvious symmetry along the R2 = i?i axis that we 

would expect for three identical atoms. The interesting feature of this plot is the 

two "ridges" that run along either axis. These ridges indicate that the two local 

atoms form a bonded pair, existing even as the third atom is moved away. How

ever, as the third atom is moved sufficiently far from these two bound atoms, all 

three atoms dissociate. It would seem that the bond between the two local atoms 

is contingent upon the presence of the third atom. 

In figure 5.4, we depict the PES correlated with the 158^3/2; 57d5/2; 55d3/2) asymp

totic state. The highlight of this particular plot is the (3-D) potential well indi

cated by the black area centered at approximately Ri — 37 000 ao, R2 = 31 000 a0. 

Such a well indicates that all the three Rydberg atoms form a long-range linear 

macrotrimer. Based on the energy scale, this particular well is approximately 30 

MHz deep; significantly shallower than the wells we highlighted in the two-atom 

case, but we suspect that this is deep enough to support at least a few bound vi

brational levels. We believe that we should also be able to calculate the different 

vibrational modes based on a classical system, i.e. treating the atoms as masses 

connected by springs. 
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Fig. 5.3: PES (top) and projection (bottom) correlated to the 
|58p3/2;58p3/2;58p3/2) asymptotic state. We note the "ridges" ly
ing along both the Rx and R2 axes, which indicate that the two local 
atoms are bound (see text). To better show the energy gradient and 
the "ndges," the surface plot (top) needed to be plotted over a shorter 
range than the projection (bottom). 
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5.4: PES (top) and projection (bottom) correlated to the 
|58d5/2; 57d3/2; 55rf3/2) asymptotic state. The main feature of 
this surface plot is the 3-D well, centered at about R\ = 37 000 ao, 
R2 =31 000 a0, indicating that the three atoms are bound together in 
a linear chain (see text). 
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The final PES that we present here is for the |58d5/2; 57d5/2; 55d3//2) state. This 

is a particularly intriguing surface because of the complexity of the interaction 

picture as indicated by the richness of features in the surface. For example, along 

the i?i-axis between 20 000 a^ < R2 < 35 000 ao, we note a series of "ripples" 

in the PES. Also of note is a large "ridge" lying along the i?2-axis (beginning at 

about i?2 ~ 55 000 ao and centered at about Ri = 30 000 ao), indicating that 

the two local atoms could be in a bound state provided that the third atom is 

sufficiently far away. 

Although all of the figures illustrate different surfaces with different features, we 

note that they all have one feature in common. As the distances R\ and R2 be

tween the atoms become large enough, the surfaces become flat, indicating that 

the atoms have completely dissociated into free atoms (as should be expected in 

the asymptotic limit). 

5.3 Outlook 

Although there is still work to be done regarding the calculations that we have 

presented in this chapter, we are encouraged by the preliminary results. As 

stated in the introduction of this chapter, the current literature regarding ul-

tracold multi-body Rydberg physics involves one Rydberg atom interacting with 

multiple ground state atoms. To our knowledge there have been no published 

results regarding multiply-bound Rydberg atoms, which makes our initial results 

promising. 

In addition to completing this work on the linear trimers, we are also interested in 
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Fig. 5.5: PES (top) and projection (bottom) correlated to the 
|58d5/2; 57d5/2;55ri3/2) asymptotic state. The surface exhibits 
many interesting features, including small ripples lying parallel to the 
i?i-axis and a large ridge lying parallel to the R2 axis. 
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analyzing differently symmetrized three-body systems, i.e. triangular systems. It 

will be convenient to consider the case where the third atom lies along the axis that 

bisects the axis connecting the other two atoms; such a configuration belongs to 

the Cih point group. To analyze this new physical picture, new asymptotic basis 

states based on the new symmetry will have to be derived and a new three-body 

potential will need to be determined. Although the general form of the long-range 

potential [42] is still true, expressing the potential at a point not along the z-axis 

(i.e. the axis connecting the two base atoms) becomes more complex [39]. It 

will be interesting to see if an analytical expression similar to Equation (2.3.8) 

can be found for this off-axis interaction potential. We look forward to pursuing 

these challenges and believe that the results will prove useful in the progression 

of ultracold physics and quantum chemistry. 



Appendix A 

Molecular Curves 

In this appendix, we present the potential curves that we calculated which do 

not exhibit deep, isolated potential wells. The curves correspond to the relevant 

symmetries of the 70s + 70s, 70p + 70p, and 70d + 70d asymptotes of the first five 

alkali elements. Note: The Rb 70s + 70s, 70p + 70p and Cs 70p + 70p curves that 

we focus on throughout this dissertation are not included here. 
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A.l Lithium 

40 60 80 100 40 60 80 100 40 60 80 100 

Nuclear Separation (1000 aQ) 

Fig. A . l : Potential energy curves for the 0~ (left panel), 0+ (center panel), and 
\u (right panel) symmetries for the doubly-excited ns Rydberg state 
of lithium. 
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Fig. A.2: Same as Fig. A.l for the doubly excited np Rydberg state of Li. 
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Nuclear Separation (1000 aQ) 

Fig. A .3 : Potential energy curves for the 0~ (left panel) and 0+ (right panel) 
symmetries for the doubly-excited nd Rydberg state of lithium. 
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Fig. A.5: Same as Fig. A.3 for the 2U (left panel) and 2g (right panel) symmetries 
of Li. 
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A.6: Same as Fig. A.3 for the 3U (left panel) and 3S (right panel) symmetries 
of Li. 
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Fig. A.7: Same as Fig. A.3 for the 4„ (left panel) and 45 (center panel) and 5^ 
(right panel) symmetries of Li. 
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A.2 Sodium 

Nuclear Separation (1000 aQ) 

Fig. A.8: Potential energy curves for the 0~ (left panel), 0+ (center panel), and 
lu (right panel) symmetries for the doubly-excited ns Rydberg state 
of sodium. 
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Fig. A.9: Same as Fig. A.8 for the doubly excited np Rydberg state of Na. 
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Fig. A. 10: Potential energy curves for the 0~ (left panel) and 0^ (right panel) 
symmetries for the doubly-excited nd Rydberg state of sodium. 
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metries of Na. 
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Fig. A. 12: Same as Fig. A. 10 for the 2U (left panel) and 2g (right panel) sym
metries of Na. 
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Fig. A. 14: Same as Fig. A. 10 for the 4U (left panel), 4g (center panel) and 5U 

(right panel) symmetries of Na. 
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A.3 Potassium 
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Nuclear Separation (1000 aQ) 

Fig. A.15: Potential energy curves for the 0~ (left panel), 0+ (center panel), and 
lu (right panel) symmetries for the doubly-excited ns Rydberg state 
of potassium. 
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Fig. A.16: Same as Fig. A.15 for the doubly excited np Rydberg state of K. 
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A.19: Same as Fig. A.17 for the 1„ (left panel) and lg (right panel) sym
metries of K. 
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Fig. A.20: Same as Fig. A. 17 for the lu (left panel) and lg (right panel) sym
metries of K. 
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A . 2 1 : Same as Fig. A.17 for the Au (left panel), 4S (center panel), and 5U 

(right panel) symmetries of K. 
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A. 4 Rubidium 
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Fig. A.22: Potential energy curves for the 0~ (left panel) and 0+ (right panel) 
symmetries for the doubly-excited nd Rydberg state of rubidium. 
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Nuclear Separation (1000 aQ) 

Fig. A.23: Same as Fig. A.22 for the lu (left panel) and lg (right panel) sym
metries of Rb. 
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Nuclear Separation (1000 aQ) 

Fig. A.24: Same as Fig. A.22 for the 2U (left panel) and 2g (right panel) sym
metries of Rb. 
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Fig. A.25: Same as Fig. A.22 for the 3„ (left panel) and 3g (right panel) sym
metries of Rb. 
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Fig. A.26: Same as Fig. A.22 for the 4U (left panel), 4g (center panel), and 5U 

(right panel) symmetries of Rb. 



A. 5 Cesium 
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Fig. A.27: Potential energy curves for the 0~ (left panel), 0+ (center panel), and 
lu (right panel) symmetries for the doubly-excited ns Rydberg state 
of cesium. 
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Fig. A.28: Potential energy curves for the 0~ (left panel) and 0+ (right panel) 
symmetries for the doubly-excited nd Rydberg state of cesium. 
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Fig. A.29: Same as Fig. A.28 for the lu (left panel) and lg (right panel) sym
metries of Cs. 
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Fig. A.30: Same as Fig. A.28 for the 2U (left panel) and 2g (right panel) sym
metries of Cs. 
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Fig. A . 3 1 : Same as Fig. A.28 for the Su (left panel) and 3P (right panel) sym
metries of Cs. 
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Fig. A.32: Same as Fig. A.28 for the Au (left panel), 4S (right panel), and 5U 

symmetries of Cs. 



Appendix B 

Derivations 

B . l Asymptotic form of the molecular Rydberg states in Hund's 

case (c) 

B . l . l Two-body 

As has been discussed, the spacing of degenerate energy levels due to atomic fine-

structure splitting is comparable to the energy separations between local nt + n£' 

asymptotes near the doubly excited Rydberg states that we consider. This means 

that fine structure cannot be ignored and the asymptotic basis states should be 

built in the Hund's case (c). In this basis, the good quantum number is the pro

jection ft of the electron's total angular momentum j t o t = j \ + J2- We construct 

the asymptotic basis states from atomic wave functions given by <^(rg), where 

i = rii£ijimjl is the quantum state describing electron q associated with atom k. 

Given two nuclei, A and B and two electrons, 1 and 2, the general asymptotic 

form of the electronic wave function is given by: 

* = C1^(r1)</»f(r2) + C2</»f(r1)^(r2) 

+ C302
4(r1)^f(r2) + C 4 < / . 2

5 ( r 1 )^(r 2 ) . (B.l.l) 

122 
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Under the exchange of the two electrons, the total wave function \P must be 

antisymmetric, i.e. Pn^ = —^f- Thus, 

P 1 2* = - * = C1<(r2)(/»f(r1) + C2(/»f(r2)^(r1) 

+ C3^(r2)0f (n) + C40f (r2)^(n) . (B.1.2) 

Comparing equations B.l.l and B.1.2, we find: 

C\ = —C4 

and so equation B.l.l becomes: 

+ ^ [ ^ ( n J ^ C r a J - ^ C n ) ^ ^ ) ] . (B.1.3) 

The wave function is further symmetrized by the inversion operator i, which acts 

to exchange each electron with the other's atomic core while inverting the coor

dinates, i.e. 

^ f ( r i ) ^ f ( r 2 ) = ^ ( - r 2 ) 0 f ( - r i ) = ( - l / ^ ^ f M . (B.1.4) 

The molecular wave function either is unaffected by this exchange (gerade state) 

or becomes negative (ungerade state): i^ = p^, where p = +1(—1) for the gerade 

(ungerade) case. 
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Applying the inversion operator to equation (B.1.3) and using (B.1.4) yields: 

M = V{CX W ( r i ) ^ ( r 2 ) - 0 f ( r i ) ^ ( r 2 ) ] ) + p(C2 |>f ( r ^ f o ) - ^ ( r ^ f (r2)]; 

= ( - l ^ d [^(r2)*f (n) - * f ( r 2 ) ^ ( n ) ] ) 

+ (-iy>+h(C2 W ( r 2 ) ^ ( r i ) - ^ ( r 2 )0 f ( r i ) ] ) , 

from which we can say C\ — p(—lY1+£2C2, and thus: 

+ p( - l )*+* W ( r i ) ^ ( r 2 ) - ^ ( r i ) 0 f (r2)]) . (B.1.5) 

Under the long-range assumption, electron 1 stays around nucleus A and electron 

2 stays around nucleus B. Therefore, we can finally write: 

tt = - ^ W ( r i ) ^ ( r 2 ) - p ( - l ) ^ ^ ^ ( n ) 0 f ( r 2 ) ] , (B.1.6) 

where we have let Ci = —^ for normalization. 

B.1.2 Three-body 

As in the two-electron case, the asymptotic basis states for the three-electron 

system are constructed from atomic wave functions given by <p^(rg), where i = 

nli.ljlm:iz is the quantum state describing electron q associated with atom k. 

Given three nuclei A, B, and C and three electrons 1, 2 and 3, the general asymp

totic form of the electronic wave function is given by the superposition of possible 

combinations of 4>f-(rq)(f)^(rqr)(f)^,(rq'/), where all indices run from 1 to 3, with 
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« ^ j ' / i" and q 7̂  q' 7̂  g". This results in 36 different possibilities, meaning the 

initial wave function ^ has 36 unique terms. For simplicity, we write 

36 

where each ip^ term represents a ^)f-(rq)<p^(Tqi)<p^„(rq>i) wave form and a, is a 

weighting coefficient. For the two-electron case, it is sufficient to apply the P12 

operator to antisymmetrize the general wave function. However, the three-electron 

case is more complex and requires use of the antisymmetrizing operator A — 

-4= / _ A _ 1)PP to properly antisymmetrize the general wave function. Here, the 

P 
sum is over all possible permutations of the electrons P and the (—l)p coefficient 

is 1 for even permutations and —1 for odd. For electrons, the overall wave function 

must be odd. Therefore, 

Mf = -V = ^CjAipj , (B.1.8) 
3 

where each ipj term is permuted according to A- As this is quite cumbersome, 

we do not write down the results of these expansions. However, we point out 

that as in the two-electron case, performing this antisymmetrization allows for 
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comparisons to be made between the coefficients, with the net result given by: 

|*) = Cl [ ( ^ ( n ) ^ ( r 2 ) ^ ( r 3 ) - ^(r1)^(r2)0f(r3) - ^ f ( r i )^ ( r 2 )^ ( r 3 ) 

+ ^ f ( r i )^ ( r 2 )^ ( r 3 ) + ^ ( r ^ f e V f ( r 3 ) - 0f(r1)03
5(r2)^(r3) 

+ ^ ( n ) 0 f (r2)0f (r3) - ^ ( r i ) 0 f (r2)0f (r3) + ^ ( r i ) ^ ( r 2 ) ^ ( r 3 ) 

- ^ ( r i ) ^ ( r 2 ) ^ ( r 3 ) - ^ ( r i ) 0 f (r2)^(r3) + ^ ( r ^ ^ f (r3) 

+ ^(r x)0f (r2)^(r3) - ^ ( r i )^ ( r 2 )^ f ( r 3 ) + 0f ( r ^ f t r ^ f o ) 

-0 f ( r i)^(r2)^f(r3) + ^ ( r x ) ^ ( r 2 ) ^ ( r 3 ) - ^ ( r i )0f ( r 2 )^( r 3 ) ) 

+c2 W ( r i ) ^ ( r 2 ) ^ ( r 3 ) - ^ ( r i ) ^ ( r 2 ) 0 f (r3) - *f ( ^ ( r ^ f o ) 

+ 0f ( r i )^ ( r 2 )^ ( r 3 ) - ^ ( r i ) ^ ( r 2 ) ^ ( r 3 ) + ^ ( r i ) ^ ( r 2 ) ^ ( r 3 ) 

+ # ( n ) * f (r2)^(r3) - ^ ( r i ) € ( r 2 ^ f ( r 3 ) - ^(r1)03
4(r2)0f(r3) 

+ 0f(r1)01
7(r2)^3

4(r3) + ^ ( r ^ f (r2)0f(r3) - ^ ( r i )^ ( r 2 )0f ( r 3 ) 

+ ^ ( r i ) ^ ( r 2 ) ^ ( r 3 ) - ^( r i)0f(r2)0f(r3) - 0f ( r ^ f o ) ^ ) 

+0f(r1)02
7(r2)<(r3) + ^ ( n ) ^ ( r 2 ) 0 f (r3) - ^ ( r ^ f (r2)^(r3))] . 

Finally, we relate c\ and c2 via the inversion operator i as in the two-electron case. 

By centering the inversion on atom B, % acts in the following manner: 

^ ( r ^ ( r , ) 0 ? ( r f c ) = ^ ( - r f c ) ^ ( - r , ) ^ ( - r , ) 

= < ( r f c ) ^ ( r , ) ^ ( r , ) ( - l ) ^ ^ . (B.1.9) 

Carrying out i^f = p^, where p = +1( —1) for gerade (ungerade) states, we 

conveniently find c2 = Cip(—l)il+e2+e3 and arrive at the most general form for the 
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three-electron wave function: 

|tf> =Cl [(^(rx)0f (r2)^(r3) - 0f( r i)^(r2)0f (r3) - <f>f (r1)03
4(r2)^(r3) 

+ tfiTjtfiTMfiTs) + ^ ( r i )^ ( r 2 )0f ( r 3 ) - ^ (n)0f ( r 2 )^ ( r 3 ) 

+ ^ ( r i )0f ( r 2 )^ ( r 3 ) - ^ ( r i )^ ( r 2 )0f ( r 3 ) + ^ ( r i )^ ( r 2 )0 f ( r 3 ) 

- 0f( r i)^f(r2)^(r3) - <^( r iVf (r2)^(r3) + ^ ( n ) ^ ( r 2 ) 0 f (r3) 

+ ^ ( r i ) 0 f (r2)^(r3) - ^ ( r x )^ ( r 2 )^ f (r3) + ^ ( r ^ f (r2)^(r3) 

- ^ ( r i ) ^ ( r 2 ) 0 f (r3) + ^ ( n ) ^ ( ' 2 ) ^ ( r 3 ) - ^(riW?(r2)tf(r3)) 

_p(_1},1+,2+,3 ( ^ ( r i ) ^ ( r 2 ) ^ ( r 3 ) _ 0f( r i)^(r2)0f(r3) - 0f ( r i )^( r 2 )^( r 3 ) 

+ 0f ( r i )^ ( r 2 )^ ( r 3 ) - ^(r!)0?(r2)^(r3) + 0f ( r i )^ ( r 2 )^ ( r 3 ) 

+ ^ ( r i ) 0 f (r2)^(r3) - ^ ( r i )^ ( r 2 )^ f ( r 3 ) - ^ ( r i )^ ( r 2 )0f ( r 3 ) 

+ ^ ( r i ) 0 f (r2)^(r3) + ^ ( r i ) ^ ( r 2 ) ^ ( r 3 ) - ^ ( r ^ f (r2)tf(r3) 

+ ^ ( r i ) ^ ) ^ ( r 3 ) - ^ ( r ^ f (r2)^(r3) - 0f ( r ^ f (r2)<^(r3) 

+ ^ ( r 1 ) ^ ( r 2 ) ^ ( r 3 ) + ^ ( ^ ( ^ f (r3) - ^ ( r ^ f (r2)#(r3))] 

However, under the long-range assumption, electron 1 is localized at atom A, 

electron 2 is localized at atom £?, and electron 3 is localized at atom C. When we 

neglect terms contrary to this configuration, the above expression greatly reduces 

to: 

|*) = 1= [ ( ^ ( r i ) ^ ( r 2 ) ^ ( r 3 ) + ^ ( r i ) ^ ( r 2 ) ^ ( r 3 ) + ^ ( r i ) 0 f (r2)02
c(r3)) 

-p(-lY^ ( ^ ( r i )0 f (r2)^(r3) + ^ ( r i ) 0 f (r2)^(r3) + ^( r i )^(r 2 )0f( r 3 ) ) ] , 

where we have let Ci = —= for normalization. 
\/6 
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B.2 Long-range in te rac t ions 

B.2.1 R y d b e r g - R y d b e r g energy 

The long-range Rydberg-Rydberg interaction energy is derived from an expan

sion of the Coulomb potential between two charge distributions. In general, there 

are many methods of performing such an expansion, but we will use the classical 

spherical multipole expansion as in [82]. 

We consider two charge distributions I and II, with centers A and B, respec

tively. We let any charge in region I be described as q% and any charge in region II 

as q3, so that the vector pointing from A to charge q% is rl and the vector pointing 

from B to charge q3 is r0. Under the long-range conditions that we consider in this 

dissertation, the charge distributions do not overlap. That is to say, the distance 

R between centers A and B is much larger than the distance \fk\ of any charge q^ 

from its respective center. Under these conditions, the total potential at R due 

to distribution I is given by a sum of all of the charges in distribution I, i.e. 

\R — rA 

= E * E 2 T T T E (-DM^rn-M(fl) Y^f.), (B.J.1) 
i L=0 M=-L 

where r% = |f\|, L and M define the multipole terms, and Yl"-(x) are the spherical 

harmonics. The interaction energy V between the two charge distributions is then 
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given by the sum of the Coulomb energies between any two charges ql and q3: 

3 

= £*£ \R + r3 — r% 

i j L=0 M=-L 

Here, we have defined ul3 = ft — f3 as the vector between charges qt and q3: 

ul3 = |UJJ| represents its magnitude and u%3 represents its direction. At this point, 

we will follow the approach given by [83] and use rescaled spherical harmonics, 

known as the sohd harmonics. Defining the regular solid harmonic as: 

RT{£)=^2lTi] 1*1 Y ? n ^ ) ' (R2-3) 

and the irregular solid harmonic as: 

4 \ 1 /2 

ir{£) = ' 2 7 T I ) ^~l~l Yr{*]' (B-2-4) 

we rewrite Equation (B.2.2) as: 

oo L 

^ = E ^ E E {-l)MrL
M{R)R™{ut3) . (B.2.5) 

i,3 L=0 M=-L 
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Making use of the addition theorem for solid harmonics, R^{ul3) = R^ifi — ^ 

can be expanded as: 

1/2 iA 

£A rnA=~iA 

x (£A, mA; L-£A,M- mA\LM) , (B.2.6) 

where B\ = ku™_ky is the binomial coefficient and (•••!•••) represents a Clebsch-

Gordan coefficient. Using Equations (B.2.3), (B.2.4), (B.2.6), and the identities 

RT(-x) = (-lYRT(x) (B.2.7) 

and 

(eA,mA;L-eA,M-mA\LM) = {&££* B^™^'2 ( f l ^ ) " ^ , (B.2 

we express Equation (B.2.5) as: 

i,j L=0M=-L V ' 

£ £ (^^Bl-^)1/2(-%I)
1/2rfA^(r1) 

i,j L=0 M=-L 

X 

/ 4TT \ 1 / 2 

x (2(t-<x)+i) r r ^ s r w - IB-") 

If the vector i? that connects centers A and B is taken to be along the z-axis, i.e. 
/(2L + l)(L + i\ 
V 4vr ( L - M ) ! 

1 /9 

fl = Rz, then yL-^(fl) = YL'M(z) = ( ^ ± ^ ± M \ 5_Mfi, with <5_M,( 
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beging the Kronecker delta function. Equation (B.2.9) then becomes 

/ 4 \ i / 2 / 4 \ 1/2 
x ( , ( „ ) r'AYrA(rJr'BYt-

mA(r1) , (B.2.10) 
V2£A + iy V^s + V 

where we have also let £B = L — £A-

Finally, we assume that each distribution contains only one Rydberg atom, with 

their respective nuclei located at centers A and B\ the electron associated to core 

A{B) is subscripted as 1(2). Using the definition of the binomial coefficient, it can 

easily be shown that Be
A~™A = Be

B^™A. Dropping the summations over i and j , 

letting ei = e2 = 1 in atomic units, and reordering the sums over L and £A (note: 

this is only allowed for infinite sums), we define the Rydberg-Rydberg interaction 

energy as: 

x E K^r/^S?)172^^)^;^^). (B.2.H) 

As discussed in Chapter 2, we only consider dipole-dipole [£A = £B = 1) interac

tions and quadrupole-quadrupole [£A = (-B = 2) interactions. In this manner, we 

define their respective terms in the expansion via 

Ve{R) = (U+1)IP& S BSTYTWYrft) • (B.2.12) 

where £ = 1(2) for dipolar (quadrupolar) interactions. 
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B.2.2 Hamiltonian matrix elements 

The interaction Hamiltonian that we diagonalize has matrix elements 

(ni£1j1mn\(n2£2j2(Q - m^V^R^nz^m^n^ij^Q. - m33)), defined by: 

(l;2\Ve(R)\3;4) = (-iy ^ ^ + 1 ^ ^ T ^ U i l ^ i l ^ a J a X n a ^ l r i l n ^ ^ ) 

x ^jlmn\Yln{v\)%3zm3z)^232^ - mn\Y^m[x\)\UH^ - mn) , (B.2.13) 

where the summation runs from m = — £ to •£. For the angular portions of (B.2.13), 

it is more convenient to express the angular wave functions in the uncoupled basis 

using the standard angular momentum addition. For example, 

(£ijimn\ = Y^^(jimn\^sumhmsi)(hsi]meimsi\ , (B.2.14) 

where {]\mn \£iSi;me1mSl) is the Clebsch-Gordan Coefficient and can be expressed 

in terms of the Wigner 3j symbol as: 

(nm^£lSl]mhmSl) = y/23~rTl(-iy^-m^{ "' ^ H 

mh mSl -m 31 
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We express the other three wave functions in the uncoupled basis as in (B.2.14) 

and substitute into equation (B.2.13): 

(l;2\Vt(R)\3;4) = ( - 1 / (-iyi+^+s3+s4-(e1+e2+e3+t4)-2Q 4TT 1 

x 

{2£ + 1) i ? 2 ^ 1 

J ] B%TTZ[,ni, J2 E V/(2ji + l)(2j2 + l)(2j3 + l)(2j4 + l) 
mix msi 
me2 m32 
m(3 nis3 
ml4 mS4 

x (4m,1 |y ,m(r1) |4m,3)(4m,2 |y£-m(f2) |£4m,4) 

(-2 S2 j 2 

\ mi2 mS2 -(Q- mn) 

(B.2.15) 

( 9 \ ( 
£\ si j i 

\ m£l mSl ~mn I 

4 S3 J3 
/ 

£4 s4 3i 

mi3 mS3 ~ m n J \ m^ mS4 - ( Q - mj3) 

X Us2S40siS3UmS2mS4dm,slms3 ; 

where <5SiS = (silsj) and 8ms ms — (mSt\ms) are Kronecker delta functions arising 

from the spin component interactions in the uncoupled basis representation and 

V} are the radial matrix elements, (i\re\j). 

To simplify expression (B.2.15), we make use of the following identities: 

{etmtt\Y^\e3me}) 
f_1)m^l(2^ + l)(2L + l)(2£3 + l) 

L L 

0 0 0 

4-7T 

£z L £} 

-mtl M mej 

(B.2.16) 

and 
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£££(-»: J4+J5+36-m4-m,5-me 

me m$ run 

35 31 J6 

7775 —777i —7776 

31 32 33 

777,1 m2 TTli 

( 

\ 

36 32 34 

-777-2 —7774 I 
J4 J3 35 

7774 — 7 7 7 3 —7775 

3\ 32 J3 

J4 J5 J6 

) 

(B.2.17) 

Using these identities in (B 2.15), we arrive at the final expression for the inter

action matrix elements: 

(121̂ (̂ )134) = (-ly^+^+'-^y/eMe&Msn 

\ 

7^13^24 

X 

X 

RU+1 

32 £ 34 

h £2 

E<m J2 £ J4 

J 

(B 2.18) 
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B.3 Radial matrix elements via the Numerov method 

We calculate the radial matrix elements (n£J\r'T\n'£',), a > 0 using an inward-

numerical-integration scheme based on the Numerov algorithm as was done in [38]. 

In general, the radial form of the electronic Schrodinger equation is given in atomic 

units by: 

1 d ( 2 dR(r)\ ( £{£+!) 
r 2 [V(r) -E] + y ' ' R(r) = 0 , (B.3.1) 

r2 dr V dr J \ r2 

where R(r) is the radial wave function of an electron with spatial coordinate r and 

angular quantum number £. For Rydberg atoms, the potential experienced by the 

orbiting electron is essentially Coulombic, i.e. V(r) ~ — , and the total energy 
r 

E is the Rydberg energy E — — —. —r-, where 5i is the quantum defect (see 

table 2.1). By appropriately rescaling the spatial variable and the wave function 

as x = l n r and X = r1/2/?, respectively, we eliminate the first derivative from 

expression B.3.1: 

^ F = 9ix)X{x) . (B.3.2) 

Here, g(x) = 2e2x [V(x) -E] + {£+ \)\ with V(x 1N2 1 

e* 

The Numerov algorithm is a multi-step method, meaning it utilizes previous iter

ation points to gain efficiency. The iteration points are determined from Taylor 

expanding the scaled wave function about a step h above and below the current 
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point, i.e. 

h2 

X(x + h)^ X{x) + hX'(x) + —X"{x) 

+ ^X'»(x) + ^X™(x) + ... (B.3.3) 

h2 

X{x -h)^ X(x) - hX'(x) + —X"{x) 

^X'"(x) + ^X^(x)~... (B.3.4) 

These two equations are added together to obtain an expression for the second 

derivative, which we then set equal to equation B.3.2: 

s Wx(x) = M* + h) + xix-h)-2XW exi„){x) (B 3 5) 

Finally, we take the second derivative of equation B.3.2, and use the result to re

place the fourth order derivative term in equation B.3.5. After some manipulation, 

the final result is given in iterative form as: 

2Xk — Xk-\ + 2̂ (lOfl'fc Xk + gk_iXk-\) 

12 9k+l 
Xk+i = 1 _ M -2 ' (B.3.6) 

where g\ = (i + | ) + 2e2xk(—e Xk — E), with k being the counting index. 

For bound electrons, only the outer boundary condition of the respective wave 

function is well defined. Thus, we begin in the classically forbidden range r > 2(n -

where the wave function is a decaying exponential, and integrate inward until 

the solution begins to diverge (typically right around the inner turning point 

r ~ £(£ + 1)). Since the major contributions to the matrix elements occur at 

larger distances, there is little loss of accuracy in truncating the integration at the 



point of divergence. The matrix elements of ru are then given by: 

7 xkxk krk 

(n,£3\r°\n',£>f) = " ^ , (B.3.7) 

( ' 2 \ 1 / 2 

where N^ = I / J ^ rl define the normalizations for X and X' and rk is 

replaced with the scaled variable xk as defined above. 
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