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In this dissertation, I present ab initio theoretical results on cold and ultra-

cold collision of atomic and molecular systems with magnetic and electric dipole 

moments. The collisions of different isotopes of maximally spin-polarized chromium 

atoms (52Cr and 53Cr), alkali-metal atom (Rb) - chromium atom, and magnetically 

trapped hydroxide (OH) with cold supersonic helium beam are considered in this 

thesis. Spin-changing cross sections and rate constants in Cr-Cr isotopic collision in 

the presence of a magnetic field are calculated by propagating a set of multichan­

nel equations in the field. The coupling between dipole-dipole allowed and hyperfine 

channels are included. The short range electrostatic interactions between atoms and 

atom-molecule are represented with highly-accurate Born-Oppenheimer (BO) poten­

tial energy curves. Due to the large spin multiplicity in Cr-Cr and Rb-Cr interactions, 

more than the usual singlet and triplet channels are obtained. The long-range van 

der Waals (vdW) interactions between atoms are calculated, for Cr, by including 

accurate transition frequencies, discrete dipole matrix elements, and photoionization 

continuum oscillator strengths, and for Rb, using published dynamic polarizabilities. 

The vdW coefficients for Cr-Cr and Rb-Cr are obtained. In the cold collision regime, 

I investigate the influence of angular momentum shape resonances on the elastic and 

inelastic (loss channel) rate coefficients, and when the Zeeman relaxation, resulting 

in the loss of atoms from the trap, dominates elastic collision. Dipolar collisions are 

crucial to achieving quantum degeneracy. Magnetically tuned 
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Fano-Feshbach closed-channel resonances are used to obtain zero-energy scattering 

lengths in comparison with observation of trap loss. In bosonic chromium collisions, 

resonances appear due only to dipolar interaction. The interplay between hyperfine 

and dipolar resonances in mixed-species Cr-Cr and Rb-Cr collisions is studied. In 

Rb-Cr, it is found that the molecule has broken symmetry and therefore contains 

a large permanent electric dipole moment in the ground state. A recent collisional 

experiment at JILA of a supersonic helium beam with a magnetically trapped OH 

radical found the onset of a quantum threshold in the total OH loss rate. Using ab 

initio BO energy surfaces, I calculated the spin-changing collisions which removed 

OH from the trap. Only after including the effect of the trapping potential on the 

collision dynamics, some agreement with observation was found. 
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CHAPTER 1 

INTRODUCTION 

Since the creation of a first atomic Bose-Einstein condensate (BEC) [2, 3, 4], 

alkali-metal atoms (Li-Cs) have remained the favorite choice for explorations into 

the quantum nature of degenerate ultracold gases. Alkali metal atoms have one va­

lence shell electron, with easily accessible cycling transitions for cooling and trapping 

lasers. The cycling transitions in alkali-metal atoms are readily pumped with high 

efficiency. In addition, alkali-metal atoms are amenable to accurate theoretical and 

computational studies, and highly precise interatomic interactions (short- and long-

range forces) and collisional data (scattering length, spin exchange, and other trap 

loss collisional data) are available [5, 6, 7, 8, 9]. 

While long-range spin-spin dipolar interactions have been recently observed in 

rubidium [10, 11] and potassium traps, the largest contribution to the interaction 

between two alkali-metal atoms at ultracold temperatures comes from the zero-range 

physics (scattering length formalism, see Sec. 2.6), where a single parameter, the 

scattering length, controls the few- and many-body processes in ultracold samples, 

and especially quantum ultracold degenerate gases (QDG). 

Because atoms do not have permanent electric dipole moments, the dipolar long-

range interaction between two atoms is due to magnetic (spin-spin) dipole moment, as 

opposed to polar molecules, which have permanent electric dipole moments. Electric 

and magnetic dipole moments can be manipulated by external electric and magnetic 
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fields, respectively. In atoms, which are polarizable, the induced electric dipole mo­

ments lead to much shorter range van der Waals (vdW) interactions [12]. 

In alkali-metal interactions, the magnetic dipole moment is only one Bohr mag­

neton (/AB)J because there is only valence electron outside of a closed-shell core. To 

investigate long-range dipolar interactions, atoms with larger magnetic moments, such 

as Cr (6/i.fi), Eu (7/ZB) and Dy (10/ /B) have been cooled to ultra-low temperatures 

[13, 14, 15, 16, 17, 18, 19, 20]. Recently, the BEC of dysprosium has been achieved 

(Ben Lev's group at UIUC). 

Europium was the first heavy metal atom with a large magnetic moment to be used 

in a buffer gas cooling scheme [13] in Doyle's group, and the latest theoretical work on 

its scattering properties can be found in Ref [14]. The same group continued efforts 

in the direction of a buffer gas loading scheme combined with evaporative cooling 

[15, 16, 17] for chromium. This scheme failed to cool Cr atoms below 10 mK due to 

the presence of high inelastic dipolar scattering rates. Fortunately, another route that 

combined magneto-optical trapping (MOT) [18, 19] with evaporative cooling enabled 

Pfau and co-workers to circumvent that problem and obtain a chromium BEC [20]. 

Apart from occasional interest in obtaining a source of single Cr atoms [21] for 

applications in areas such as atom lithography, quantum computing, fundamental 

high-precision measurements or quantum information, the main thrust of Cr research 

in the last decade was for the manifestation of dipolar interactions and new collective 

phenomena they may lead to. The mechanical effect of the dipolar interaction was ob­

served in the BEC aspect ratio for specific trap magnetic field orientations during the 

free expansion of the condensate [22, 23]. An alternative way of detecting the dipolar 

effects in BEC, based on measuring collective excitations was offered in Ref [24]; a 

suppression of the contact interaction in BEC with respect to the dipolar interaction 

was achieved by changing the scattering length in the vicinity of a Feshbach resonance 
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[25], creating a quantum ferrofluid in a Cr BEC, and observing d-wave signature [26] 

and coherent [27] BEC collapses. 

In parallel with the experimental track, a number of theoretical investigations 

contributed to our understanding of the quantum behavior of chromium and other 

dipolar systems in general. Dipolar interactions can drive large negative scattering 

lengths leading to the collapse of the condensate [28], for the formation of vortex 

states and roton modes in a dipolar BEC [29, 30]; some of which were carried out 

with 52Cr [31, 32]. The most recent study of the dipolar interactions in Cr gas is done 

by the Gorceix group [33]. 

In this thesis, we are primarily concerned with the collisional properties of a 

cold and ultracold chromium gas, and in particular the elastic and inelastic collision 

involving long-range dipolar interactions, the role played by Feshbach resonances, the 

control and manipulation of the interaction by magnetic fields, and the collisions in 

mixed-species gases. The special role that the scattering length plays in ultracold 

physics is easily appreciated by consulting any work that uses the Gross-Pitaevskii 

equation to model BEC behavior [34]. There, the scattering length (a) enters through 

the contact interaction with a pseudo potential. Based on the sign of the scattering 

length, the BEC is stable (a > 0) or unstable (a < 0). Therefore, it is very useful 

to obtain its value or at least its sign. For chromium in particular, such efforts were 

carried out in [35, 36]. 

In ultracold atomic physics, collisions are classified as elastic (good) or inelastic 

(bad), based on the conservation of energy and internal states. The 'good' and 'bad' 

designations highlight the influence of elastic and inelastic collisions on magnetically 

trappable Zeeman states. In order for the buffer gas trapping and cooling scheme 

to work efficiently, it is essential that inelastic collision processes be minimized while 

elastic processes be sizable for thermalizing the trapped atoms. The same applies to 
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evaporative cooling, where inelastic processes remove colder atoms out of the sample. 

In general, the preferred ratio of elastic to inelastic collision rates is > 100. The main 

part of this work is dedicated to calculating interaction potentials, vdW coefficients for 

long-range interactions, and collision rates for all combinations of chromium isotopes 

(boson-boson, boson-fermion, and fermion-fermion [17, 37, 38]), and comparison with 

observation. In this work, we explore and systematically map magnetic Feshbach 

resonances [38] which were measured and assigned (based on a model potential) in 

[39]. The experimentally obtained positions and widths of Feshbach resonances helps 

to refine ab initio Born-Oppenheimer potentials. 

We also attempt to stimulate interest in chromium mixtures with alkali-metals by 

studying the Cr-Rb gas mixture. This system was first experimentally investigated 

in a two-species MOT by Pfau's group [40]. The appeal of this system lies in it 

having at same time a large magnetic moment (5JUB) while the RbCr molecule has a 

sizable electric dipole moment (2.9 D) which can provide a control handle with the 

application of either an electric or a magnetic field, or both. 

The outline of this dissertation is as follows. Chapter 2 gives a general description 

of the scattering formalism using the single-channel and multichannel approaches. 

Chapter 3 describes the numerical techniques used to solve the scattering problems. 

Chapter 4 presents the necessary details to assemble the Hamiltonian that describes 

the interaction between colliding atoms in an external field. Chapters 5, 6, and 7 

discuss Cr-Cr, Cr-Rb and He-OH collisions, respectively. Answers to the technical 

questions that arise in the application of scattering theory are given in the appendices. 

Atomic units are used throughout this dissertation. 
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CHAPTER 2 

A BRIEF INTRODUCTION TO SCATTERING THEORY 

2.1 Basic terms 

The scattering of a beam of particles on a fixed target is equivalent to the more 

general case of two colliding beams of particles. The latter is reduced to the former by 

separating the relative motion of two particles from the motion of the center of mass. 

The change from a set of vectors ( r i , r 2 ) representing the positions of two particles 

to another set of vectors (rcm,r), where 

_ miri + m2r2 
cm ~ 

mi + m 2 

is the center of mass coordinates of two atoms, and 

(2.1) 

r = r2-rl (2.2) 

connects the positions of two atoms, reduces the Schrodinger equation to 

ih^*(r,t) = HV(r,t). (2.3) 

The Hamiltonian describing the relative motion of two atoms 

H = ~V2
r + V(r,t) (2.4) 



is identical to a Hamiltonian governing the motion of a single particle, with a mass 

equal to the reduced mass 

mxm2 . , 
fi = • , (2.5) 

mi +m2 

in the presence of a potential V(r,t). The task of solving the time independent 

Schrodinger equation is reduced to solving 

(V2-U(r) + k2)Mr) = 0, (2-6) 

where E = h2k2/(2fx) is the relative collision energy, and U stands for 2fiV/h2, the 

reduced potential. At large distances from the scattering center, the wave function 

^ ( r ) = eik-r + fk(6,4>)— (2.7) 
r—»oo 

can be decomposed into an incident part and a scattered part, whose amplitude, 

given as /&(#, 0), is angle dependent. The polar angles {6,4>) are defined by the 

scatteredfront from the incoming beam. 

The relevant quantity that establishes the connection between experiment and 

theory is the differential cross section 

% = \fMM\ (2-8) 

which connects the scattered flux, IQ, (the number of scattered particles per second 

within the solid angle dfl) to the flux / of the incoming beam (the number of particles 

6 



crossing a unit area per second). The scattered flux IQ is changed by varying the flux 

of projectile particles and the solid angle in which the particles are detected (scattered) 

In = ~ - IdSl. (2.9) 
dU 

At the same time the number of scattered particles crossing an area dS at a distance 

r from the scattering center is obtained as 

Ia = \h(SA)? / » £ \ r,m {2M) 
r2 \ V J 

Here, in anticipation of inelastic scattering where the final momentum kf is not nec­

essarily equal to the initial momentum ki: we use kf instead of ki which is a more 

appropriate notation for the case of elastic scattering. The incoming flux is calculated 

as 

1=^1. (2.11) 

After substitution of (2.10) and (2.11) into (2.9) we get an expression for the differ­

ential cross section that incorporates both elastic and inelastic scattering 

The total cross section is obtained by integrating (2.8) over the solid angle 

«E) = !%**, (2-13) 

which, after thermal averaging, gives the rate of scattering 

( Rk T\ 2 1 C°° 

- R - ) TT^-2 <j(E)EeM~E/kBT)dE. (2.14) 
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Rates are converted from atomic units to [cm3/s] using 

1 a.u. for rate = — = a\ca = 6.126 • 10~9cm3/s, 
r 

(2.15) 

where the atomic unit for time is OQ/{ca) = 2.419 • 10 sec 

2.2 Partial wave analysis 

The use of the partial wave method is straightforward in a case where the po­

tential is spherically symmetric. The wave function ipk is decomposed into spherical 

harmonics 

oo m=£ 

^fc(r) = X^ 5Z Rtm(r)Ytm(f), (2.16) 
£=0 m=-l 

where f = r/r. Making use of the form of V2 in spherical coordinates [41], we obtain 

for function Re(k, r) the following differential equation 

MK)^2-^) + i ) Re(k,r) = 0. (2.17) 

Here the index m is dropped if the z axis of the coordinate system is aligned with 

the incoming k, and the dependence of the solution on the magnitude of k is made 

explicit. 

When azimuthal symmetry does not hold - such as when an external field is 

present, the differential equation reads 

1 9 fj2d\ , fc2 A* + 1) 
r2 dr V dr 

(£m\U\lm) Rem(r) = 

^2(em\U\e'm')Reiml(r), (2.18) 
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with the potential matrix defined as 

(£m\U\e'm') = ( YZJf)U{T)YVm,(t)dn*. (2.19) 

This is essentially a set of coupled equations where the potential U(r) is capable of 

changing the angular momentum of a particle. The functions R^m are called chan­

nel functions and the full description is obtained by solving the set of multichannel 

equations in (2.18). 

The radial equation can be presented in a simpler form by writing 

Re(k,r) = ^ ± , (2.20) 

which generates an equation for ui(k,r 

d2 , U2 TT,„S *(*+!) 
** + *-*<?) r 2 

ut(r) = 0. (2.21) 

When the potential U(r) in Eq. (2.21) is zero or we are in the asymptotic region 

where the potential can be neglected, the two independent solutions are the regular 

Riccati-Bessel function 

je(kr) = {kr)je(kr), (2.22) 

and the irregular Riccati-Bessel function 

ne(kr) = {kr)ne(kr), (2.23) 
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where je and ri£ are the spherical Bessel functions of the first and second kind re­

spectively, see App. A. Any solution of (2.21) is a linear combination of these two 

independent solutions, 

ue(r) = dUkr) - C2ne(kr). (2.24) 

In the case where the potential is zero everywhere (i.e. no interaction or free par­

ticle), the boundary condition at the origin which requires ue(k, r = 0) = 0 eliminates 

the irregular solution, and we are left with the regular solution only 

ui(r)=Clje(kr). (2.25) 

The asymptotic behavior (r —> oo) of the potential free solution is determined by the 

large argument, kr » 1(1 + l) /2, behavior of the Riccati-Bessel functions 

* TV IT 
ji(kr) = sin(fcr — I—), he(kr) = — cos(fcr — I—). (2.26) 

Zi Zi 

This enables us to write (2.24) as 

ue(r) = Aesm(kr-l^- + 6e), (2.27) 
r—>oo 2 

where tan(^) = C2/C1. Provided that we have either a numerical or an analytical 

solution, we can extract the phase shift and construct the scattering amplitude 

.. 00 

Kk>W = ^kT,[e2lSdk) - !] Pe^osO). (2.28) 
€=0 

The derivation of the expression for the partial wave decomposition of the scattering 

amplitude is done by forcing the solution (2.16) to satisfy the scattering form (2.7). 
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This is achieved by using the well known expansion of the plane wave in the spherical 

harmonics basis 

oo I 

^EE i^YLimUr). (2-29) 
e=o m=-e 

To take full advantage of the spherical symmetry, we set the z axis of the coordinate 

system along the k vector and use Legendre polynomials instead of the spherical 

harmonics, since m = 0. The simplified version of the plane wave expansion is 

eikz = ^ii(2e+1fj<Mpe(coso), (2.30) 

where 6 is the angle between r and the z axis. The disappearance of the angle 4> and 

the presence of Pi in the above expression is due to a particular choice of a set of 

axes, where the z axis is set along the direction of the incoming particle momentum. 

Also, the expansion of ipk, (2.16), which parallels that of a plane wave, is 

Mr) = X Y ( 2 * + l ) ^ p P , ( c o s 0 ) . (2.31) 

Since the whole angular dependence is contained in the Legendre polynomials, it is 

correct to assume the following form of the scattering amplitude 

_. oo 

m = ^ie{2e+l)BePe(cosB). (2.32) 
1=0 

When matching the solutions (2.31) to the scattering boundary condition (2.7), we 

can exploit the orthogonality of Legendre polynomials to get an equation for each £ 

ue(r)=Ukr) + Btekr. (2.33) 
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Then, we can substitute the asymptotic forms for U£ and jt so we can get an equation 

for the unknown coefficients Ac and Bo 

At sin(kr - I- + 6e) = sin(kr - 1-) + B£e
kr. (2.34) 

Considering that the exponential functions exp(ifcr) and exp(—ikr) are linearly inde­

pendent, we get two equations for the coefficients Ai and Bi 

Aee
+iSe = 1 + 2ie+1Be, Aee-i5e = 1. (2.35) 

Apart from expressing the sine function using the identity 

sin(x) = — (exp(za;) — exp(—ix)), (2.36) 

it helps to use ±i(kr — £n/2) instead of ±ikr as an argument of the exponential 

functions. It also helps to modify the term with the Bi coefficient 

Bee
kr = 2ie+1B£ • -ei{kr~lz\ (2.37) 

2i 

The second equation in (2.35) directly shows the dependence of the coefficient Ai 

on the phase shift 5g 

Ae = eiSi, (2.38) 

which after substitution in the first equation reveals the phase shift dependence of 

the second coefficient 

B, = ^ A (2.39) 
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Having obtained An and Bi we can reproduce the partial wave decomposition (2.28) 

of the scattering amplitude and establish the asymptotic form of the radial scattering 

wave function 

U((r) = e
i5ism(kr-l~ + 5e). (2.40) 

r—too 2 

The form of the expansion in (2.31) is chosen to mimic the expansion of a plane wave. 

The role of ji, the radial scattering functions for free particles, is taken over by the 

radial scattering functions U£. It can be interpreted that in the asymptotic region the 

radial function for a free particle 

je(kr) = sin(fcr-Z^) (2.41) 

acquires a complex phase factor in the presence of the potential, exp(iSe) and becomes 

shifted by the phase shift Sg. In low-temperature collisions, only a few partial waves 

participate significantly in the collision, and the partial wave sum rapidly converges 

with respect to I. 

2.3 Asymptotic forms 

Even though the radial wave function is generally complex, up to now we have 

assumed it to be real. We will insist on using a matrix terminology even though in 

the particular case of the single-channel study , only a ID-array of complex numbers 

is necessary. It is implicitly understood, that asymptotic limits (r —> oo) of the 

solutions are used. Here, we will introduce quantities Se, Tn and Kg which are the 

single-channel analogs of the corresponding quantities in the multichannel formulation 

of the scattering theory, namely the S (scattering), T (transition), and K (reaction) 

matrices. 
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The S form is used when the solution is expressed in terms of incoming and 

outgoing traveling spherical waves 

ue{r)(-2i) = e-^-'i) - e^"^) se, (2.42) 

where Sg is connected to a phase shift by the following expression 

Se = ei25e. (2.43) 

The Si numbers quantify the change of the outgoing component of the plane wave 

under the influence of the interaction. 

The T form is defined when the solution is decomposed into the sum of an 

incoming standing wave and an outgoing traveling spherical wave 

ue(r) = sin(kr - £?-) - e ^ - ' f ) ^ , (2.44) 

where T^ is related to St and given with 

Te = i(Se - 1) = - 2 e ^ sin(fc). (2.45) 

The K form is used when we want to express the solution as a sum of two 

standing waves 

ue(r)(l - iTe/2) = sin(fcr - £?-) + cos(kr - £~) Ke, (2.46) 

where Kg determines how much of the irregular component is present. The Ke num­

bers are connected to partial phase shifts through 

*, = - ? « 
1 2 '-'i .TV"1 

= tan(5£). (2.47) 
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Using (2.45), we can verify that the following relation between S and K numbers is 

true 

Ke = i(l-Se)(l + Se)-\ (2.48) 

Solving this for Sg yields the expression [42] 

5/ = 
1 + iKe 
1-iK,: 

(2.49) 

which shows how to construct complex S values from real K values. 

2.4 Normalization 

While a bound state wave function is easily normalizable, i.e. it is box normal­

ized, and hence energy independent, the normalization of an energy or momentum 

dependent scattering wave function is more involved. Below, we will give a simple 

prescription on how to normalize a continuum wave function to an energy or momen­

tum delta function. Let us consider the case of ID-scattering on a step barrier. The 

step barrier divides the space into two regions, region / where the potential is zero 

and region 77 where the potential is non-zero. 

« 
^ 

/ / 
E 

x0 
X 
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If there is a particle of mass m with kinetic energy E, coming from the left, which 

scatters on the barrier, the solution is 

ipi(x) = exp(+ikix) — Aexp(-ikix) (2.50) 

in region I, and 

ipn(x) = -Bexp(+ik2x) (2.51) 

in region II. The wave numbers are 

fci = 2mE/h2, k2 = 2m(E - V0)/h
2. (2.52) 

We can define a reflection coefficient R as the ratio of reflected and incoming flux, 

R=\A\2. (2.53) 

Similarly, a transmission coefficient T is defined as the ratio of transmitted and in­

coming flux, and in this case it is 

T = ^ | 5 | 2 . (2.54) 

The probability to find the particle in region / / within some area bounded by x\ and 

x2 is determined by 

P[xUX2] = / \ipn(x)\2dx = \B\2\x2 - Xl\, (2.55) 
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Since there is no particular reason why the normalization coefficient in front of the 

exponential expressions in the plane wave should be one, we could change it 

exp(ikix) —> —j=exp(ikix). (2.56) 

The immediate consequence of the plane wave renormahzation is that after adopting 

the change in the form of solutions 

1 1 
ipi{x) = —j= exp(zA;ia;) — A' —= exp(—ik\x) (2.57) 

\ k \ y/ki 

in region J, and 

•tpn(x) = -B'-^= exp{ik2x) (2.58) 
\fk2 

for region II, it follows that the transmission coefficient is 

t=\B'\2. (2.59) 

The coefficient B is gives the ratio of transmitted and incoming fluxes, hence the flux 

normalization terminology. At the risk of becoming redundant, in the first case, B is 

amplitude (or probability) normalized, while in the second case it is flux normalized. 

The transition to the usual scattering terminology is achieved by noting that in the 

case of barrier scattering, we can define the incoming wave as any plane wave going 

towards point XQ where the potential jumps, and outgoing waves as plane waves going 

out from point XQ. The elastic channel is represented by the solution in region I and 
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the inelastic channel is represented by the solution in region / / . Then we are ready 

to identify the first column of the amplitude normalized S matrix 

Su=A, S12 = B, (2.60) 

while the flux normalization gives 

Sn = A', Sl2 = B'. (2.61) 

All that was said above should be enough to show the motivation for the presence of 

y/k in the formulation of S matrix 

uap(r) = Sae-^==e-^r~^ - - L e * ( W i ) Sa0 (2.62) 

in the multichannel formalism, where the index a labels the entrance channel and 

index (3 labels the exit channels. 

Energy normalization. The plane wave basis, (2.29), has the following normal­

ization 

{k\k') = (27^)^S(k-k,). (2.63) 

It is usually taken that plane wave functions are normalized, up to a numerical factor 

of (27r)3, to a delta function in the wave vector space. The question of how to get from 

a plane wave normalized to a wave vector delta function (momentum normalization) 

(k\k') = S(k-k'), (2.64) 
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to a plane wave normalized to the product of an energy delta function and directional 

delta function (energy normalization) 

(E, k\E', k') = 5{E - E')S(k - k'), (2.65) 

where k = k/k, is answered with the following renormalization 

\Etk) = yJ1^\k). (2.66) 

The relation above is a specific case of the general form 

s(k - V) = ^ S ( E - E'^k - fc~')' (2-67) 

where the energy dependence is specified by 

fi2P E = -I- <2 68» 
Radial function energy normalization The question that arises is what should 

the normalization of the radial scattering functions ut be. It is desirable that the 

energy normalized radial scattering functions become free-particle energy normalized 

solutions in the absence of the interaction. The plane wave expansion (2.29) rewritten 

as 

c * - = 4TT £ £ ilyL{k) (^YUr)) (2-69) 
£=0 m=-£ \ J 

shows that we can construct the free-particle solutions with well defined angular 

momentum and its projection 

<f>kim(r) = Jj^-Yem(r), (2.70) 
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where jt are Riccati-Bessel functions defined in (2.22). The normalization of the 

4>kim(r) functions is 

f°° TX 
/ <f>hm(r)<l>k'i'm'(r) dr = ^^(k - k')6U'Smm' • (2-71) 

The transformation coefficients between plane wave functions exp(ik-r) and functions 

4>k'i'm'(r) are 

2?r2 

(k'l'm'\k) = —i%m,(k)5(k - k'). (2.72) 

The connection between the energy normalized and momentum normalized free-

particle functions with a well defined angular momentum is 

\Elm) = \j^-\klm). (2.73) 

The expansion of the scattering solution that parallels the expansion of the plane 

wave (2.69) is 

oo t 

Mr) = 4* £ £ ^(*) (^j^YeUr)) , (2.74) 
e=o m=-e ^ ' 

where, in the asymptotic limit r —>• oo, we have 

TV 

Ukim(r) = sin(kr ~ h + Se). (2.75) 

Now, we want to concentrate on the radial coordinate only. From (2.71) we can see 

that radial functions Ukim{r)/k have the following normalization 

f ^ 2 ^ * = £'<*-*>• (2-76) 
20 



which lets us define new radial functions Vkim{r) = y/2/ir Ukim(r) with the asymptotic 

behavior 

/

2 7T 

-sm(kr-l- + 5i), (2.77) 
7T Z 

and momentum normalization 

/•oo 

/ vtlm(r)vklm(r)dr = 5(k-k>). (2.78) 

The next step is to see what other factors we need to obtain an energy normalized 

radial function. Since we have chosen (r\klm) = ug(r)/kr and radial functions Vkim 

have already absorbed a factor y2/7r, then the energy normalized radial functions 

are given with 

TXX 

VElm(r) = \l^r vkim(r). (2.79) 

Their asymptotic behavior is 

2?T7 7T 

vEim(r) = \l^^-sm(kr-l-+5e), (2.80) 
r-xx> v irn^k 2 

and the normalization satisfies 

/•oo 

/ uEim(r)uB,em{r)dr = 8(E - E'), (2.81) 

as expected. Once more for reasons of clarity, we give the connection of energy 

normalized radial functions to ,u/c/m(r) functions 

2 Tfi ' 
VE£m(r) = \l-T2ZUkim{r). (2.82) 
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The main points to ponder: the functions \klm) are not normalized, the radial 

functions Ufc;m(r) do not absorb the l/k factor, and the radial measure in the integra­

tion is r2dr in one case while in the other it is dr. Most of the time in scattering the 

only part of the normalization that is important is the square root of the l/k factor. 

2.5 Coupled channel formalism 

The method of partial wave analysis applied to the case of a spherically symmetric 

potential yields partial phase shifts, which can then be used to construct the total 

cross section. The Schrodinger equation for the total wave function is replaced by a set 

of radial equations; one for each partial wave. Due to the rotational invariance of the 

interaction, there are no potential terms coupling different radial equations, so they 

can be treated separately. As hinted in Sec. 2.2, if we do not have spherical symmetry, 

we need a set of coupled equations. That is the price of reducing multidimensional 

integration of the Schrodinger equation to one-dimensional integration. The subject 

is further complicated by the introduction of other degrees of freedom, such as spin. 

Depending on the choice of the states for the channels, the problem can be simplified 

if only a limited number of channels are coupled. 

In this work the Hamiltonian describing the physics of scattering atoms can be 

presented in the following general form 

H = H°(x) + V(x, s) + Hint(s). (2.83) 

The variable x represents some particular degree of freedom we are interested in and 

the variable s represents all remaining degrees of freedom. We assume that we are 

able to find the eigenstates of Hint, either analytically or numerically. In the time 

independent Schrodinger equation 
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HV(x,s) = EV(x,s), (2.84) 

we use the eigenstate functions ipn(,s) of the Hamiltonian Hlnt to expand the solution, 

^(x,s)=J2F^x)^(s). (2.85) 
n 

The underlying assumption is that the set {V'n} forms a complete basis in the space 

of functions that depend on the variable s. This set can then be used to account 

for the s dependence of the total wave function. The dependence on the variable 

x is transferred to the wave functions Fn(x) which are usually referred to as the 

channel wave functions. The wave functions ipn or quantum numbers that define the 

eigenstates of Hint are referred to as channels as well. 

Substituting (2.85) into (2.84) and performing the integration over the variable s 

gives 

{Hi + Vu + EX-E) Ft(x) = -J2 Vn'FAx), (2.86) 

a set of equations where each channel wave function is connected to other channel 

wave functions through a set of numbers 

Vxx,{x) = j ' ds4>:(s)V(x,s)Ms) (2-87) 

representing the coupling matrix V. 

The partitioning of the total Hamiltonian is useful only if there is a small number of 

channels connected through the coupling V(x, s), otherwise it is just a failed attempt 

to avoid multidimensional integration. Two typical scenarios exist when couplings 
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are small compared to the diagonal part of the Hamiltonian i7° + Vn or when, owing 

to the presence of a symmetry, only a small number of channels are coupled. 

The connection of this formalism to our work is established by identifying the 

magnetic dipolar interaction as the term that couples spatial (x) and spin (s) coor­

dinates. The atomic hyperfine interaction (Hint) provides the channel states ipi(s). 

The channel wave expansion (using angular separation) is given as 

^ = J^^lYem(r)A(s), (2.88) 

where tpt(s) are the eigenstates of the atomic hyperfine interaction. Then, (2.86) 

assumes the following form 

(~^ + Vn{r) + Et-E\^(r) = -Y,VtAr)Mr)- (2-89) 

Energetically open channels are defined with respect to the scattering energy (E) as 

El > E, and energetically closed channels as E% < E. This classification is justified 

only if the coupling potential terms vanish for large r, so it is assumed that the 

asymptotic limits of diagonal terms are incorporated into the channel energies Ex. 

The 'internal' energies serve as thresholds which determine whether the motion in 

a particular channel is free or restricted. Namely, if E > Et, then the motion in 

that channel is free and we call the channel i open, while when E < Ez, the motion 

is bounded and we call the channel closed. There are two extreme limits that are 

associated with a single-channel situation. The first one is when the total energy E 

is below the lowest channel energy, which means that the motion in all channels is 

bounded and this limit represents a truly bound coupled state. The second situation 

is where the total energy is above the lowest channel energy, which means that the 

motion in at least one channel is free. Since, in this case, we can always find a solution 
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for the lowest channel independently of the other channels (unless closed channels do 

not support the bound state), we conclude that E belongs to the continuous part of 

the energy spectrum. 

2.5.1 Multichannel scattering matrices 

The multichannel scattering wave function 

tt(H,r) = J ]F Q ( i ^ a ( r ) (2.90) 
a 

has to satisfy the scattering boundary condition 

k R 

V(R,r) = e * / . - * ^ ( r ) + y ; / ^ ( f e , A ) ^ - V « ( r ) , (2-91) 
a 

where R = R/R. The first term describes a plane wave in the entrance channel /3, 

while the second term describes the scattered wave decomposed into outgoing waves 

in the channels a (including the elastic scattering channel /3). The fap(k,R) are 

generalizations of single-channel scattering amplitudes, faa being the elastic and fap 

the inelastic scattering amplitudes. The asymptotic wave numbers are 

kl = ^ + ~(E,-Ea), (2.92) 

where Ea are channel energies. 

The differential cross section 

d U a ^ R ) = hu{kR)\2 (2-93) 
a i i £ r->-oo ftp 

25 



is integrated over the direction of the scattered atoms to give partial cross sections 

k 
o*p(k) = ^J \fap(k,R)\2dnk . (2.94) 

These cross sections are further integrated over the direction of the incident atoms 

and divided by the full space angle (An) to obtain the cross sections averaged over 

the incident direction 

oafi = j - I vap(k) dnk . (2.95) 

To avoid integration over variables Rx,Ry, and Rz, the partial wave decomposi­

tion 

Fa(R) = J2 Fa£am/R)Yeama(R) (2-96) 

is used to introduce amplitudes FaiaTna(R). Though the states ipa(r)Yiama(R) are not 

physically accessible, they are still referred to as channel states and the amplitudes 

Facama(R) as channel wave functions. The decomposition (2.96) generally enables 

us to set up a system of coupled equations for the amplitudes Fa£ama(R). Formally, 

it is an infinite system of equations with no practical value unless the number of 

equations can be reduced. In the ultracold regime, only a small number of partial 

waves are included, with the actual number depending on the collision energy. Given 

the number of channels (na) and the maximum value of angular momentum (£max), 

we have N = na(t\max + l)2 coupled equations. Since we are dealing with a system 

of N coupled equations of the second order, there are 2N solutions on which we the 

impose boundary conditions 

Faeama, /3£pmp(R) _= 0 , (2.97) 
it—Y\) 
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and 

(2.98) 

where the index fiipmp determines the ingoing spherical wave (amplitudes divided by 

R enter the full solution) in the 'channel' a£ama. The numbers Saeama, ptpmB form 

the S'-matrix. The purpose of the square root in the denominator is to normalize the 

S'-matrix according to 

1 = 2_^ \Sa£ama, $lpmp\ • ( 2 . 9 9 ) 
a£ama 

The so-called flux normalization ensures that the ingoing flux in the 'channel' Pipmp 

is distributed to all 'channels' a£ama. The channel wave functions that satisfy the 

boundary condition (2.91) are 

Fap(R) = J?J= J2 E ih+lF^rna,0e,m0(R)Y;0m0(k)Y£ama(R) . (2.100) 

The particulars of this decomposition are evident after the following asymptotic forms, 

P CR~\ — o ' ^ r a ^ ) r c c , —la
 e " rp 

ra£ama, pipmpy-tl) — ^ /y— °afl0lalp
0mamp ~r * ^— J- a£ama, 0Cpmp 5 

(2.101) 

are substituted into Fap(R). The T-matrix elements are connected to S-matrix ele­

ments through 

•L a£ama, fitprap = ^aj3^lalp^mamp ^a(.arna, filpmp • yZ.lUZ) 
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The asymptotic channel wave functions are 

ptKfxix 

Fap{R) = 5a0e
ik°R + fafj(k, R)-— , (2.103) 

R—>oo it 

where the scattering amplitudes for the transition /5 —>• a 

Mk,R) = - ^ = ] £ E ^~la+lTatarna,^m,Y;^(k)Yeama(R) (2.104) 
V WP eama egmg 

are expressed using the T-matrix. 

Although ka and kp appear to depend on channel indices, in practice they do not: 

kp and ka are the direction of the incoming and scattered particles, where the latter 

is fixed by the direction of observation R/R. 

We proceed with the integration of the differential cross section using the orthog­

onality of spherical polynomials to obtain the incident direction-dependent integral 

cross sections 

Air2 

Oap{k) = ^ X 1 E E ^~^^m^(fc)^*m^(^)Ta£amQ,^m /3r*£Qmai^m^ . 
P eama tprnp l'^m'0 

(2.105) 

The integral cross section for the scattering of two atoms into channel a from the 

incident channel (5 is obtained by averaging over the direction of the incoming atom 

UaP = 47T / a a ^ ^ = p E E \T<*«ma, Plump? • (2.106) 
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2.5.2 S matrix computation 

A real log-derivative matrix is the basic matrix from which we calculate a real K 

matrix, see App. A, which is connected to a complex S matrix by 

s- £§ • (2-107> 
The imaginary and real parts of the S matrix are obtained from 

(1 + K2)Si = 2K, and SR^I-KSJ. (2.108) 

Si is obtained either by using the inverse of the 1 4- K2 matrix 

SI = {1 + K2)-\2K), (2.109) 

or by applying the linear equation system solver to (2.108). For SR, we use (2.108). 

When possible, the linear equation system solvers should be used instead of an explicit 

matrix inversion. 

Along the same lines, when evaluating the K matrix which in the log-derivative 

method has the form 

K = BA~\ (2.110) 

we should apply the linear equation system solver to 

ATK = BT. (2.111) 

29 



If some K matrix elements are large, i.e. the condition number is large, we 

use the K~l matrix obtained from 

BTK~l = AT . (2.112) 

For this case, (2.108) is replaced by 

SI = K-\l-SR) and (1 + ( J T ^ X l - SR) = 2 . (2.113) 

In general, the inversion of a complex matrix 

C = A + iB = A{l + iA~1B). (2.114) 

can be reduced to inversion of real matrices only. By inserting 

l = {l-iA-1B)-\l-iA-1B) (2.115) 

into 

C-l = (l + iA-1B)-1-l-A-1, (2.116) 

we obtain the desired form 

C- 1 = (1 + ( A - 1 ^ ) 2 ) - ^ ! - iA-lB)A~l. (2.117) 
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2.6 Scattering length 

The role of the scattering length in low-energy collisions studies cannot be overem­

phasized. The basic fact is that at very low energies the elastic cross section can be 

expressed using the scattering length only, 

a = 47ra2 (2.118) 

One could calculate the scattering length directly from the dependence of the s-wave 

(£ = 0) phase shift on the asymptotic momentum k, as per 

lim k cot 5(k) = — 
fc->o a 

This approach is good for an initial estimate of the scattering length. Rather than 

give an extensive list of the ever-increasing number of methods to obtain an accurate 

value for the scattering length, we prefer to outline a simple method of computing it 

(Ionel Simbotin, p.c). 

The basic problem in computing the scattering length is that most methods used 

to obtain the scattering length by direct solving of the Schrodinger equation are 

not optimized for the case of zero energy. The closer to zero energy we are, the 

further out we have to integrate. This places a burden on computational time and 

precision so we must stop the integration at some finite distance and try to recover 

from the truncation error by changing the integration variable, which should compact 

the region from the cutoff point to infinity. However, for any energy different than 

zero, we cannot avoid the oscillatory character of the solution by merely changing 

the integration variable. After the change of variable, the solution in the asymptotic 

region still contains an infinite number of oscillations that cannot be covered with a 

finite number of integration steps in a satisfactory manner. 
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The situation changes qualitatively when we set the scattering energy to zero. The 

oscillations in the asymptotic region disappear and the wave function approaches a 

straight line; 

u(r) ~ (r — a) . (2.120) 

By changing the integration variable r —>• x = —rm/r in the radial Schrodinger 

equation, we can map the infinite interval [rm,oo] of r onto the finite interval [-1, 

0] of x and since this transformation does not introduce oscillatory behavior, the 

solution can be recovered using a finite number of steps. When the energy is zero 

(k = 0), the Schrodinger equation for u(r), 

du(r) 2mTr/ , . . 
(2.121) 

becomes, after the change of variable, 

du(x) 2 du(x) 2m 
dx2 x dx h2 

r2
mV(x) 

x^ 
u(x) = 0. (2.122) 

This equation is further reduced to 

d<p(x) 2m 
dx2 h2 

r2
mV(x) 

x* 
(f)(x) = 0 (2.123) 

for the function 4>(x) = xu(x). The asymptotic form of the function <p(x) when 

x —> 0 (r —> oo) is 

4>{x) ~ rm + ax. (2.124) 
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The situation changes qualitatively when we set the scattering energy to zero. The 

oscillations in the asymptotic region disappear and the wave function approaches a 

straight line; 

u(r) ~ (r — a) (2.120) 

By changing the integration variable r —>• x = —rm/r in the radial Schrodinger 

equation, we can map the infinite interval [rm,oo] of r onto the finite interval [-1, 

0] of x and since this transformation does not introduce oscillatory behavior, the 

solution can be recovered using a finite number of steps. When the energy is zero 

(k = 0), the Schrodinger equation for u(r), 

du{r) 2m 
dr2 h2 V(r)u(r) = 0, (2.121) 

becomes, after the change of variable, 

du(x) 2 du(x) 2m 
dx2 x dx h2 

r2
mV(x) 

2T 
u(x) = 0. (2.122) 

This equation is further reduced to 

d<p(x) 2m 
dx2 h2 

r2
mV(x) 

x* 
4>(x) = o (2.123) 

for the function <j)(x) = xu(x). The asymptotic form of the function <fi(x) when 

x -> 0 (r —> oo) is 

00*0 ~ rm + ax. 
x—>0 

(2.124) 
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From this, it follows that the scattering length is 

(2.125) 
x=0 

The calculation of the scattering length using the log-derivative method consists 

of two steps. In the first step, we propagate the solution u(r) (left side of Fig. 2.1) 

using the potential V(r) to the distance rm and extract the log-derivative of the 

0 50 100 150 200 250 300 -1 -0.8 -0.6 -0.4 -0.2 0 

J i I i I i I i I I I i I i I i I i I i I 
6 8 10 12 14 -1 -0.8 -0.6 -0.4 -0.2 0 

r(a.u.) x(a.u.) 

Figure 2.1: Scattering radial functions u(r) and </>(x) = xu(x), where x = —rm/r. 
Left panes a and b show radial functions integrated up to rm = 300 and rm = 15 
respectively. The rest of the real axis is covered with 4>(x) (solution of (2.123)) in 
panes a' and b\ Pane a' shows a monotonic function that may be obtained with 
any constant step propagator using a very small number of integration steps. Pane 
V shows that we can perform the change of the variable also inside the oscillatory 
region. 

function u(r) at rm. Then we construct the value of the log-derivative for cj)(x) at 

x = - 1 (r = rm), 

a = TV 
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- 1, (2.126) 

which we use to initiate the second step where we propagate the solution <f>(x) (right 

side of Fig. 2.1) from x = — 1 to x — 0 using r^nV(x)/x4: as the driving potential. 

The integration yields the log-derivative of 4>{x) at x = 0, which is used in (2.125) to 

extract the scattering length. 

The limitations of the method are inferred by analyzing (2.123). If we use the 

inverse power law potentials ~ l/rn, the driving potential in (2.123) becomes ~ xn~4. 

For n > 4 the Schrodinger equation (2.123) describes a free particle when x —> 0. To 

extract the scattering length, (2.125) must support two independent solutions with 

the following x = 0 asymptotic behavior 

f(x) ->• 1 and g(x) -> x, (2.127) 

which is clearly the case for n > 4. In the case of n = 4, the potential does not go 

to zero when x —» 0, instead it converges to a constant. The independent solutions 

sinh(ax)/a and cosh(aa;) converge to functions x and 1 in the asymptotic region. The 

constant a depends on the asymptotic limit of the driving potential. Table 2.1 shows 

the effect of the integration cutoff. We use a Lennard-Jones type (C.28) potential 

with the following parameters: Vo = 20, r0 = 10, n = 4 and 2 • m = 1. A variable 

step Runge-Kutta method is used to integrate a radial Schrodinger equation. The 

left-hand side of the table shows very slow convergence, since even at 100 000 we are 

not able to obtain the exact value for the scattering length. The right-hand side of the 

table shows that it is possible to recover 10-12 digits of the exact value by changing 

the integration variable at r = rm. 
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Table 2.1: The effect of truncation (n — 4 potential. 

truncation no truncation r —> x 

1000 260.058 exacta 99.475231045911784 
10000 119.251 300b 99.475231045938131 

100000 101.473 15c 99.475231046737434 
aa see Sec. C.3 
6 see Fig. 2.1, panes: a and a' 
c see Fig. 2.1, panes: b and b' 

2.6.1 Scattering length: multichannel case 

The workhorse expression for the calculation of the scattering length in the mul­

tichannel formalism is the low-energy limit of the S matrix 

S = exp(-z2A:a), (2.128) 
fc->-0 

where k is the open channel asymptotic wave number, and a, the scattering length, is 

by definition complex in order to describe inelastic collision. The linear approximation 

of the S matrix element 

ex.p(-i2ka) ~ 1 - i2ka, (2.129) 

valid for ka —> 0, gives for the real and imaginary parts of the scattering length 

aR = - ~ and a7 = R . (2.130) 

Quadratic approximation is obtained using 

1 1 + x 
tanh_1(x) = - l n ( - ) and tanh(z:c) = itan(x), (2.131) 

2 1 — x 
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to get 

tan-1(x) = ~ l n ( ^ ) , (2.132) 
Li I — x 

where we set x — —ka, and keep x small enough to apply 

1 + x 

1-x 
exp(2x) = S. • (2.133) 

The final expression for the scattering length 

a = - i t a n ( i l n ( 5 ) ) , (2.134) 

is more suitable for higher values of k than (2.129), which tends to break down. 
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CHAPTER 3 

NUMERICAL TECHNIQUES 

3.1 Propagators 

Two widely used numerical techniques for solving the time-independent Schrodinger 

equation, 

d ^ + 2^(E-V(r)Wr) = 0, (3.1) 

are Johnson's log-derivative method [43] and the Numerov method [44] with its renor-

malized variant [45]. Both methods have a per step size (h) error of the order ~ (h)6, 

and are very simple to implement irrespective of whether a single or multichannel 

problem is being solved. Since both methods were used in this work, I will describe 

them here. 

Before going any further, it is important to specify the notation used in this 

chapter. As it is customary, an equidistant radial grid with step h is assumed where 

any quantity, X, evaluated at grid point rn is represented by Xn. Following the 

notation in [45], we also define 

1m 
Qn = Q(rn) = 1p{E-V(rn)). (3.2) 

3.1.1 Log-derivative method 

Since B. R. Johnson published the log-derivative method [43], a number of its 

variants have appeared, most notably the one described in [46]. This propagator 
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owes its popularity to two features: the ability to pass through intervals contain­

ing a singularity, and simplicity. The log-derivative method's apparent simplicity 

should not be confused with the ease of its derivation. Unfortunately the original log-

derivative method, which involves invariant embedding applied to the integral form 

of the Schrodinger equation, was never published. The numerical values of alternat­

ing weight factors in the method are a signature of Simpson's numerical integration. 

At the same time, the factor of 1/6 next to the potential term stems from the cor­

rection factor for the discontinuity of the free Green's function at the middle of the 

integration segment. 

Johnson's method. Using a two-point recursive scheme, with the requirement 

that the range of integration [r0,rjv] be split into an even number, N, of intervals of 

length h, 

yn = (1 + %,_i) - 1 y n _i - (h/3)wnun, (3.3) 

one is able to obtain the logarithmic derivative of the wave function at the end of the 

integration range r^ 

VN = V'(rN)/y(rN). (3.4) 

The index n runs from 0 to JV for the end points of the integration range [ro,r/v]. 

The quantity un is computed as 

n = 0,2,4,...,JV, 
2 x - i (3-5) 

1 + y Q n ) Qn n = l , 3 , 5 , . . . , 7 V - l , 
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while the weights wn are given by 

% = 

1 

4 

2 

n = 0, N, 

n = 1,3, 5,. 

n = 2,4,6,. 

. , 7 V - 1 , 

.,N-2. 

(3.6) 

The prescribed rule for the initialization of the propagation in the case of finite Q(r0) 

when ^'(r0) 7̂  0 , 

0 0 if ^0 = 0, 
yo (3.7) 

suggests that the connection between what is propagated and the true value of the 

log-derivative is 

\&' h 
yn = ^ - -Qn, (3.8) 

for even n, while for odd n, it has the role of a temporary variable whose only purpose 

is to connect log-derivative values at the end of a two step segment. The weight 

UN = 1 for the final integration step suggests that (3.8) is already incorporated to 

produce the correct value for the log-derivative of a wave function at the end of the 

integration. 

A variation to Johnson's propagation scheme [47], is used in this section. By 

introducing a new variable zn = hyn, and through a repeated use of the identity 

i-(i + x)-1 = (i + x)-1x, (3.9) 
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where X could be a number or a matrix, the log-derivative method can be expressed 

in terms of zn = 1 + zn 

- 6 + ( Q + -r^Qn J - z~\ for odd n, 
-zn=\ V8 48 ; ( 3 1 0 ) 

2 - -h2Qn - z~^t, for even n. 

One should not forget to correct the factor 2/3 in front of h2Qn when the last step is 

done. It should be changed to 1/3 in order to extract the value of the log-derivative 

from ZN at the last integration point. 

The comparative advantage of (3.10) over (3.3) becomes substantial in the coupled 

channel calculations where numbers become matrices. The original formulation has 

one unnecessary multiplication, owing to the term 

(l + fcS/n-irV-l, (3-11) 

which is avoided by the application of (3.9). The same applies to odd numbered un in 

(3.5). Together with the use of the linear algebra algorithms for symmetric matrices, 

an order of magnitude speedup can be achieved with this method. 

A simple derivation of the log-derivative method is presented in [48]. Let us 

consider any segment made of two intervals, 

^o,?/o h h V>2,2/2 

0 1 2 

where index 0 serves as a label for all the quantities on the left side and index 2 

denotes all the quantities on the right side, while index 1 specifies the midpoint. The 
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two main results of [48] are an equation that connects the log-derivatives of a wave 

function 

h2 \~l f h2 \~l ( h2 \ - 1 

l-hy2- -Q2\ +h+ hy0 - -Q0\ = 8 ( l + —Qx ) - 6, 

(3.12) 

and an accompanying equation that connects the wave functions at segment ends. 

i>i U - hy2 - ~Q2\ =i>Q(l + hy0 - ~Q^\ . (3.13) 

In the equations above, the function values at the midpoint (n = 1 ) and its log-

derivatives are absent. Only the value of the potential interaction at the midpoint is 

present. 

To show that (3.10) follows from (3.12), let us first define ~z with 

z = l + hy-jQ, (3.14) 

and express (3.12) in terms of z at segment ends: 

2h2 „ \ V 1 , / h2 ^ 
2 - — Q2J-z2) +z- 1 = 8 f l + - Q 1 ) - 6 . (3.15) 

From this equation, we get the value of z at the right segment end 

*2 = (2 - ^ Q 2 ) - (s ( l + ~Qx) ' - 6 - zA . (3.16) 

For the sake of convenience, we use the symbol ~z,\ to designate 

sU + jQi) - 6 - Z o 1 . (3.17) 
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The values of ~z at the segment end points can be used to extract the log-derivative, 

while the midpoint values of ~z cannot. 

Forward integration. The z0 —> ~Z\ —> z2 sequence is executed first by calculat­

ing the initial value of ~z according to 

z0 = l + hy0-jQ0, (3-18) 

where y0 is the initial value of the wave function log-derivative. Next, we move one 

step to the right and evaluate z at the midpoint 

^ = - 6 + 1 ^ + ^ ) -Ho1- (3-19) 

Last, we use the value of z at the midpoint to obtain the value of z at the right end 

of the segment 

Z2= U-^Q^j ~z-x
l. (3.20) 

At this point, either we extract the value of the log-derivative at the right segment 

end, y2, by solving 

^2 = l + % 2 - y Q 2 , (3.21) 

or we continue propagating z as many segments as needed before extracting the log-

derivative of the wave function. 

42 



The function value at the right end of the segment, ip2, is connected to the function 

value at the left end of the segment, ipQ, through 

ipo = z^z^tpi- (3-22) 

The above equation stresses the fact that in practice we propagate the log-derivatives 

from left to right, and the wave function is propagated from right to left after setting 

an initial value for the wave function at the right end of an integration range. 

2.5 

2 

1.5 

1 

0.5 

0 

-0.5 

- 4 - 2 0 2 4 
Displacement (a.u.) 

Figure 3.1: Black line: ipn=3(x) eigenfunction of a Harmonic oscillator; Red line: 
z(x) = 1 + hip'(x)/ip(x) - h2Q(x)/3. 

A typical example of z and a wave function, calculated for an arbitrary small 

step, is presented in Fig. 3.1. The value of z generally stays around 1 and changes 

significantly only around the zeroes of the wave function. 
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Backward integration. The z2 —> z\ —> zo sequence follows from the forward 

integration scheme, where indices 0 and 2 swap positions and the sign of the integra­

tion step changes, h —>• —h. The step sign change is reflected in the equation 

z = l-hy-jQ. (3.23) 

The segment description does not change: n = 0 represents the left end of the segment 

and n = 2 represents the right end of the segment. 

First, the initial value at the right end of the segment is calculated using 

Z2 = l-hy2- jQ2, (3.24) 

where y2 is the initial value of the wave function's log-derivative. Next, we move one 

step to the left and evaluate ~z at the midpoint 

^i = - 6 + ( j + - Q i J -z-2\ (3.25) 

Last, we use the value of z at the midpoint to obtain the value of z at the left end of 

the segment 

zQ= ( 2 - — Qoj-^r1- (3-26) 

At this point we either extract the value of the log-derivative at the left segment end, 

2/o, by solving 

h2 

z0 = l-hy0- -jQo, (3-27) 

or continue propagating z as many segments as needed before extracting the log-

derivative of the wave function. 
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The function value at the left end of the segment, ipo, is connected to the function 

value at the right end of the segment, ip2, through 

^2 = z^zj Vo (3-28) 

The W K B approximate solution can be used to initiate the integration in the 

classically forbidden region. The radial Schrodinger equation expressed in terms of 

the log-derivative of the wave function, 

y'(r) + y(rf + Q(r) = 0, (3.29) 

then the WKB approximation amounts to neglecting the derivative term and solving 

the simple algebraic equation 

y(r)2 + Q(r) = 0. (3.30) 

For the case of forward propagation, from left to right, we set the log-derivative initial 

value using 

Vo = +V\Q(r0)\, (3.31) 

while for backward propagation, from right to left, we use 

VN =-y/\Q(rN)\- (3-32) 

Fig. 3.2 demonstrates the relevant points. Here, E < 0, and we want a bounded 

solutions. In the classically forbidden region to the left of the inner turning point, 
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Figure 3.2: WKB boundary conditions. 

the solution should decrease, hence y > 0. In the classically forbidden region to the 

right of the outside turning point, the solution should also decrease, hence y < 0. 

If the potential were described by a potential well, then the proper solutions in the 

forbidden region would behave as exp(±K r), where the plus sign corresponds to a 

positive log-derivative and the minus sign to a negative log-derivative. 

3.1.2 Renormalized Numerov method 

The basis for the renormalized Numerov method [45] is the recurrence expression 

(1 - Tn+1)Vn+1 - (2 + 10Tn)^n + (1 - Tn_i)*n_x = 0, (3.33) 

which connects the solutions at three consecutive points on the integration grid, where 

— 1 0 
(3.34) 
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If we first renormalize the wave function 

Fn = (1 - Tn)Vn (3.35) 

and define the ratio of the renormalized wave functions at two consecutive integration 

points, in matrix form for the multichannel case, 

Rn = Fn+1F~l (3.36) 

upon division by Fn, Eq. (3.33) gives the renormalized Numerov method iteration 

scheme 

Rn = Un — R~_1, (3.37) 

where 

Un = (l-Tn)-
1(2 + 10Tn). (3.38) 

By rewriting Un as 

Un = 12(1 - Tn)~
l - 10, (3.39) 

the renormalized Numerov method becomes adapted for the application of linear 

algebra routines which are optimized for symmetric matrices. The standard boundary 

condition, \&(0) = 0, is realized by setting \I/(r0) = 0 for the first grid point, and 

^(ri) 7̂  0 for the second grid point. This in turn fixes the the initial value for the 

renormalized method 

i?o 1 = 0. (3.40) 
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3.2 Matching solutions 

In the asymptotic region, r > rN, where the interaction potentials , except the 

centrifugal term, should asymptotically vanish, the numerical solution ^(r ) can be 

expanded in terms of asymptotic functions 

*(r) = J(r)X-N(r)Y, (3.41) 

where X and Y are expansion matrices, and J(r) and N(r) are diagonal matrices, 

T, , . Joo{r) 0 X 

J(r) 
0 Jcc{r)j 

ATf ^ . N00(r) 0 
N(r) = 

\ 

0 JV, 

(3.42) 
rcc(r)J 

constructed from the energy normalized, up to a factor 2m/hir, Riccati-Bessel func­

tions. It should be noted that the Riccati-Bessel functions are the potential-free 

solutions, and similar solutions exist for — l/r a-type potentials, such as a = 4 (polar­

ization) and a = 6 (van der Waals) potentials. The general case is assumed, where 

open and closed channels are included and sorted by energy, from open (o) to closed 

(c) channels. The grouping of open and closed channels introduces a block structure 

in any matrix, M, that is represented in this basis, 

. M00 M0<y 
M = 

Mco Mcc 

(3.43) 

/ 

Multiplying (3.41) from the right by X 1 gives the scattering form of the wave func­

tion 

^(r)X"1 = J(r)-N(r)K, (3.44) 
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where K = YX~l is the augmented scattering matrix. The open-open block Ko0 in 

the augmented K matrix contains the normal scattering K matrix. Before going into 

the details of finding the K matrix with the log-derivative or renormalized Numerov 

method, it is prudent to define the matching functions for open and closed channels. 

Open channels. The matrix elements Jn{r) and Nu(r) are constructed using 

J(r) = {kr)j£kr) and N(r) = W " < W (3.45) 

where k is the asymptotic channel wave number and ji(kr) and ni{kr) are the spherical 

Bessel functions of the first and second kind. The open channel matrix elements Nzl(r) 

are constructed using 

^^-Tr 0 8 ^-? ' - <3-47) 

Closed channels. The matrix elements Jn{r) and Nn(r) are constructed using 

J{r) = y/KrIe+1/2(Kr) and N(r) = T/KrKe+1/2(K,r), (3.48) 

where K = \k\ is the absolute value of the asymptotic channel wave number and 

h+1/2(Kr) a n d Ki+1/2(Kr) are the modified Bessel functions of the first and second 

kind. The corresponding asymptotic forms are 

J ( r ) ~^i ^~( e xP(K r)) ~ (~ 1 ) £ e x P( - K r ) ) , 
Kr>l Zn 

N(r) —> ?exp(-/cr) . (3.49) 

A quick inspection of the matching functions for closed channels (3.49) shows 

that for large values of nr we might run into computational problems owing to the 
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presence of exponential functions. The fact that we need only an open-open block of 

the augmented K matrix gives a certain freedom in the choice of matching functions. 

As long as we leave K00 unchanged, we are free to redefine the matching functions. 

Instead of J(r) and N(r), a new set or redefined Bessel functions 

J(r) = J{r)A, N(r) = N{r)B, (3.50) 

where A and B are constant matrices, can be used. The change of expansion matrices 

in (3.41) 

X -> A~lX, Y -> B~XY, (3.51) 

causes the change in the augmented K matrix; a new augmented K matrix is related 

to the old one through 

K = B~XKA. (3.52) 

3.2.1 K matrix: log-derivative method 

In the log-derivative method, we get the log derivative of the wave function at the 

end of the grid, so we need to use the first derivative of (3.44), 

^'(r)X-1 = J\r) - N'(r)K, (3.53) 

in order to find the log derivative of the solution 

y = ^ ' ( r ) ^ ( r ) " 1 (3.54) 
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at the final point rjv, 

VN = (J'(rN) - N'(rN)K)(J(rN) - i V ^ X ) " 1 . (3.55) 

This can be in turn solved for the augmented K matrix, 

K = (yNN(rN) - N'(rN))-\yNJ(rN) - J'(rN)). (3.56) 

The augmented K matrix contains an open-open block, namely K00, which is used to 

construct the S matrix. Since closed-channel Bessel functions contain exponentially 

growing functions, large values of the product KT might cause an overflow. This 

problem can be alleviated by using the ratio of the derivative of the Bessel function 

to the function itself at the matching point r^. 

The short prescription for a change of J(r) functions in the closed-channel 

space is [43] 

Jcc{rN) -> / , andfcc(rN) -> J'JrN) Jcc(rN)-\ (3.57) 

and likewise the N(r) functions in the closed-channel space change according to 

Ncc{rN) -> / , and N'cc(rN) ->• N^^N^N)-1. (3.58) 

The open channel space functions J(r) and N(r) are left unchanged. A direct way 

to see why this prescription works is to assume the exp(±«r) behavior in the closed 

channels and to evaluate the needed terms 

J'cc{rN)Jcc{rN)-1 = +«, (3.59) 

KJ<rv)Ncc{rNyx = - « . (3.60) 
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This shows that we are evaluating a quantity very close to the absolute value of the 

asymptotic wave number, depending on how deep we are in the forbidden region at 

the end of the integration grid. We would still have to check that K00 is independent 

of the above-mentioned choice of matching functions. 

The long prescription would be to find matrices A and B from (3.50) and 

evaluate the augmented K matrix using J(r) and N(r), making sure that K00 is left 

unchanged. A choice of matrices A and B in (3.50) that corresponds to Johnson's 

matching procedure is: 

A = 
I 0 

\0 J~\rN)) 
B = 

I 

0 N~ 

0 \ 

irN)J 
(3.61) 

This choice is consistent with (3.60). The redefined Bessel matrices evaluated at the 

matching point are 

J(rN) 
Joo(rN) 0 

V 0 
N(rN) 

^N00(rN) 0^ 

V 0 7 
(3.62) 

The corresponding derivatives are 

J'(rN) = 
fJoo{rN) 0 

^ 0 J'cc(rN)Jcc(rNy\ 
(3.63) 

and 

N'(rN) = 
fKo{rN) 

\ 
0 

0 

N'cc(rN)Ncc(rN)~l 
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The explicit form of the K matrix, obtained using (3.52), 

K = 
K00 KocJcc(rN) x 

yNccir^Kco Ncc(rN)KccJcc{rNyl) 
(3.65) 

shows that the physical K matrix (K00) is invariant. The reader is referred to [49] to 

verify that K00, defined for open channels only, could be used to find the physical S 

matrix. 

3.2.2 K matrix: renormalized Numerov method 

Since a ratio of the renormalized functions is propagated, we need to renormalize 

the matching functions by performing the following substitution for J(r), 

J(rN)->{l-TN)J(rN), (3.66) 

and for N(r), 

N{rN)-+(l-TN)N(rN). (3.67) 

Then the ratio of renormalized functions 

RN = FN+1F^1 (3.68) 

can be used in an equation that can be solved for the unknown augmented K matrix. 

The solution is 

K = (RNn{rN) - n(rN+l))
 1(RNj(rN) ~ j(nv+i)), (3.69) 
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where j(r) and n(r) are the renormalized Riccati-Bessel functions. The notation is 

only by accident identical to the one adopted for spherical Bessel functions of the first 

and second kind. The augmented K matrix contains an open-open block, namely K00 

that is used to construct the S matrix. Since closed-channel Bessel functions contain 

exponentially growing functions in the asymptotic region, we use the ratio of closed-

channel space Bessel functions at two consecutive points r/v+i and r^ at the matching 

point. 

The short prescription for a change of j(r) functions in the closed-channel 

space is [50] 

jcc(rN) ->• / , and jcc{rN+1) ->• jCc{rN+i)jcc{rN)~l, (3.70) 

and likewise the n(r) functions in the closed-channel space change according to 

ncc(rN) ->• / , and ncc(rN+1) -> ncc(rAr+i)ncc(rjv)_1. (3-71) 

The open channel space functions j(r) and n(r) are left unchanged. A direct way to 

see why this prescription works is to assume exp(±Kr) behavior in the closed channels 

and evaluate the needed terms 

3cc{rN+i)jcc{rN)~l ~exp(+K/ i ) , (3.72) 

ncc{rN+i)ncc{rN)~l ~ exp( -« / i ) , (3.73) 

where j(r) and n(r) are Bessel functions up to a normalization factor 1 — TN. This 

shows that we are evaluating exponential functions for ±K,h which is smaller than 

±KXJV in magnitude by a factor of h/rN. We would still have to check that K00 is 

independent of the above-mentioned choice of matching functions. 
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The long prescription would be to find matrices A and B from (3.50) and 

evaluate the augmented K matrix using J(r) and N(r), making sure that K00 is left 

unchanged. A choice of matrices A and B in (3.50) that corresponds to Johnson's 

matching procedure is: 

11 0 ^ 

\0 jJ(rN)J 
B 

0 
\ 

V 3cc\rN)j 
(3.74) 

keeping in mind that we use the renormalized matching functions 

j(r) = (1 - T(r))J(r), n(r) = (1 - T(r))N(r) (3.75) 

This choice is consistent with (3.73). The redefined Bessel matrices evaluated at point 

rjv are 

3oo(rN) 0 
3{rN) = | I , n(nv) = 

0 / 

n00{rN) 0 

V 0 / 
(3.76) 

The corresponding Bessel matrices at point r/v+i are 

J{rN+i) = 
joo(rN 

\ 
+1; 

0 jcc(rN+i)jcc(rN) 1 j 

(3.77) 

and 

n(rN+1) 
n00{rN+i) 0 

y 0 ncc{rN+1)ncc{rN)~l 
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The explicit form of the K matrix, obtained using (3.52), 

K = 
K00 K0Cjcc(rN) l 

yiccir^Kco ncc(rN)Kccjcc{rNyl 

(3.79) 

shows that the physical K matrix (Koo) is invariant. The reader is referred to [49] to 

verify that Ko0, defined for open channels only, could be used to find the physical S 

matrix. 
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CHAPTER 4 

INTERACTION HAMILTONIAN 

4.1 Choices of Basis Sets 

The electron spins, si, s2 and the nuclear spins, ii, z2 of two atoms, can be coupled 

in different ways. In one scheme, we couple the electron and nuclear spins of each 

atom to obtain the spin 

fi = 8i + ii, (i = 1,2). (4.1) 

The basis adapted to this coupling scheme consists of the tensor products of the 

eigenstates of the total spin operators / i and f2 

\hmh\hmh). (4.2) 

This basis is called uncoupled even though it is coupled with respect to the 

|mSlmj1;mS2mj2) basis. It is well suited to the asymptotic form of atom-atom inter­

actions in the absence of external fields where hyperfine interaction is the dominant 

form of interaction. Hence, this basis is called the long-range uncoupled hyperfine 

basis. 
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In another coupling scheme, we can separately couple the electron spins 

S = Sl + s2 (4.3) 

and the nuclear spins 

I = ti + t2 (4-4) 

to get the total electron spin S and the total nuclear spin i". The basis adapted to 

this coupling scheme consists of the products of the eigenstates of S and I" 

|5M S ; /M 7 ) . (4.5) 

This basis is coupled with respect to the Im^m^; mS2mi2) basis in which the short-

range Born-Oppenheimer interaction is diagonal. Hence, this basis is called the short-

range uncoupled molecular basis. 

We can continue coupling angular momenta: either we couple f\ with / 2 , or S 

with I, in order to get the total spin for the system consisting of two atoms 

F = f1 + f2 = S + I. (4.6) 

The total spin operator F has the standard properties 

F2\FM) = F{F + 1)\FM) (4.7) 

FZ\FM) = M\FM) (4.8) 

when acting on basis \FM) with M = Ms + Mj, but the concrete realization of 

the basis \FM) in the two coupling schemes can be different. The transition from 
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the \(SI)FM) basis to the \(fafb)FM) basis is established through the use of 9j 

coefficients 

((siii)h(s2i2)f2-FMF\(sls2)S(i1i2)I;FMF) = 

V(2si + l)(2s2 + l)(2ix + l)(2i2 + 1) < 

si s2 £ 

/ l /2 F 

}• (4-9) 

The main criterion for the choice of the representation basis is simplicity in evaluating 

the matrix elements of the various interaction terms. The short range uncoupled 

molecular basis extended with rotational quantum numbers, I and m 

\SMs;IMr,lm), (4.10) 

is suitable for the evaluation of electronic interactions that depend only on the total 

electron spin number S. The interaction of atoms with the magnetic field, provided 

we neglect the nuclear part, is diagonal in the (4.10) basis and depends only on the 

magnetic projection quantum number Ms- In the same basis, provided we neglect 

nuclear interaction, the magnetic dipolar interaction matrix can be found by the 

application of the Wigner-Eckart theorem (B.l) to a tensor of rank two and the 

subsequent use of (B.4) and (B.5). In practice another path is often chosen where 

the hyperfine interaction matrix is first calculated in the 

long range uncoupled hyperfine \faiTifa;fbmfb} (4.11) 

basis and then using Clebsch-Gordan or 3j coefficients transformed into a 
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long range coupled hyperfine \(fafb)FM) (4.12) 

basis which can be connected to the 

short range coupled molecular \(SI)FM) (4-13) 

basis by employing (4.9). The final step involves the usage of another table of Clebsch-

Gordan or Sj coefficients in order to switch to the desired 

short range uncoupled molecular \S Ms; I Mi) basis. (4-14) 

A major reason for the choice \SMsIMilm) basis, apart from the simplicity with 

which electronic, dipolar and Zeeman terms of the Hamiltonian can be described in 

this basis, is the ease of symmetrization which can be done for identical atoms. It is 

reduced to keeping only states for which 

S + I + l is even, (4.15) 

independently of the bosonic or fermionic nature of identical atoms. This can be seen 

in Sec. 4.1.1 if we recall that the result of exchange operator on the basis state is 

PulSMsIMrlm) ~ (1 + ( - l ) s + / + ' ) | S M 5 / M ^ m ) (4.16) 

4.1.1 A note on symmetrization 

The quantum mechanical description of the scattering of two identical atoms has 

to account for identical particle symmetry. The total wave function in which only the 

spatial coordinates of nuclei, R, and electrons, r, are explicitly shown 
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9(R,r) = J2 GsMsI™>{R) V(r) [gMg) 1/Mf )yftB(fl) (4.17) 

is to be symmetrized under the exchange of two identical nuclei. We determine 

the transformation properties of each term: electronic spatial wave function ip(r), 

electronic spin wave function \SMs), nuclear spin wave function \IMj), and nuclear 

rotational wave function Yim(R). In this work, we only consider the scattering of 

atoms in the ground state for which the molecular electronic wave functions ip(r) are 

E+/,~ states, which in the case of identical nuclei (or identical nuclear charges) carry 

the additional label g (gerade) or u (ungerade). For the purposes of this section we 

will keep in mind that ip(r) is a shorthand notation for the £<)X~ electronic wave 

function. 

The term describing the orientation of the nuclei behaves under the operation of 

nuclear exchange, P/v, as 

PN\em) = (-l)e\£m), (4.18) 

while the nuclear spin function \IMi) changes according to 

PNIIMJ) = ( - l ) 2 l + / | /M 7 ) , (4.19) 

where i denotes the spin of a single nucleus. 

The electronic spin function \SMs) is not affected by the nuclear exchange while 

the opposite is true for the electronic spatial wave function ip{r) since it has an 

implicit dependence on the nuclear orientation. The z axis of the molecule-fixed 

frame, whose orientation, determined by convention to point from atom A to atom 

B, and reverses its direction upon the nuclear permutation in Fig. 4.1. The question 
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Figure 4.1: Molecular electronic wave function £+ constructed using linear com­
bination of atomic SA and SB orbitals. Left: molecule-fixed frame before nuclear 
permutation. Right: molecule-fixed frame after nuclear permutation. 

is what happens to our description of electron density when the z-axis changes its 

direction. In Fig. 4.1 and Fig. 4.2 we graphically represent the £+ and £+ states 

constructed as a linear combination of atomic orbitals s& and SB- It can be observed 

that the £^ state becomes the — £+ state and the £+ state is unchanged after the 

change of z axis direction. Visual inspection of £~, states would produce results that 

have the opposite sign compared to results for the £+, states. 

x x 

1 + 
+ «._+ + 

"tBit 

y 

+ A-4l 

y 

Figure 4.2: Molecular electronic wave function £+ constructed using linear com­
bination of atomic s^ and SB orbitals. Left: molecule-fixed frame before nuclear 
permutation. Right: molecule-fixed frame after nuclear permutation. 

In what follows, we formally describe the transformation of molecular electronic 

wave function: an inversion of electrons and nuclei in the laboratory-fixed frame 

followed by an inversion of electrons only in the molecule-fixed frame. The result 
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of the latter transformation is determined by a rotation by 180 degrees, followed by 

a reflection in the plane (perpendicular to the axis of rotation), giving the (+/-) 

symmetry notations into play. While changing the z axis we chose to leave the x 

axis unaffected as opposed to y direction which has to be change in order to preserve 

the right handedness of the molecule-fixed frame. Hence, the electronic coordinates 

transform according to 

x ->• x (4.20) 

v-+-y 

z—>—z. 

The same result can be achieved by a successive application of lab-fixed inversion of all 

coordinates (nuclear and electronic) and molecule-fixed inversion of electronic coordi­

nates. The latter transformation is used to classify electronic states of homonuclear 

molecules according to 

{ +ip(x, y, z) for gerade symmetry, 
(4.21) 

—ip(x, y, z) for ungerade symmetry . 

The lab-fixed inversion is equivalent to a rotation of the molecule for 180 degrees 

around the x axis followed by a reflection in the yz plane. The rotation of the molecule 

does not change the electronic wave function since it is defined in the molecule-fixed 

frame. On the other hand, the reflection is used to classify electronic states into states 

with + and - parity according to 

{ +ip(x, y, z) for + parity, 
(4.22) 

—i[)(x, y, z) for — parity . 
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It is common practice to affix a superscript + or — to such an electronic wave function. 

The effect of the nuclear permutation on the electronic wave function can be ob­

tained once the labels g/u and +/— are known. Table 4.1 shows the sign change of 

an electronic wave function that has either gerade or ungerade and + or - symmetry 

Table 4.1: Nuclear exchange effect on •0. 

+ 
g +1 -1 
u -1 +1 

wave. For example, according to this table an electronic function that has g and -

symmetries, i[)~, would change sign after nuclear permutation. If we assign a dis­

crete variable a with values {0,1} to the reflection symmetry, then its action on the 

electronic wave function is 

ayzr = (-iyr. (4.23) 

Along the same lines, the molecule-fixed inversion can be assigned a discrete variable 

p with values {0,1} so the action of inversion i is represented by 

i^p = ( - 1 ) % . (4.24) 

Then, the combined action of these two symmetry operators represents the action of 

nuclear permutation on the electronic wave function 

iayzrp = (-1)CT+PV£ • (4-25) 
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With this we conclude that the basis in (4.17) transforms under the nuclear exchange 

according to 

%(r)\SMs)\IMI)Ytm(R) -> ( - l ) ^ + 2 l + 7 + V ; ( r ) | S M 5 ) | / M / ) y , m ( f i ) (4.26) 

Then the properly symmetrized basis is obtained through the use of symmetrizer 

(antisymmetrizer) 

(I + i-lf'PN^r^SMs^IM^YtmiR) = 

(1 + (-ly+^+^Zir^SMsWM^YUR) • (4-27) 

From the above equation, it follows that only a basis state that satisfies 

a + p + I + £ = even (4.28) 

should be used in the expansion (4.17). 

In this work we are mainly concerned with two identical chromium atoms, bosonic 

and fermionic isotopes. The molecular ground state manifold belongs to + reflection 

symmetry (a = 0) and the lowest energy state is a gerade state with total electronic 

spin equal to zero. While the energy of the state in this manifold increases, the 

inversion property alternates between gerade and ungerade, and the total electronic 

spin increases. The alternation of inversion number is such that (—l)p = (—l)s 

is satisfied. At this point, we can state that the result of the nuclear permutation 

operator on the channel basis is 

^ ( r ) |SM s ) | /M 7 }Y, m (R) -+ (- l ) s + 2 i + / +V5(r) |S 'M s}| /M /}F,m ( JR). (4.29) 

Here, we use the total electronic spin S instead of the index p. 
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4.1.2 An example 

A typical example is a molecular state built from the atomic state of two atoms 

whose nuclei are labeled A and B. Alkali atoms with their well defined states with 

quantum numbers nlm provide a good example that can be extended to more complex 

systems if the angular momentum number I is understood to label the total electronic 

orbital angular momentum, and the quantum number n represents all other quantum 

numbers necessary for the completeness of the quantum description. In the uncoupled 

(with respect to orbital angular momentum) picture, we can have a wave function 

with quantum numbers n\l\rri\ centered on nucleus A with an electron whose label 

is 1, and another wave function with quantum numbers rtii^mi centered on nucleus 

B with an electron whose label is 2. The symmetrization of this product with respect 

to electron exchange is schematically represented with 

<« 1 m 1 ( l )< / a m 9 (2 ) -* < i i m i ( l ) t V 2 ( 2 ) + ( - l ) S < . i m i ( 2 ) < , 2 m 2 ( l ) , (4.30) 

where S is the total spin of two electrons. The expression on the right-hand side 

of the arrow can be combined with the spin only function to form \SMs) the total 

wave function that is properly symmetrized. For future reference, this expression is 

designated as A. 

Similarly, we could have started from the situation where the role of atomic states 

was exchanged, atomic state n^tifn^ was centered on the nucleus A and atomic state 

n^x mi centered on the nucleus B. In the same manner as for the term A we get the 

term B after symmetrization of the aforementioned product and multiplying it with 

the spin function \SMs) 

KtwO-Xhmtf) "• < t a ( l ) < ^ 1 ( 2 ) + (-l)S<fe™2(2)<, lTni(l) • (4.31) 
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Being equipped with terms A and B we can proceed to the construction of a molecular 

state that has the molecule-fixed inversion symmetry (gerade/ungerade). The ansatz 

for the electronic wave function is 

V = A + aB , (4.32) 

where the unknown parameter a has to allow for gerade/ungerade property. Before 

examining how terms A and B change under inversion of the electronic coordinates, 

i, we will illustrate the behavior of the orbital part using atomic p orbitals. Take the 

m = 1 orbital for example (see Fig. 4.3): the real orbitals px and py transform as 

Px ->• ~Px > Py - » ~Py (4.33) 

and vice versa for orbitals centered on the nucleus B. Since 

X 
. I 

®-

y 

z -* f R ) 

Figure 4.3: Left: px orbital before the molecule-fixed inversion. Right: px orbital 
after the molecule-fixed inversion. 

P+l ~ Px + iPy (4.34) 
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we can derive similar properties for complex p orbitals 

Pii -+ - r f i , (4-35) 

and vice versa for orbitals centered on the nucleus B. In general, an atomic \£m(A)) 

orbital centered on the nucleus A becomes an (—lY\£m(B)) orbital centered on the 

nucleus B. As a consequence, terms A and B transform under the molecule-fixed 

inversion according to 

iA = (_i)*+*»+sB , and iB = ( _ i ) ^ + ^ . (4.36) 

It is straightforward to check that the constant a. which determines the g/u symme­

tries is given by 

a = (_i)p+^+fe+s ; (4.37) 

where p = 0 for the gerade symmetry and p = 1 for the ungerade symmetry . Finally, 

the fully expanded expression for the electronic wave function with gerade/ungerade 

symmetry is 

* = [ < t a l ( l ) t 2 ( 2 ) + (-l)S<ftmi(2)<<ama(l)] + 

( - i r ^ W t a W C m ^ Z ) + (-l)S<ftma(2)<*mi(l)] • (4-38) 

4.2 The Hamiltonian terms 

We consider collisions of atoms in ground S state, in particular Cr^S^) and 

Rb(25i/2) atoms. The model Hamiltonian is 

k = "2^f l + 2 ^ + *- + *" + &? + dj* • <«9) 
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where R is the distance between two atoms, £ is the rotational (orbital) angular mo­

mentum operator, Ves is the Coulomb interaction, Vdd is the spin-spin magnetic dipolar 

interaction and H\nt are the atomic internal Hamiltonians. The internal Hamiltoni-

ans are comprised of atomic hyperfine interaction and interaction with magnetic field 

(Zeeman interaction). In what follows, we specify each term of the Hamiltonian. 

4.2.1 Electrostatic interaction 

In the Born-Oppenheimer (BO) approximation, the electrostatic interactions of 

all charged particles in a molecule are given through a spectral decomposition 

Ves = Y,vs(R)Ps, (4-40) 
s 

where the operator 

PS = Y,\SMS)(SMS\ (4.41) 
Ms 

projects onto the subspace spanned by the basis in which the total electron spin S of 

a molecule is fixed. Consequently, in any basis with a definite total electron spin, the 

operator Ves is diagonal, with the BO electronic potentials Vs(r) as diagonal values. 

Examples of such basis sets are the short-range uncoupled \SMsIMi) and the coupled 

\(SI)FM) basis sets. 

4.2.2 Interaction with the magnetic field (Zeeman term) 

The interaction energy of an atom in a magnetic field B is 

V = -Bm, (4.42) 

where m is the magnetic moment of the atom. 
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The transition from the classical to the quantum physics description of an atom 

with angular momentum j is achieved by 

rh = 7 j , (4.43) 

where 7 is the gyro-magnetic ratio. Since we consider only atoms in the ground state 

with total orbital angular momentum equal to zero, and we neglect the contribution 

from the nucleus, we take j to be the total electron spin operator, s. In that case, 

(4.42) becomes 

Vz = -7-B • a (4.44) 

Depending on whether we take s to have dimensions or not, the 7 factor changes. 

To be more specific, let us use an electron as an example, namely 

7e = -9e7T-, (4-45) 

where ge is a g-factor for the electron, and e is the absolute value of the electron 

charge, hence the negative sign. If we were to use s in units of K, then the Zeeman 

term becomes 

Vz = geiiBB • a, (4.46) 

where [iB = eh/(2me) — 5.788 • 10~"5 eV/T is called the Bohr magneton, and the spin 

is dimensionless. 
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The relation that connects JJLB and j e is 

7e = -9e~ = -1.760859 • K p T ^ s - 1 (4.47) 
n 

given ge = 2.002319. The Zeeman interaction of two atoms is described by 

Vz = -B- ( 7 l s i + 72s2). (4.48) 

In the case of identical atoms or atoms with the same electron spin (neglecting the 

nuclear spins) we can set 71 = 72 = 7 and use the total electron spin operator, 

S = §1 + s2) to simplify the expression for the Zeeman interaction: 

Vz = _ 7 B • S. (4.49) 

The Zeeman interaction evaluated in the \SMsIMjlm) basis becomes diagonal 

with elements 

SMsIMJm V7, S'M'sI'M'Jm') = --rSStS>SMstM>gSItpSMj,Misi,i'sm,m'MsBt (4.50) 

where B field is assumed to be along the direction of the the z axis. Atomic units 

are implied. 

There are situations where we would like to compute the z component of any spin 

operator, either electron or nuclear, in the \fiTnf1;f2mf2) basis. To show how it is 

done, we will use the electron spin operator of the first atom (si)2 as an example. 

After the identification of this operator as the zero component of the spherical tensor 
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representation of the spin operator sq' , we can apply the Wigner-Eckart theorem 

(B.l) 

-,(1) hmh; f2mh s(
0 f[mf>; ftm^ ) = (fimfl s(

0 f[mf[ ) 8hJ[5mf^m . (4.51) .(i) 

to the matrix element on the right-hand side of this equation 

hmh 8™ / J m / I ) = ( - l ) * - m ' i 
h 1 f'^ 

mh 0 mfJ 
(h¥1]\\fO (4-52) 

Finding the reduced matrix element entails the use of (B.4), because we couple i\ to 

Si to get the total spin / i = s\ + i± of the first atom, 

< / i | k ( 1 ) l l / 0 = ( - 1 ) ( s l + S 2 + / 1 + 1 ) 
si s2 h 

fi 1 *i 
< * i | | * ( 1 ) | | * i > > (4.53) 

where according to (B.6), 

(Sl | |S ( 1 ) | | S[) = y/Sl(Sl + l )(2S l + l)«JSl)8i. (4.54) 

4.2.3 The hyperfine interaction 

For two atoms in their ground states with hyperfine interaction constants A\ and 

A2, the internal interaction energy is the sum of atomic hyperfine Hamiltonians 

Vhf = Ai§i • ix + A2s2 • i2. (4.55) 
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The matrix elements of Vhf in the \fimf1;f2mf2) or \fif2FMF) basis, become 

diagonal, with energies 

Ehf = ^ p ( / i ( / i + 1) - *i(*i + 1) - sl{sl + 1)) (4.56) 

A2h
2 

*" (f2(f2 + ±)-i2(l2 + l)-S2(s2 + l)) 

As it will be shown later in the Sec. 4.3, we will need to find the eigenstates of the 

asymptotic r —> oo Hamiltonian that includes both hyperfine and Zeeman term 

Ai«! • ii + A2s2 • i2 - (7x5! + 7 2s2) • B * = E h / z * . (4.57) 

It might be appealing to compute the hyperfine interaction matrix in the basis 

\SMsIMj) since it has certain advantages, such as 

- the electronic potential matrix is diagonal, 

- the Zeeman interaction is diagonal, 

- the atom-atom magnetic dipolar interaction has a clear physical interpretation, 

- the wave functions can be more easily symmetrized, S + I + t is even. 

There are two options for calculating the matrix elements of the hyperfine operators 

in (4.57). The first path is to go through a sequence of basis changes, 

\hf2FMF) -» \SIFMF) ->• \SMsIMi), (4.58) 

where, in the first step, we can apply (4.9), while for the second step the basic 

use of Clebsch-Gordan or 3j coefficients is sufficient. If we were to start from the 
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\fiimf1;f2Trif2) basis then an additional set of 3j coefficients that connect to the 

\fiJ2FMp) basis would be required. 

The second path is to apply the spherical tensor formalism. As an illustration, we 

concentrate on one atomic hyperfine term only, namely Si • «i , and drop the atomic 

label. First, we express the scalar product using spherical tensors 

s • % £(-»>• ( , (1) ,-(1) (4.59) 

in order to find the matrix element 

{SMSIM! \s-i\ S'M'glM'j) = 

j . 

] T (-I)? (SMS \s{±l\ S'MS.) (iMj \^\l'Mr) . (4.60) 
q=-l 

Then, we apply the Wigner-Eckart theorem (B.l) to s_q to obtain 

SMc ,(i) S'MS>) = (-1)S-M* 
' S 1 S' N 

^-Ms -q Ms>j 
(S\\s^\\S'). (4.61) 

Next, we apply (B.4) to calculate the reduced element of operator §i in the \SMs) 

basis 

(s 11 sw 11 s>) 

(-l)Sl+S2+s'+l^{2S + 1)(2S" + l){Sl ^ ^ <sx | |s
( 1) | | s'x> . (4.62) 

S' 1 si 
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From (B.6), it follows that the last reduced element is 

(sx \\SW\\ s[) = v /s(s + l)(25 + l ) V - (4-63) 

By substituting s —> i, S —>• / and —q —>• q, we can reproduce all necessary expressions 

to assemble the matrix element ( I Mi I'Mr 

4.2.4 Magnetic dipolar interaction 

Classically, the interaction between two magnetic dipoles is given as 

Vdd = ^ i i m i • m 2 - 3(mi • h)(m2 • n)], (4.64) 

where m-i and rri2 are two magnetic dipole moments, r is the separation between 

them, h is a unit vector on the line connecting the two atoms and JIQ is the magnetic 

permeability. 

Following (4.43), the classical expression attains its quantum mechanical form 

Vdd = 7i72 j - ^ [ « i • s2 - 3(«i • n)(s2 • n)] (4.65) 

The presence of electron spin operators Sj instead of total spin operators ji reflects our 

decision to neglect the contribution from the nuclei to magnetic dipolar interaction, 

as (7e/7n) ~ 103. 

The dipolar interaction operator (4.65) expressed in terms of spherical tensor 

operators is 

VM - " 7 , 7 ^ ^ t ( " D l f ^ , (4.66) 
q=~2 
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where 

s f = j ] ( i > i , g i , g - g i | i , i > 2 , g ) 4 ; ) s l 9 - 9 1 ' 
(4.67) 
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is a spherical tensor operator of rank 2. Here, the bracket is the Clebsch-Gordan 

coefficient involved in the coupling of two angular momenta j±, and j 2 

(ji = 1,J2 = l ,mi = qi,m2 = q - qi\ji = l,ji = l,j = 2,m = q). (4.68) 

Because the dipolar interaction couples spinor states, its matrix elements are 

more naturally suited to the \SMsIMi; Im) basis which is adapted to the product of 

spherical tensors. The evaluation of 

(S Ms I Mr, Im Va dd S'Ms>I'Mv;l'm' (4.69) 

reduces to finding the matrix elements of the Yq ' operator in the \lm) and of the 

Sq operator in the \SMs) basis. The nuclear spin part of the matrix element is 

accounted for through Kronecker-delta function products, SH'SMIMJ,- The orbital 

part of the matrix elements is obtained by applying (B.l) to Yq 
(2) 

/ 

(Im |yg
(2) I I'm') = (-!) '" 

, \ I 2 I 

\ —m q mi 

(/||y(2)||r>, (4.70) 

where 

4?r \0 0 oy 

(4.71) 
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Similarly, 

SMS S. (2) S'MS>) = {-l)s-Ms 
' S 2 S'^ 

y~Ms -q Ms'J 
siS2S 5(2) s'lS'2S'). 

(4.72) 

Upon some manipulation involving Wigner symbols, using (B.4), (B.5) the general 

expression for the reduced matrix element is obtained 

sis2S 5(2) s'lS'2S') = 

y/b(2S + 1)(2S'+ 1) < 

s\ s[ 1 

s2 s2 1 

S S' 2 

• (s i l l^ lKOWI^II^)- (4-73) 

Considering the specific nature of the reduced elements of the individual spin opera­

tors Si and s2, that is they are zero unless s[ = si and s'2 = s2, the general expression 

for the reduced element further simplifies to 

Sls2S S(2)
 Sls2S') = 

y/5(2S + 1)(2S" + 1) < 

S l 

s2 

S 

Sl 

S2 

s1 

1 

1 

2 

}<ai| |s ( 1 ) | |*i><S2| |s ( 1 ) | |s2) • (4-74) 

Because the dipole-dipole interaction in (4.66) only couples electronic spins, we 

get the trivial selection rules for the nuclear spin 

A / = 0, and Am; = 0. (4.75) 
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The rotational (orbital) selection rules come from the 3j coefficient in (4.70) and 

from the 3j coefficient in (4.71). From (4.70) we get 

|AZ| < 2, (4.76) 

while the 3j coefficients in (4.71) establishes that only |AZ| = 0 , 2 transitions are 

allowed, with Z = 0 —>•/' = 0 not allowed. 

The electron spin selection rules can be obtained from (4.72), \&.S\ < 2 while 

transitions 

5 = 0 -> 5' = 0, 

S = 0 ->> S' = 1, (4.77) 

S = 1 -+ S' = 0, 

are not allowed. For the case of identical atoms or atoms with the same value of 

electronic spin, we have an additional restriction, from (4.74) 

S + S' = even. (4.78) 

Combining this condition with the general one for the change of the total electron 

spin S, we get a selection rule similar to the one determining the allowed orbital 

angular momentum numbers 

AS = 0, ±2 while the transition S = 0 ->• S' = 0 is forbidden. (4.79) 

An interesting consequence of the selection rules for magnetic dipolar interaction, 

for the alkali atoms, is that only the triplet (S=l) wave function is affected by the 
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magnetic dipolar interaction. There is no dipolar coupling between the triplet and 

singlet wave functions, since AS1 can only be 0 because the total spin is either 0 or 

1. Remembering that the selection rules exclude the S = 0 —> S' = 0 transition, that 

leaves only S — 1 —>• S' = 1 transitions. 

The selection rules for the magnetic projection numbers are 

A m = - A M 5 , |Am| = 0 , ± 1 , ± 2 . (4.80) 

4.3 Asymptotic basis 

In the asymptotic region, r —¥ oo, the total Hamiltonian reduces to the sum 

of atomic hyperfine and Zeeman interactions. The spin states that diagonahze this 

interaction represent channel states. Since the asymptotic Hamiltonian is expressed 

as a sum of two atomic Hamiltonians, the diagonalization can be done for each atom 

separately and the final channel states can be constructed as products of eigenstates 

of atomic asymptotic Hamiltonians. 

For a given magnetic field B, an atomic hyperfine interaction is described by 

(X 

H=—s-i + (7esz - -yniz)B, (4.81) 

where the z axis is oriented along the magnetic field. The hyperfine constant a has 

units of energy, while 7ft is given in units of energy over magnetic field strength. Also, 

we use the absolute value for the electron gyro-magnetic factor, j e . 

Before discussing the general method for finding the eigenstates of the Hamiltonian 

(4.81), two limiting cases should be mentioned. In the first limit, when the magnetic 

field B —$• 0, the states \(si)frrif) diagonahze the Hamiltonian because the spin term 

can be represented as 
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S-i = \(f2-s*-i2). (4.82) 

In the B —>• oo, high magnetic field limit, the states \msrrii) diagonalize the Hamil-

tonian, provided we neglect the nuclear contribution since the ratio Je/ln is of the 

order ~ 103. 

For all other B fields, the solutions are a linear combination of the \(si)frrif) or 

the \msmi) state vectors. What is common for both the hyperfine and the Zeeman 

magnetic interactions is that they preserve rrif. The spin-spin operator is a linear 

combination of the squares of the angular momentum operator, and each of them 

leaves the total magnetic projection number unchanged. In the magnetic part, the 

z-axis electron and the nuclear spin operators acting on \msrrii) leave the respective 

magnetic numbers unchanged, that is a space spanned by the basis vectors with same 

total magnetic projection number is invariant with respect to spin-spin and spin 

projection operators. 

The existence of invariant subspaces is reflected in the block structure of the 

Hamiltonian matrix. The problem of diagonalizing the whole Hamiltonian matrix is 

then reduced to the diagonalization of smaller blocks. Throughout this chapter, alkali 

atoms will be used as an example which shows how the case of a total electron spin 

different from 1/2 can be treated. 

Fig. 4.4 shows the schematic diagram of the total spin f = s + i space partition 

into subspaces labeled with the magnetic projection number rrif. The value of spin / 

goes from fmin = \s — i\ to fmax — s + i and the number of different rrif subspaces is 

equal to 2fmax + 1. Each rrif subspace is represented by a row in Fig. 4.4 where the 

bottom row has rrif = —jmax
 a n d for the top one rrif = fmax- The dimension of each 

rrif subspace for which \rrif\ < fmin is equal to fmax — fmin + 1. For the values of rrif 

where |m/| = fmin + l the dimensions of the two spaces decrease by one. This pattern 
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Jmax —*• 

—J max 

M^S 
i l l 

Figure 4.4: Partition of total spin space into m/ subspaces (rows): squares represent 
\frn,f) vectors; mf increases by one for each row from bottom (m/ = — s — i) to top 
(mf = s + i) ; / increases by one for each column from left ( / = \s — i\) to right 
(f = s + i). 

repeats until \m,f\ attains its maximal value, fmax, and the dimension reduces to one. 

The one dimensional spaces are spanned by either of \ fmax, ̂ fmax) states, which are 

expressed as \s,i) and \—s,—i) in the uncoupled representation \ms,mi). 

When evaluating matrix elements of the hyperfine Hamiltonian, we have to decide 

which representation basis to use. We can work with the uncoupled \msmi), coupled 

\frrif) or both basis sets. The spin-spin term evaluation is straightforward in the 

coupled basis, while magnetic term evaluation is best done in the uncoupled basis. 

4.3.1 Uncoupled basis 

When using an uncoupled basis, \msmi), we choose not to use the formalism 

of irreducible tensors and instead use the basic properties of angular momentum 

operators such as 
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32\jm)=j(j + l)\jm) (4.83) 

for the square of angular momentum or 

jz\jm) =m\jm), (4.84) 

for the component of angular momentum along z axis, and 

j±\jm) = y/j(J + l)-m(m±l)\j m i l ) (4.85) 

for the raising and lowering operators. 

The magnetic field interaction matrix elements are determined by 

(msmz\sz\m'sm[) = msSmstm>sSmitm>t, (msml\iz\m'sm[) = ra*5ms)m>s5ms ,,„',• (4.86) 

The hyperfine interaction can be written as 

s • i = sziz + ~(s+i- + s_z+). (4.87) 

The matrix elements are term by term 

(msm l|s2^|m'smj) = m sm,5 r o ! i m^m , i m ; 

(msml\s+i_\m;
sm'l) — 

^Js{s + l)-ms m'sy/i(i + 1) - ml m;i5m8)mi+1(Jmi:m;_i , (4.88) 
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and 

(msmz\s-i+\m'sm[) = 

y/s(s + l)-ms m'sy/i(i + 1) - ml m'x8m^m'lt-\6mx,m'x+i- (4.89) 

4.3.2 Coupled basis 

The calculation of matrix elements in the coupled basis \(si)frrif) involves the 

use of expression (4.82) for the hyperfine interaction term, and (4.83) for any of the 

angular momentum squares. 

((si)fmf\s • i\(si)fmf,) = l-[f{f + 1) - s(s + 1) - i(i + l)]S,,rSm/tmfl. (4.90) 

For the magnetic interaction term, the calculation of the sz matrix elements involves 

the application of (B.4) to the operator sz, and the use of (B.5) for the operator iz. 

The selection rules are 

A / = 0,±1. (4.91) 

For the / -> / transition, we can use the analytical form of the 3j and 6j coefficients 

from (B.7) and (B.8), respectively, to obtain the sz matrix elements 

</™,|.,l/m/) = f W + %g;g-«+1)1. (4.92) 

and the iz matrix elements 

( / m / M fmf) _ stl/(/ + DW)-.(. + i )] . (4,93) 

For A / = ±1 transitions, we can use the analytical form of the 3j and 6j coefficients 

from (B.l) and (B.10), respectively. Here, we first list the matrix elements for the sz 
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operator 

/ - ! - + / 

1 P-rn2 

(f-lmf \sz\ fmf) = —JL^-1[{8 + i + l)2 - P][P -{a- if\ (4.94) 

/+!->/ 

( / + l m / | s z | / m / ) 

1 / ( / + l ) 2 - m 2 

2(JTl)V 4 /2 -1 K« + ^ + I)2 - (/ + 1)2][(/ + I)2 - (* - )̂2] (4-95) 

The matrix elements for the iz operator differ from the ones given for sz in sign only 

( / ± 1 , mf \iz\ fmf) = - (f±l, mf \sz\ fmf). (4.96) 

4.3.3 An example: alkali atoms 

In the case of alkali atoms, an analytical form exists for the eigenvalues and eigen­

vectors for the Hamiltonian comprised of hyperfine and Zeeman terms [51]. Because 

the alkali metal atoms are effectively one electron atoms, they have only two values for 

/ : fmin — i — 1/2 and fmax = i + 1/2. Thinking in terms of the / , rrif quantum num­

bers, we can conclude that all m,f values that are allowed for fmin are also allowed to 

appear in the fmax manifold. This means that all mf subspaces are two-dimensional 

except for the |m/| = fmax subspaces which are one-dimensional. These two spaces 

are generated by states that represent both spins maximally polarized. Working in 

the \msrrii) representation, we can reproduce all the conclusions stated in the \frrif) 

representation. 
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Uncoupled basis \msrnz). In the one-dimensional subspace, spanned by \+,i), 

both spins are oriented along the magnetic field, while in the second subspace, 

spanned by | —, —i), both spins are oriented against the magnetic field. The remaining 

subspaces are generated by vectors having the same total spin magnetic projection 

m,f = ms + ml 

l+.m,), 1-771, +1 ) . (4.97) 

Fig. 4.5 shows all relevant points. Here we list the matrices necessary to assemble the 

B(G) 

Figure 4.5: Zeeman energy levels of 87Rb (i=3/2) with hyperfine interaction (a = 
3417.34 MHz) in the |m,j,mi) basis. For low magnetic field, the dominant hyperfine 
interaction couples spins while for high magnetic field the dominant interaction of 
atom with magnetic field decouples spins. 

Hamiltonian matrix: the hyperfine matrix 
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""/ yy° ' 2 . j 

\V^ + 2)2-m/ - K + D / 
(4.98) 

and the spin projection matrices 

h (l 0 h 
2 

2m/ - 1 0 

^ 0 2m f + 1 
(4.99) 

in the |ms,mj) basis. A (2 x 2) Hermitian matrix 

# 1 1 # 1 2 

# 2 1 # 2 2 

(4.100) 

has for eigenvalues [52] 

E± = \(H11 + H22)±J(^^) +\Hia\* (4.101) 

and eigenvectors 

*4 

cost' 

V sin 8 I 
, * -

' sin^ * 

, —cos# / 
(4.102) 

where the mixing angle 9 

- n i l — -"22 ^ 
(4.103) 

The eigenvalues for the Hamiltonian in (4.81) are 

E+ = - | - mflnhB ± iy a2 ( i + l )2 + 2 a m / ( 7 e + 7 n ) n 5 + (7c + 7 r e)2^2#2 , (4.104) 
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where the two energy branches are labeled with the ± symbol. 

It is practical to change units for the magnetic field by defining a reduced magnetic 

field B, 

B = B[^) (4.105) 

so that only the hyperfine constant has the units of energy. The energy curves ex­

pressed in the new unit for the magnetic field are 

E± = \a\[ mf—B 

±^\/(» + b2 + 2 sgn(a)m /(l + ̂ )B + (1 + ^)2B2) . (4.106) 

To be able to assemble eigenvectors, we have to solve the equation that defines the 

parameter 6 in the \ms,m%) basis 

\a\J{i + \f-m) J(i + l)2-m2 
tan 26>) = )L—r^ ~ , = * —^ • (4.107) 

amf + (7e + ln)hB sgn(a)mf + (1 + ^)B 

When evaluating the mixing angle 6, we must ensure that it is in the first quadrant of 

the trigonometric circle. We first label the numerator and denominator of the above 

equation as Cm and Zm respectively, giving us 

tan(20) = ^ . (4.108) 
An 

With the help of 

Rm = VZ2
m + C* , (4.109) 



we obtain the expressions for the sine and cosine of the mixing angle 6 

sin(0) 

'1 + 
\Zm + Rm) 

Cm 

cos(6) = +yjl- sin2(6) . (4.110) 

Coupled basis \frrif}. In the one-dimensional subspace, spanned by | / = i + 

1/2, rrif = i + 1/2), the maximal spin projection is along the magnetic field direction, 

while in the second subspace, spanned by \f = i + 1/2, rrif = — i — 1/2), the maximal 

spin projection is opposite to the magnetic field direction. The remaining subspaces 

are of dimension two and they are generated by vectors having different total spin / 

but the same total spin magnetic projection rrif 

\f = i + -,mf), \f = i-^,mf) (4.111) 

Fig. 4.6 shows the relevant points. Here we list the matrices necessary to assemble 

the Hamiltonian matrix: the hyperfine matrix 

/ 

s i -»fr 
0 \ 

[0 -(% + !)) 
(4.112) 

and the electron spin projection matrix, 

h 
( 

2i + l 

771/ 

Uii + lY-m} 

[i + \f - m}\ 

-mf J 
(4.113) 

and the nuclear spin projection matrix 
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Figure 4.6: Zeeman energy levels of 87Rb (i=3/2) with hyperfine interaction (a = 
3417.34 MHz) in the | /m/} basis. For low values of magnetic field, the dominant 
hyperfine interaction decouples spins while for high values of magnetic field the dom­
inant interaction of atom with magnetic field couples spins. 

in the | /m/) basis. Using (4.101), we can confirm that the eigenvalues of the Hamilto-

nian are the same in both basis sets. It is the mixing parameters which are different. 

Transformation matrix (msmi\fmf). Although all matrix evaluations can be 

done within one basis set as shown, sometimes it is advantageous to calculate the 

hyperfine interaction term in the \frrif) basis, while other interaction terms are rep­

resented in the \msrrii) basis. Then in order to obtain all interaction terms in the 

same basis we have to use a transformation matrix that connects the two basis sets. 

For the case of alkali atoms, where s — 1/2, the expansion of the \f,m,f) basis 

into the \ms,mi) basis is well known: 
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\f = i + -,mf =m) = 

2i Tr(\/(z + ^2+m|+'m-^ + \/' (i + l)2~m\-,m+~)\, (4.115) 

and 

\f = i + -,mf = m) = 

1 
2l + n v ( i + ^ m | + ' m ^ " 

(i + I)2 + m |_ m +*) | . (4.n6) 

The unitary transformation U, connecting the two representations of any operator, 

ss for example, is 

s'z = UhzU, (4.117) 

where s'z and sz are matrix representations of the sz operator in the {frrif) and \msmi 

bases respectively. The transformation matrix 

U 
2i + l 

i + \)2 + m J(i + IV2 771 
\ 

\y(.i + v2-m -\J(i + ̂ yz + m l\2 

(4.118) 

/ 

is a real and symmetric matrix. 
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CHAPTER 5 

CR-CR COLLISIONS 

Chromium appears in nature in four isotopes 50Cr, 52Cr, 53Cr and 54Cr. The 

relative abundance of 52Cr (80%), followed by 53Cr (10%), makes these two isotopes 

primary candidates for research and applications. The latter isotope is the only one 

with non-zero nuclear spin, 3/2, and with its hyperfine structure and fermionic nature, 

stands apart from other bosonic isotopes. The 52Cr chromium atom in its ground state 

7 S3 exhibits significant magnetic moment 6/xg, which allows its trapping in the low-

field seeking Zeeman state at relatively high temperatures, up to 1 Kelvin. Owing 

to its large magnetic moment, a range of effects caused by the presence of magnetic 

dipolar interactions was demonstrated [25]. The detection of chromium is done via 

optical transition from the ground state to the 7P3 excited state. The interest in 

the fermionic isotope stems from the possibility of creating a Bose-Fermi degenerate 

gas mixture. Our initial interest in studying chromium collisions was to address the 

buffer-gas cooling experiment of John Doyle's group where the colliding atoms were 

in the highest energy low-field seeking Zeeman state. It was later expanded to the 

investigation of the Feshbach magnetic resonances present in the collision of atoms in 

the lowest-energy high-field seeking Zeeman state. 

In the ultracold regime, the s-wave scattering dominates, which allows us to model 

short range interactions using the so-called contact interaction 

AirnfP' 
Kontact = -J— 5(R) , (5.1) 
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where M is the mass of Cr atoms. This interaction is short range (~ S(R)), isotropic 

(depends on R only) and is parametrized by the s-wave scattering length a. For two 

Cr atoms with parallel magnetic dipole moments, the dipolar interaction is given by 

vM = fggH-orfW), (5.2) 
An R6 

where m is the magnetic dipole moment. This interaction is long range (~ 1/-R3) and 

has anisotropic character (depends on 9). Since it scales as the square of the magnetic 

moment, we expect it to be 36 times stronger in Cr than in alkali metal samples. 

The strength of the dipolar interactions, for systems with an electric or magnetic 

dipole moment, can be parametrized using dipolar length and relative dipolar strength 

_ nQm2M jiQm2M . 
add - ~n^f ' 6dd ~ 1 2 ^ • (5-3) 

Lahaye et al. [53] tabulates the values of these parameters for various systems (see 

Table 5.1). 

Table 5.1: Dipolar constants for various systems. 

Species 
87Rb 
52Cr 
KRb 
ND3 

HCN 

Dipole 

1.0 fj,B 

6.0 ^B 

0.6 D 
1.5 D 
3.0 D 

moment Odd 

0.7 a0 

16 a0 

2.0 xl03a0 

3.6 xl03a0 

2.4 xl03a0 

Cdd 

0.007 
0.16 
20 
36 

240 
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Compared to systems with electrical dipole moment, Cr dipolar interaction is several 

orders of magnitude smaller, but, on the other hand, compared to a typical alkali 

system (87Rb), the trend is reversed. 

The interplay of dipolar interaction and long range interaction in Cr is shown 

in Fig. 5.1. It can be seen that for distances up to R = 70 a.u. the long range 

interaction is at least an order of magnitude stronger and it becomes dominated by 

dipolar interaction for R > 150 a.u. 

T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I T " l 

50 100 150 200 250 300 350 400 
R (a.u.) 

Figure 5.1: Full line: the magnitude of van der Waals interaction; Shaded area: the 
magnitude of dipolar interaction diagonal matrix elements in \SMs;£me) basis (see 
Sec. 5.4.3). 
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5.1 Born-Oppenheimer (BO) potential energy curves 

5.1.1 Short range interactions 

The chromium dimer occupies a peculiar place among the transition metal homonu-

clear diatomic molecules. Its singlet ground state XE+ is formed by two Cr atoms 

with electronic configuration 3d54s(7S,3). Chromium is the first atom in the periodic 

table with a half-filled d shell. Twelve unpaired electrons (five 3d and one 4s electron 

from each atom) have to be paired into a singlet molecular state. Judging by the size 

of 4s (1.945 A) and 3d (0.72 A) orbitals, a plastic description of how the pairing of 

the twelve electrons can be envisaged [54]. 

Due to the marked difference in the size of 4s and 3d orbitals, the pairing of elec­

trons starts between 4s electrons at larger interatomic separation (~ 3 A), while the 

3d electrons remain localized but with opposite spins. At shorter interatomic separa­

tion an anti-ferromagnetic coupling between 3d electrons is responsible for significant 

derealization of electrons that results in a singlet ground state. 

From the theoretical point of view, the calculation of the electronic spectrum of the 

Cr2 dimer is a difficult task. According to an estimate of Langhoff and Bauschlicher 

[55] it would require more than ten billion interaction configurations to obtain a sat­

isfactory numerical description. To date, the best attempt to calculate the chromium 

interaction potential curves is a multiconfiguration second-order perturbation theory 

with complete active space self-consistent field (CASSCF/CASPT2) [56, 57, 58, 59]. 

While spectroscopic constants for the ground electronic state (XS+ symmetry) exist 

[60, 61], there is no spectroscopic data available for the interaction of two Cr atoms 

in the other electronic spin state. 

In this work, we explored the collisional properties of Cr atoms at cold and ultra-

cold temperatures by revisiting the electronic structure of the dimer. Accurate Born-

Oppenheimer potential energy curves dissociating to two ground Cr atoms, shown in 
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Figure 5.2: Potential curves for the ground state manifold of Cr2 computed with the 
CASSCF/CASPT2 method. The maximally spin-stretched electronic state, 13S^", is 
shown as a dashed line and in detail in the inset. 

Fig. 5.2, were constructed from three regions joined smoothly together. First, ah initio 

potential curves were computed using the CASSCF/CASPT2 method [56, 57, 58, 59]. 

The CASSCF wave function is formed by distributing 12 electrons in the 3d and 4s 

active orbitals while keeping the inactive Is, 2s, 2p, 3s, and 3p orbitals occupied. 

The remaining dynamic electron correlation energy is obtained through second or­

der perturbation theory (CASPT2). The basis set used in the calculations is of the 

atomic natural orbital (ANO-RCC) type contracted to 9s8p7d5f3g. This basis set is 

relativistic and includes functions for correlating the 3s and 3p electrons [62]. The 

Douglas-Kroll Hamiltonian was used with Fock-type correction 0.5 * gi, see [63]. 

The full counterpoise method was used to correct energies for the basis set super­

position error (BSSE). Convergence to 10~10, in hartrees, was achieved, and numerical 

accuracy in computed binding energies is about 10 -8 . For separations R < R±, where 
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R^ is the smallest separation of the ab initio data for the potential energy V\(R), 

each curve was joined smoothly to the exponential form 

Vx(R) = cxexV(-bxR), (5.4) 

with the coefficients cx and 6A determined by matching both the potential curve and 

its first derivative continuously at R\. At large values of R, the ab initio data were 

matched to the asymptotic form 

VX(R) = -C6/R
6 + AxR

ve~PR, (5.5) 

where the parameters of the exchange energy are determined according to Smirnov 

and Chibisov [64, 65]: v = | — 1 and j3 = 2y/2~I, where I is the ionization energy of 

the atom (/ = 0.248664314 a.u. for Cr). The parameters A\ were found by fitting 

the ab initio curves at separations where the exchange energy was still considerable 

(e.g. R between 10 and 14 a.u. for 13S+). 

5.1.2 Long range interactions 

There is no exact definition of the long-range region. It is assumed that it begins 

at the internuclear distance where the overlap of electronic clouds from two atoms can 

be neglected. On the interaction level, it means that the exchange interaction can be 

neglected in comparison to the Coulomb interaction between electrons. Occasionally, 

some estimates of where the long range starts are helpful, such as the well known 

Le-Roy radius 

RLe-Roy = 2 « r 2 ) f + ( r 2 ) f ) , (5.6) 
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where (• • •) LB\ is the r.m.s distance of the outermost electron on atom A(B). The 

dispersion interaction of atoms in a spherically symmetric ground state can be ex­

panded into the inverse powers of the interatomic distance R 

For very large distances, retardation effects must be taken into account [66]. A number 

of methods capable of extracting the dispersion coefficients exists, and two methods 

will be briefly outlined here for illustration purposes only. 

The first method relies on the fact that van der Waals coefficients, C<m-, have 

an integral representation that involves dipole, quadrupole, octupole and higher or­

der dynamic polarizabihties. As an example we list expressions for the first three 

coefficients 

3 f°° 
C6 — — / ai(iu))ai(ioj)dw , (5.8) 

K Jo 
15 r°° 

Cs — — / ai(iu})a>2(ioj)du , (5.9) 
n Jo 
28 f°° 35 f°° 
Ti" Jo T Jo 

_ _ 28 f0° 
wo — 

where functions ai, 0J2, a n d otz are dipole, quadrupole and octupole dynamic polariz­

abihties evaluated at the imaginary frequency iu>. Higher order dispersion coefficients 

require higher order 2'-pole polarizabihties. Once the dynamic polarizabihties are 

known, the dispersion coefficients are readily evaluated [67, 68]. 

The second method involves a two-center expansion of the long-range electro­

static interaction 
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where the coefficients Vq include charge-charge, charge-dipole, dipole-dipole and higher 

order multipole interactions. For the case of neutral atoms, the expansion coefficients 

Vy and V2 are null, and the complete expression for Vq with all necessary details can 

be found in [69] 

m=q—2 ;< 

K = E E E G&m)Y,,m(r,)n-i-i,-m(*J), (5-12) 
zj 2=1 m=—!< 

where index i(j) runs over all electrons of one of the atoms, rt(r3) are the direction 

vectors from the corresponding nucleus, and l< is the smaller of I and q — I — 1. 

If we choose Hund case (a), the appropriate long-range limits |LA5S) of molecular 

wave functions lAS'S), as our representation basis for V, then solving the secular 

determinant 

det\V-EI\ = 0, (5.13) 

yields first order values or expressions for the long-range potentials. From these, the 

leading dispersion coefficient can be easily determined [70, 71]. The long range poten­

tial expansion (5.7) is reduced to the Ce/R
6 term as we focus on the first dispersion 

coefficient CQ, and for its calculation we follow the approach described by Margenau 

[12]. It is based on London's expression 

n =--(^.\ V ^°3 (5 14) 
6 2 V m J ^(EQ-E^EO-E^EO-E.-E.Y V " ; 

for which we need to know the oscillator strengths f0l for transitions from the ground 

state with energy E0 to excited states with energy E% (E3). It is understood that sum­

mation includes integration over continuum, in which case discrete variables E% and 
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fot are replaced with continuous variables E and df/dE. Introducing dimensionless 

quantities v% and e defined as 

«. = ! - # , e = - ^ " ( 5 J 5 ) 

allows us to rewrite (5.14) as 

/fc/o, 0 v - r U(df/de)de 
I * — ' 11.11.111. -4- 11. 1 * — ' 
^ , J 

^ ^ ( ^ j + u,) ^ Jo ^ ( 1 + e)(l + ^ + e) 

(df/dei) [df J de-2)de\dti 
o Jo (l + e1)(l + e2)(2 + e1 + e2)y ' 

(5.16) 

where we have isolated contributions from the discrete-discrete, discrete-continuum, 

and continuum-continuum types of electronic transitions. Since terms inside the 

brackets are dimensionless, the constant A given as 

3 fe2h2\2 1 A—A-^)w (5-17) 

dictates the dimensions of C6. A couple of notes are in order: first, London's expres­

sion (5.14) is given in the c.g.s system of units. Therefore, in the atomic system of 

units we have 

e2h2 

mP 

= E2
H4 . (5.18) 

Second, in the atomic system of units the constant A is 

A = — - | — . (5.19) 
2 | £ 0

3 
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However, if we want to input energy in rydbergs and obtain CQ in units of E ^ Q , we 

should use 

The expression for CQ can be rearranged in a more compact form 

JOifoj 

+ 2yfo1G{l±v1l+ r(df/de)G(2 + e)de\ ^ 

. v* Jo (! + e) / 

which is better suited for numerical evaluation of integrals over continuous spectra. 

The integration over two variables is reduced to the integration over one variable by 

introducing an auxiliary function 

Jo (l + e)(a + e) 

In order to get an estimate of the accuracy with which CQ is computed, we can 

check how well other sum rules involving oscillator strengths are satisfied. For exam­

ple, the number of electrons Ne is connected to oscillator strengths 

J] /cH = iVe. (5.23) 

In the case of Cr there are 24 electrons. The atomic static polarizabihty can be 

represented with a sum involving oscillator strengths 

,,2fc2 

a = 
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The recommended [72] value of static polarizability a for Cr is 82 ± 20 a.u. Using 

previously introduced Vi, e and G(a) we can transform the equation for polarizability 

into 

a = B\Y,^+G(1)\ > <5-25) 

where the constant B given as 

B = f ̂ ) A , (5.26) 
V rn J \E0\

2 

dictates units for polarizability. In atomic units, a is measured in a0
3 and the constant 

B is given by 

l-^o | 

For the sake of completeness, we mention that if one uses rydbergs as the energy 

unit, the coefficient B has to be multiplied by a factor of four. The values of dis­

crete oscillator strengths and energy levels are taken from the NIST Atomic Spectra 

Database [73] and [74] and continuous oscillator strengths, df /de, were constructed 

using Verner's [75] analytic fits for partial photoionization cross sections. The rela­

tion between continuous oscillator strength df/dE and the cross section cr, given in 

SI units, is 

% = 4 ^ - ^ r a . (5.28) 
dE irezh 

If we measure the energy in rydbergs and cross section in m2, then 

% = T-^° > (5-29) 
dE 47r2aa0

2 
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where a ~ 1/137 is the fine-structure constant and ao is the Bohr radius. When a is 

reported in megabarns (1 Mbarn = 10~22m2) then we have 

^- ~ 0.124a . (5.30) 
dE 

One additional step is needed, a change to dimensionless df/de, which is inferred from 

the integral part of the expression for the number of electrons 

, -r^dE = constant , (5.31) 
o dE 

which should not depend on the choice of energy units. If we decide to measure energy 

in portions of \E0\ that is E -» e = E/\EQ\, then we have 

Table 5.2 shows the contribution of different parts in the expression (5.14) to the 

dispersion coefficient, where disc, (cont.) refer to the nature of oscillator strengths. 

Similarly, Table 5.3 shows the breakdown of the number of electrons Ne, and static 

Table 5.2: van der Waals coefficient. 

disc. - disc. disc. - cont. cont. - cont. Total 

C6 568 155.4 21.8 745 

polarizability a, into discrete and continuous parts. 

5.2 Elastic cross sections: quasi-classical approximation 

For the range of energies above 1 cm - 1 , we can apply the quasi-classical approx­

imation [76]. In this approximation the elastic cross section for two atoms with re-
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Table 5.3: Control values. 

disc. cont. Total Expected 

iVe 1.92 20.38 22.3 24 
a 78.7 6.3 85.0 82 ± 20 

duced mass /i, collision energy E, interacting through a potential whose long distance 

behavior scales as Cn/R
n where n > 2, is given by 

a e ^ W ^ s i n ^ - 3 ^ - ^ 3 

2 (n - 1) n - 1 r(f) 

2/(n- l ) £, x 2/(n-l) 
(5.33) 

where E = /iv2/2 holds. In the case of n = 6, the above expression further reduces to 

ael = f6 2 / 5 s in(^r(3 /5 ) 2fiC6 
VE. 

2/5 

(5.34) 

where T(3/5) = 1.4891922488128. From Fig. 5.3, we conclude that the contribution 

of dipolar interaction to the elastic cross section in the energy range above 1 cm-1 

can be neglected compared to the effect of the dispersion force. The quantum me­

chanical calculations were performed for two magnetic field values to show that the 

contribution of Zeeman interaction can be neglected too. Simply put, at the higher 

energies, the collision is determined by the dominant short-range interaction. 

With the choice of n = 3, we get the expression for dipolar elastic cross section 

9 ^ 3 
oel = 2TT —- . 

hv 
(5.35) 

Due to the small value of the constant C3 (~ a2) for dipolar force, the contribution 

of the dipolar force to the elastic cross section can be neglected. 
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Figure 5.3: Energy dependence of the elastic cross section. Quantum mechanical 
calculation (full or dashed line) vs. quasi-classical approximation (dotted line). 

5.3 Cross sections: Born approximation 

In the Born approximation, the scattering amplitude for the transition from a 

state |a) to a state \a') is given as 

Jaa' — 
1\l 

ATTH2 I d3r(s(kt-kf) I V (5.36) 

where V is interaction, and kx and kf are initial and final momentum vectors. Af­

ter substituting the interaction potential with the magnetic dipolar interaction, (see 

(4.2.4)), we are faced with the evaluation of the integral expression 

/ = Ir2drdrelurY2q{f)~, (5.37) 

where vector u is the difference of the initial and final momentum vectors 

u = k, — kf. (5.38) 
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Given the plane wave expansion 

e * " = ^^l3i^r)Y;m{u)Ylm{r), (5.39) 
lm 

an orthonormality relation for spherical harmonics 

J drYlm(r)Y2q(r) = (-l)%,2Sm^q , (5.40) 

and an integral identity for the n = 2 spherical Bessel functions 

f°° 1 
J drj2(r)/r = -, (5.41) 

we can perform all the necessary steps to obtain the following expression for the 

scattering amplitude 

/«.'(**, kf) = ~ / | ? £K4(u) (a \S>\ a') , (5.42) 

where vector u is the normalized difference of initial and final momentum vectors 

u= ki~kf
r (5.43) 

\ki - kf\ 

Finally, with the help of an integral identity 

^JdkJ dkfY2*q(u)Y2q(u) = 1 (5.44) 

we find the expression for the cross section to be 
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In the above derivation, we dropped the summation over the index q since we work 

in the coupled basis \SMsIMi) for which we have selection 

q = AMS = MS- Ms>. (5.46) 

In this section we use a notation in which the \SMs) state is a function of both 

electronic spin and electronic spatial coordinates. In the case of identical nuclei, the 

scattering amplitude must be symmetrized with respect to the exchange of nuclei. It 

is enough to symmetrize the final state 

ekfr\S'Msd'Mr) -> (1 + (-l)2lPN)ekfr\S'Ms>I'Mr) = 

(ekf r + ( - l ) s ' + / ' e -* ' - r ) \S'MS'I'Mr), (5.47) 

which further reflects on the expression for the cross section 

^~ Jdk J' dkf\fM,(k%,kf) + {-l)s'+r faa>(K,~kf)\
2. (5.48) 

kf 1 

When compared to the case of non-identical nuclei, an extra factor of 1/2 is present 

in order to avoid the double counting of final states. To calculate the cross section, 

the direct product terms f*a,(K, fc/)/aa'(fcl; kf) and f*a,(ku -kf)faa'{K, —kf) need 

to be integrated using (5.43), (5.44) and vector v, a normalized sum of initial and 

final momentum vectors, 

H = k' + k/ (5.49) 
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Figure 5.4: Auxiliary function h(x): determines cross sections in the Born approx­
imation, where parameter x is either 1 or the ratio kf/ki of final and initial wave 
numbers . 

on an equal footing with vector u. The evaluation of the cross product term 

faa'foi, kf)faai{ki, —kf) requires the application of 

^JdkJ dkfY2*q(u)Y2q(v) = h(0, (5.50) 

where the auxiliary function h(£) defined as 

Mo = 4-?fe^io/ ( 1 -° 2 
2 8 £ ( i + a &V(i+o 

(5.51) 

depends on the ratio of magnitudes of final and initial momenta, £ = kf/ki. The 

monotonic function h(£) , shown in Fig. 5.4, has two limits: h(l) = —1/2 and h(oo) = 

1. After rearranging terms we get the expression for the cross section in the case of 

scattering of atoms with identical nuclei 

Can.' = 
2fia2\2STv 

K2 J 15 
(-l)S'+I'h(t;))z\(a\S2

q\a')t (5.52) 
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This expression is correct for identical atoms as well, since the states \SMs) already 

have proper symmetrization with respect to electronic coordinates. 

The rest of this section illustrates the application of (5.52) to the case of scattering 

of two identical 52Cr atoms initially in the highest (top line in Fig. 5.5) Zeeman state: 

\si = 3,mSl = 3)|s2 = 3,mS2 = 3). In the coupled representation, the two atoms 

E 7Si 

B 
Figure 5.5: Zeeman diagram for 52Cr atom in the ground state with electronic spin 
s = 3 (ms = —3 • • • 3) and zero orbital angular momentum (S state). 

initially in the channel state 15 = 6, Ms = 6) can be found after the collision in the 

following channel states 

\S = 6,MS = 6) (AM s = 0) 

|S = 6,MS = 5) (AMS = 1) 

|S = 6,MS = 4), |S = 4,MS = 4) (AMS = 2) 

(5.53) 

(5.54) 

(5.55) 

The last line shows that for the AMs = 2 process, we must add cross sections for 

\S = 6, Ms = 6) ->• \S = 6, Ms = 4) and |5 = 6, Ms = 6) ->• \S = 4, Ms = 4) to 
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obtain the total inelastic cross section. The required squares of the absolute values 

of the Sg amplitudes are 

(66 |S 2 | 66) = 54, (66 |S?| 65) = 27, (66 \S2\ 64) = ^ , (66 |S2
2| 44) = ^ . (5.56) 

For each value of AMg = 0,1, 2, in the Born approximation the cross sections for no 

spin-flip, one spin-flip, and two spin-flip transition are respectively 

VAMS=O = ( 2 / i a 2 ) 2 ^ ( l + h(l)) 2 • 33 , (5.57) 

VAMS=I = ( 2 / ^ 2 ) 2 ^ (1 + h(0) £ • 33 , (5.58) 

«AMS=2 = (2/xa2)2 | [ (1 + h(0) e • 32 • (5.59) 

For large enough values of the magnetic field B, that is when the ratio kf/ki » 1, 

the function h(£) becomes constant. Since the magnetic field enters the expression 

for spin-flip cross sections through the ratio 

W™w <-°> 
which depends on the energy gap e — 2/J.BB, it becomes clear that for high magnetic 

fields the spin-flip cross sections have a VB~ dependence. From Fig. 5.6, it can be 

seen that for low values of the magnetic field the Born approximation approaches the 

low-energy end of cross sections. For higher energies, the cross section in the Born 

approximation assumes a constant value. Without consulting Fig. 5.7 it is tempting to 

conclude that the Born approximation gives a satisfactory treatment of the dipolar 

cross sections. In Fig. 5.7, we plot the full multichannel and Born approximation 

calculations for a range of magnetic field values. It is clear that the two calculations 

show opposite trends with respect to the magnetic field. 
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Figure 5.6: Multichannel calculations vs. Born approximation of the inelastic cross 
sections for 52Cr atom collision in the highest energy Zeeman state. Full line: full 
multichannel calculations. Dashed line: Born approximation. 
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Figure 5.7: Opposite trends in the full multichannel and Born approximation calcu­
lations of the inelastic cross sections for the collision of 52Cr atoms in the highest 
energy Zeeman state. Full line: full multichannel calculations. Dashed line: Born 
approximation. 
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5.4 Boson-boson sca t ter ing (52Cr — 52Cr) 

5.4.1 Cross sections 

The initial channel spin state in the uncoupled representation \s\ = 3, msi = 

3) |s2 = 3,mS2 = 3) is represented by the \S = 6, Ms = 6) spin state in the coupled 

representation. Referring back to Sec. 4.2.4, we deduce that only even spins are 

relevant, since dipolar interaction for identical atoms separates even spin states from 

odd and our initial channel is an even spin state. Other interactions included in 

this work, such as the electrostatic and Zeeman interactions, do not change the total 

electronic spin S or rotational numbers £ and mi. On the other hand, the dipolar 

interaction can change the rotational numbers and it separates even from odd £'s. In 

order to select the proper parity of £, the symmetrization rule stating 

S + £ = even, (5.61) 

must be invoked. Since we already have chosen even total spin numbers, then the 

even rotational numbers (£) must be selected. 

In order to be able to map out cross sections for a range of magnetic field and 

energy values, it is important to reduce the size of the \SMs;£me) basis. The full 

multichannel calculations of the dipolar relaxation of two atoms in the highest energy 

state can be safely replaced with the one having only a limited number of channels. 

Namely, it is not necessary to include all sums of the magnetic projection number, 

-6 < M < 6. It is enough to restrict the maximum change of M to 2 units. This is 

confirmed in Fig. 5.8, where it can be seen that for a range of magnetic field values, 

the contribution of the channel S = 4, Ms = 4 (bottom line) is of the order of a 

percent. To summarize, the channels used in this work 

SMS = {66,65,64,44}, (5.62) 
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Figure 5.8: Channel distribution of the inelastic cross section for the collision of 52Cr 
ground state atoms in the highest energy Zeeman state for different magnetic field 
values: full multichannel calculations. 

were further furnished with even rotational numbers I and rat chosen in such a way 

to preserve the total magnetic projection Ms + me = 6. Figure 5.7 shows the energy 

dependence of the cross sections for the relaxation of 52Cr atoms in the maximally 

stretched state Ms = +6 at several magnetic field strengths. Its basic features are: 

the decrease of the cross section with increase of magnetic field strength, contrary to 

what the Born-approximation predicts, the increase of cross sections towards the lower 

end of magnetic field strength, and the appearance of a number of shape resonances 

whose positions are unaffected by the magnetic field. 

The cross section behavior for low magnetic field strengths at ultracold collision 

energy (~ 10~14 a.u.) is somewhat surprising (see Fig. 5.9). The cross section for 

the Zeeman transition vanishes in the absence of a magnetic field [77]. In a magnetic 

field, different than zero, the cross section tends to go to infinity when the collision 
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Figure 5.9: The effect of a barrier in the exit channel. 

energy decreases (see Fig. 5.7), which in turn leads to the increase of the cross section 

with magnetic field increase when the collision energy is kept in the ultracold regime 

[78]. At ultracold energies, the £ — 0 partial wave dominance in the entrance channel 

is not preserved in the outgoing channel, because the dipolar interaction is capable 

of imparting angular momentum. This in turn creates the centrifugal barrier in the 

final channel which suppresses the transition probability when the magnetic field is 

low enough so the energy difference between the final and initial channel is negligible 

compared to the height of the centrifugal barrier. Increasing the magnetic field reduces 

the suppressing role of the barrier which reflects in the increase of the cross section. 

At high magnetic fields, the relaxation cross section should decrease according to 

the energy-gap law [79]. For the region of magnetic field strengths between the two 

extremes, the cross section shows a maximum. For the typical atomic and molecular 

systems, the location of the maximum is around the magnetic field strength of 1 — 2 

T. It seems that the low value of the magnetic field (40 G) at which the role of the 

centrifugal barrier is mitigated can be attributed to the relatively large 52Cr mass. 

Apparently, the large mass reduces the height of the centrifugal barrier so as little as 

40 G is enough to suppress the role of the barrier in the final channel. 

O 
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5.4.2 Collision rates 

The initial motivation for this work was to study a system for which a buffer gas 

cooling experiment was performed by John Doyle's group [15]. The potential curves 

for Cr show significant separation at finite interatomic distance (see Fig. 5.2), which 

suggests the existence of substantial spin anisotropy in atom-atom collision [80]. The 

relaxation of 52Cr atoms in the maximally polarized states, Ms = +6, is therefore 

rapid and it is governed by the magnetic dipolar interaction. The temperature range 

covered in the experiment was 0.01 — I K and due to technical difficulties the lower 

temperature limit could not be pushed down. The results, experimental and theoret­

ical, are best summarized in Fig. 5.10 taken from [17]. The common feature, apart 

from discrepancies, of the theoretical rate coefficients and the experimental two-body 

loss rates, is that when the sample temperature approaches 10 mK the ratio of elastic 

and inelastic collision rates falls below 100, a generally accepted ratio necessary to 

perform evaporative cooling. 

5.4.3 Magnetic Fano-Feshbach resonances 

Here we discuss at length the identification and mapping of magnetic Fano-

Feshbach resonances observed by Pfau and co-workers [39] in the sample of trapped 

52Cr atoms. Using the 7S3 —> 7P3 transition the atoms were optically transferred from 

the ms — +3 to ms = —3 state (top —> bottom line in Fig. 5.5). The sole purpose of 

this manipulation was to avoid the loss of atoms due to magnetic dipolar scattering. 

The fundamental differences compared to alkali atoms are the absence of the hyper-

fine interaction and much stronger magnetic dipolar interaction, approximately 36 

times higher due to larger magnetic moment (6/ig). It is this interaction that is re­

sponsible for the coupling of the Ms = —6 state to higher energy Zeeman states. The 

Feshbach formalism tells us that two atoms prepared in the lowest energy Zeeman 
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Figure 5.10: 52Cr elastic and inelastic collision rate coefficients : solid shapes - elastic, 
open shapes - inelastic. Triangles - theoretical results. The circles with error bars are 
measured two-body loss rates. Horizontal bars represent inferred collision rates from 
the evaporation data. 

states, ms = —3, form an open channel state, which in the short range and for the 

magnetic fields in the vicinity of Feshbach resonance is coupled to a closed-channel 

state. Since neither of these states is an eigenstate state of the total interaction, a 

number of oscillations happen, which prolong the time it takes atoms to scatter back 

into the open channel. 

Table 5.4: Resonances 2,4. 

£ = 

5 = 6 

589.1 
290.3 

E-! 

= 2 

S = 4 

X 

499.9 

E-i 

S = 6 

205.6 
98.5 
65.1 
50.1 

e = A 

S = A 

X 

286.6 
188.3 
143.9 

S = 2 

X 

X 

X 

379.2 

Ms 

- 5 
- 4 

- 3 
- 2 

E. E. £_ 
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Here there is only one open channel state, \S = 6, Ms = —6), which serves as the 

initial and final scattering channel. 

The identification of 11 out of the 14 observed resonances is summarized in Ta­

ble 5.4, where the table header is composed of the total electronic spin S, the total 

magnetic projection number Ms and the rotational angular momentum number £ 

used to label Feshbach resonances while their positions are tabulated using gauss as 

a unit for magnetic field strength. At the bottom of the table there is an indication 

to which bound level generates the resonance. The index —1 refers to the top bound 

level, index —2 refers to the next lower level and so on. 

Closed-channel £ = 2 resonances: To simplify matters we will start our 

analysis with £ = 2 (d-wave) resonances and later include £ = 4 ((/-wave) resonances. 

The basis state \S = 6, Ms = — 6; I = 0, mi = 0) has to be expanded with £ — 2 states 

which have to satisfy the requirement Ms + mi = —6. As before, only even spins 

and rotational numbers ought to be included. The complete list of basis states is in 

Table 5.5. 

Table 5.5: s + d-wacve basis. 

s 
6 
6 

6 
6 
4 

Ms 

- 6 
- 6 

- 5 
- 4 
- 4 

£ 

0 
2 

2 
2 
2 

me 

0 
0 

- 1 
- 2 
- 2 

A typical plot of the scattering length versus magnetic field is contained in the 

top pane of Fig. 5.11. It shows nearly constant background scattering length (abg ~ 

100 QQ) except around the Fano-Feshbach resonances where it changes according to 
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a(B) = abg ( l - £ ^ ; ) • (5-63) 

The width of the resonance, A.B, is extracted by measuring the distance between a 

point Bc where the scattering length diverges and a point where the scattering length 

becomes zero. The bottom pane of Fig. 5.11 contains bound level positions for a 

range of magnetic field strengths. 

* ' ' ' ' ' ' ' ' ' I I I I I I • • 1 I I I > I I I I I I L I L I • I I L I I 
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B(G) 

Figure 5.11: Bound levels and resonances, lmax = 2. 

The energy is measured with respect to the lowest energy Zeeman level Ms = 

—6, the zero energy limit in the scattering. The positions of Feshbach resonances 

coincide with the bound levels crossing the continuum. For comparison purposes 

we plot the relevant vibrational levels obtained from the molecular potentials in the 

presence of magnetic field (dashed lines) and bound levels obtained when dipolar 

couplings are included (full lines). In other words we are comparing single-channel 

versus multichannel bound level computations. We can see that the top bound level 

E-i = —2.495 • 10~7 a.u. formed in S = 6, and I = 2 potential can move along 

three Zeeman lines with Ms = —6, —5, —4 in the presence of magnetic field. The 
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bound level that moves with the magnetic field along the Ms = — 6 Zeeman line 

never crosses the continuum since it is parallel with the entrance channel limit. The 

mid-position resonance can be attributed to the bound level E-\ — —4.393 • 10""7 

a.u. formed in S = 4, and I = 2 potential which moves along the Ms = —4 Zeeman 

line. The multichannel calculations (full lines) show typical avoided crossings due 

to dipolar interaction. Following one of the bound levels we can see how the bound 

state changes through the crossing area, attaining its single-channel level limits in the 

areas far enough from the crossings. Apart from the zero magnetic field splittings of 

the bound level, based on Ms, and constant shift, the dipolar interaction does not 

deviate much from the single-channel picture. However, if the entrance channel has a 

low-lying level, a horizontal line close to the continuum threshold, then the formation 

of avoided crossings with other bound levels due to dipolar interaction will affect the 

results for resonance positions which were based on single-channel predictions. 

Closed-channel £ = 4 resonances. When in the scattering channels, the num­

ber of angular momentum states is increased to lmax — 4, the mid portion of Table 5.4 

shows gr-wave resonances. Their identification is performed following the way it was 

done for the d-wave resonances. First, the basis was expanded by the I = 4 basis 

states, Table 5.6. Second, for each single-channel potential 

a set of bound levels was determined, Table 5.7. It was found that top bound levels, 

for example E-i = —8.302 • 10~8, when added the appropriate Zeeman shift, in this 

particular case Ms = —5,4, —3, —2, produce Zeeman lines which cross the continuum 

line approximately at the positions contained in Table 5.4; the I = 4, S = 6 column 

in particular. We do not show the plot of multichannel versus single-channel bound 

levels since no insight is gained, but we do present the multichannel results for 11 

118 



Table 5.6: g-waves. 

s 
6 

6 
6 
6 
6 
4 
4 
4 
2 

Ms 

- 6 

- 5 
- 4 
- 3 
- 2 
- 4 
- 3 
- 2 
- 2 

£ 

4 

4 
4 
4 
4 
4 
4 
4 
4 

77l£ 

0 

- 1 
- 2 
- 3 
- 4 
- 2 
- 3 
- 4 
- 4 

resonances where we included £ = 0,2,4 (s, d, g-waves) basis states (see Fig. 5.12). 

The I — 4 resonances are narrower than the £ = 2 resonances since direct coupling of 

closed channel states is zero according to the selection rule A£ = 0, 2. Instead, the 

coupling arises through second order interaction. 

Table 5.7: Single-channel energy levels (10~6 a.u.). 

£ = 2 £ = 4 

S=6 S = 4 S = 2 S = 6 S = 4 S = 2 

£_i -2.495e-l -4.393e-l -6.012e-2 -8.302e-2 -2.413e-l -6.595e-l 
£_2 -1.635 -2.218 -9.129e-l -1.320 -1.880 -3.041 
Eo -4.963 -6.193 -3.434 -4.505 -5.720 -7.985 

The existence of experimental results on Feshbach resonances enables us to fine 

tune molecular potentials. Since the positions of resonances are determined by the 

positions of top bound levels which in turn are intrinsically connected to the scatter­

ing length values, we can change the latter (and former) by varying the long-range 

interaction parameters (C6). Additionally, we can slightly modify the short-range po-
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tentials by changing the position of the zero energy classical inner turning point, thus 

changing the scattering length. The affected part of the potential is the inner wall 
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Figure 5.12: Scattering length dependence on the magnetic field for the collision of 
52Cr atoms in the lowest energy Zeeman state (£max = 4). 

which is situated to the left of the equilibrium point, that is all points with separation 

distance R less than equilibrium distance Re. The modification is done by shifting 

the separation distance R according to 

p r> 
R —> i?shifted = R + S— — 

IXr. — Up. 

(5.65) 

where s is the shift parameter and Rc is the zero energy classical inner turning point. 

The potential value for shifted points -Rafted was obtained using the potential value, 

V(R), at the original point according to 

^(^hifted) = V(R) . (5.66) 

In this work, the short-range and long-range parameters were manually varied in an 

effort to reproduce the experimental values from Table 5.8 while trying to keep the 

scattering lengths within the experimental error (see Table 5.9). 
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Table 5.8: Feshbach resonances for 52Cr atoms in \s = 3, ms = —3) entrance channel. 

\S,Ms,l,mi> B™lc [G] Bfp [G] ABcalc [mG] A 5 e x p [mG] 

6, 
6, 
6, 
4, 
4, 
6, 
4, 
6, 
2, 
4, 
6, 

- 2 , 4 , 
- 3 , 4 , 
- 4 , 4 , 
- 2 , 4 , 
- 3 , 4 , 
- 5 , 4 , 
-4 ,4 , 
- 4 , 2 , 
- 2 , 4 , 
- 4 , 2 , 
- 5 , 2 , 

-4} 
-3) 
-2) 
-4} 
-3) 

-1) 
-2) 
-2) 
-4) 
-2) 
-1) 

50.1 
64.9 
98.5 
143.0 
187.6 
205.6 
288.0 
293.0 
379.2 
503.8 
595.0 

50.1 
65.1 
98.9 
143.9 
188.3 
205.8 
286.6 
290.3 
379.2 
499.9 
589.1 

0.000236 
0.0024 
0.159 
0.0254 
0.106 
12.1 
1.53 
53.4 
0.29 
81.0 

1530.0 

< 0.001 
0.006 

0.3 
0.12 
0.22 
12.0 
12.0 
51.0 
0.42 
81.0 

1700.0 

Results pertaining to other entrance channels and different values of C§ were published 

in [38]. The more precise and automated procedure using the non-linear least squares 

fitting method can be found in [39]. 

Table 5.9: 52Cr scattering length (a.u.) 

state 

Pfau 

this work 

13-^+ 
^9 

112(14) 

102 

9 E + 

58(6) 

54 

% + 

-7(20) 

-22 
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5.5 Boson - fermion scat ter ing (52Cr — 53Cr) 

Owing to the presence of hyperfme interaction in one of the colliding partners, 

the channel structure becomes more complex than in the case where both atoms 

are bosons. In particular, the fermionic isotope 53Cr, with its non-zero nuclear spin 

(i = 3/2), offers 28 hyperfme states (right pane Fig. 5.13) while there are only 7 

Zeeman states provided by the bosonic isotope 52Cr (left pane Fig. 5.13). Thus, in 
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Magnetic field (G) 

Figure 5.13: Entrance channels for bosonic and fermionic chromium: labeling from 
bottom to top. 

our calculations we include only the first two allowed rotational numbers I = {0, 2}. 

The g-wave resonances were left out of consideration. Since none of the interactions 

considered here mixes odd and even rotational numbers and in the entrance channel 

we have the I = 0 rotational number, the odd rotational numbers were left out. We 

use the label a for bosonic atoms and the label /3 for fermionic atoms when showing 

the entrance channel composition. 

Entrance channel a = 1, f3 = I. A list of basis states used to find Feshbach 

resonances when two atoms are scattered in their respective lowest internal states can 
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The <?-wave resonances were left out of consideration. Since none of the interactions 

considered here mixes odd and even rotational numbers and in the entrance channel 

we have the I — 0 rotational number, the odd rotational numbers were left out. We 

use the label a for bosonic atoms and the label /? for fermionic atoms when showing 

the entrance channel composition. 

Entrance channel a = 1, /3 = 1. A list of basis states used to find Feshbach 

resonances when two atoms are scattered in their respective lowest internal states can 

122 

T I I 1 | I I 1 1 [ 1 1 1 I 1 1 I I I 1 I I I I | I I I r 

J i i i I i i J i I i _J i i i i i i I _J i i i L 



Table 5.10: 52Cr-53Cr entrance channel a = 1, (3 = 1 basis states. 

lo. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

S 

6 
6 
5 
6 
6 
4 
5 
5 
6 
6 
6 

Ms 

- 6 
- 6 
- 5 
- 6 
- 5 
- 4 
- 5 
- 4 
- 6 
- 5 
- 4 

J 

1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 

M j 

-1 .5 
-1.5 
-1 .5 
-0.5 
-1 .5 
-1 .5 
-0.5 
-1 .5 

0.5 
-0 .5 
-1 .5 

I 

0 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

rat 

0 
0 

- 1 
- 1 
- 1 
- 2 
- 2 
- 2 
- 2 
- 2 
- 2 

be found in Table 5.10. Owing to the negative hyperfine constant, A^f = —80.023 

MHz, the hyperfine multiplet is inverted so the lowest energy state /3 = 1 is maximally 

stretched spin state which does not have any partners with the same magnetic pro­

jection number. This leads to the absence of pure hyperfine interaction resonances in 

this channel for I = 0. We can only see dipolar resonances where I = 0 channel is con­

nected to other I = 2 states. The Feshbach resonances are presented in Fig. 5.14, top 

pane. There we selected three resonances wide enough for any feasible experimental 

treatment. The labels and percentages next to the resonances are for identification 

purposes. The percentage is a relative portion of a particular basis state in the norm 

of the whole bound state responsible for the resonance appearance, lower pane of 

Fig. 5.14. The zero energy for bound states is set at the value of the entrance channel 

energy. All resonances for magnetic field in the range of 0 — 1000 gauss , with their 

respective positions and widths are presented in Table 5.11. 
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0 100 200 300 400 500 600 700 800 900 1000 

B (Gauss) 

Figure 5.14: Top pane: 52Cr-53Cr entrance channel a = 1, 0 = 1 Feshbach reso­
nances. Percentage reveals the dominant component in the multichannel bound state 
wave function at threshold. Bottom pane: multichannel bound levels. The zero 
energy reference is the entrance channel Zeeman energy. No hyperfine resonances. 

Table 5.11: 52Cr-53Crentrance channel a = 1, 0 = 1 : Resonance positions and 
widths. 

BC[G] 

15.246 
39.615 
43.642 

382.894 
702.330 
760.233 
813.330 
900.235 

A [mG] 

< 1 
16 
3 

35 
1 

< 1 
1310W 

11 

(1) corresponds to Cr- Cr resonance at 600 G 
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Entrance channel a = 1, f3 = 2. For this entrance channel, where the fermionic 

partner is in the second lowest energy state, we list basis states in Table 5.12. 

Table 5.12: 52Cr-53Cr, entrance channel a = 1, j3 = 2 basis states. 

No. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

S 

5 
6 
6 
6 
5 
6 
6 
4 
5 
5 
6 
6 
6 
3 
4 
4 
5 
5 
5 
6 
6 
6 
6 

Ms 

-5 
-6 
-5 
-6 
-5 
-6 
-5 
-4 
-5 
-4 
-6 
-5 
-4 
-3 
-4 
-3 
-5 
-4 
-3 
-5 
-4 
-6 
-3 

I 

1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 

Mi 

-1.5 

-0.5 

-1.5 

-1.5 

-1.5 

-0.5 

-1.5 

-1.5 

-0.5 

-1.5 

0.5 
-0.5 

-1.5 

-1.5 

-0.5 

-1.5 

0.5 
-0.5 

-1.5 

0.5 
-0.5 

0.5 
-1.5 

I 

0 
0 
0 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

m^ 

0 
0 
0 
1 
0 
0 
0 
-1 
-1 
-1 
-1 
-1 
-1 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 
-2 

Compared to the previous case, where the fermionic Cr atom was in the lowest en­

ergy state which was maximally stretched and therefore without hyperfine resonance 

for I — 0, here we have a strong hyperfine resonance positioned around 176 gauss and 

8 gauss wide. The influence of the dipolar interaction is seen in the upper pane of 

Fig. 5.15, where other resonances are a consequence of an expanding basis with £ = 2 
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states and of the inclusion of dipolar interaction that connects an open channel to the 

closed channels. A major difference compared to the types of resonances considered 
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Figure 5.15: 52Cr-53Cr entrance channel a = 1, (3 = 2 Feshbach resonances. Bot­
tom pane: £ = 0 entrance channel, hyperfine interaction only. Top pane: dipolar 
interaction couples £ = 0 entrance channel to £ = 2 channels. 

up to now is that here we have more than one open channel and (5.63) does not 

predict correct behavior of the scattering length. Instead, we have to account for the 

inelastic nature of Feshbach resonances by using 

a = abq 1 
AB 

B-Bc- ilB/2 
(5.67) 

to describe the real and imaginary parts of the scattering length, [81]. All resonances 

for magnetic field in the range of 0 — 1000 gauss , with their respective positions and 

widths are presented in Table 5.13. 
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Table 5.13: 52Cr-53Cr entrance channel a = 1, 8 = 2: Resonance positions and 
widths. 

BC[G] 

15.19 

34.10 

37.763 

49.532 

74.950 

106.768 

175.890 

272.311 

396.921 

427.369 

523.880 

618.885 

654.922 

712.698 

780.498 

790.935 

842.120 

904.021 

913.595 

971.981 

A [mG] 

< 1 
* 

22 
31 
* 

174 
8700 
< 1 
34 
< 1 
< 1 
< 1 
< 1 
< 1 
< 1 
320 
980 
1 
10 

< 1 

(*) unable to fit data 
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5.6 Fermion - fermion sca t ter ing (53Cr — 53Cr) 

Scattering calculations of 53Cr atoms have to accommodate for the fact that we 

are dealing with identical atoms (fermions), so the identical particle symmetrization 

of the wave function is necessary. The entrance channel configuration is shown in 

Fig. 5.16. 

T i i i [ i i i i I i i i i | I i i i i I i i r 

Figure 5.16: Entrance channels for fermionic-fermionic chromium scattering: labeling 
from bottom to top. 

Entrance channel a — 1, /3 = 1. Both atoms are in the lowest energy Zeeman 

state. Since both atoms in the entrance channel are in the same spin state, the s-wave 

scattering is suppressed: only odd rotational wave numbers are allowed. The results 

are presented in Fig. 5.17 where the effect of the dipolar interaction coupling of the 

t = 1 entrance channel to t = 3 channels is shown. 
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Figure 5.17: 53Cr-53Cr entrance channel a = 1, j3 = 1 Feshbach resonances. Imagi­
nary part of S matrix dependence on magnetic field. 

Entrance channel a = 1, (3 = 2. Here we consider one of the atoms in the 

second lowest energy Zeeman state. For a range of magnetic field values (up to 1000 

gauss), we can see only one Feshbach resonance when the dipolar interaction is turned 

off, bottom pane of Fig. 5.18. The effect of dipolar interaction can be seen in the top 

pane of Fig. 5.18. The resonance positions and widths are collected in Table 5.14. 

Table 5.14: 53Cr-53Cr, entrance channel a = 1,(3 
widths. 

2 : Resonance positions and 

Bc [G] A [mG] 

31.889 

66.001 

115.740 

122.875 

206.386 

208.098 

375.300 

519.650 

794.990 

994.653 

< 1 

26 
5 

< 1 

8 
< 1 

8500 

450 
7 
6 
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Figure 5.18: 53Cr-53Cr entrance channel a = 1, /3 = 2 Feshbach resonances. Bottom 
pane: hyperfine interaction only. Top pane: including dipolar interaction. 
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CHAPTER 6 

CR-RB COLLISIONS 

In this chapter, we analyze the electrostatic interaction of Rb and Cr atoms in their 

ground state and the long-range dispersion CQ coefficient. We use Bjorn Roos's Born-

Oppenheimer (BO) potential energy curves to calculate the elastic and relaxation 

cross sections, hyperfine and dipolar Fano-Feshbach resonances which can be used 

to tune the interactions, and present the long-range dispersion coefficient for the 

interaction between ground state Cr and Rb atoms. We also investigate the hyperfine 

and dipolar collisions between trapped Cr and Rb atoms, finding elastic to inelastic 

cross section ratio of 102 —103. 

CrRb is a heteronuclear molecule, and may therefore possess a sizable permanent 

electric dipole moment. In its ground electronic state, it has a magnetic moment of 

five Bohr magnetons (5/4g), so it can be magnetically tuned. In its most abundant 

form (84%), 52Cr has no nuclear spin, i = 0, but its fermionic isotope 53Cr (9.5% 

abundance) has nuclear spin, i = 3/2, that couples to electronic spin, s = 3, to 

produce a number of hyperfine levels. Therefore, bosonic-fermionic mixtures of CrRb 

can be formed with large electric and magnetic dipole moments, with potentially 

interesting applications for degenerate dipolar Fermi gases and spinor physics. 

There is no spectroscopic information available for the CrRb molecule. A two-

species magneto-optical trap (MOT) for Cr and Rb was realized in 2004 [40], in 

which some 4 x 106 52Cr atoms and 3 x 106 87Rb atoms were loaded. Cr is known to 

have large inelastic two-body spin-flip losses, so it cannot be maintained in a MOT 
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[82, 19, 38]. Owing to its large magnetic moment, magnetic trapping (MT) of Cr is 

possible [82, 19], which allows the atoms to be trapped in its lowest high-field seeking 

state with total electronic spin s = 3 and its projection ms = —3. In the Rb-MOT 

+ Cr-MT configuration, Hensler et al. [40] measured the two-body loss rate constant 

to be /?RbCr ~ 1-4 x 10~u cm~3/s and /?crRb ~ 10~10 cm~3/s, where the former refers 

to the loss due to the introduction of Cr into the Rb-loaded MOT, and the latter 

refers to loading of the Cr-MT first. The latter loss coefficient is about an order of 

magnitude larger than the former loss coefficient, because in the more shallow Cr-

MT, interspecies dipolar interactions lead more quickly to spin depolarizing collisions, 

hence depletion of the trap. 

6.1 BO potential energy curves 

0.01-

3 
cd 

P? 
> 

0 

-0.01 

-0.02 

Figure 6.1: The 6 E + and 8E+ potential energy curves for CrRb, correlating to Cr(7S3) 
and Rb(25,

1/2) ground states. 
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The calculations of the BO potential energy curves and the permanent electric 

dipole moments were performed with the multiconfiguration complete active space 

self-consistent field (CASSCF/CASPT2) method [56, 83]. The basis set was of 

VQZP quality with the primitives obtained from the relativistic ANO-RCC basis set 

(7s6p4d3f2glh for Cr and 8s7p4d2flg for Rb)[84, 85]. Scalar relativistic effects are 

included in the calculations using the Douglas-Kroll-Hess Hamiltonian, as is standard 

in the MOLCAS software. Two active spaces were used. The first comprised the Cr 

3d and 4s orbitals and the Rb 5s, thus seven orbitals with seven active electrons. In 

the second set of calculations, a second set of 3d orbitals was added to describe the 3d 

double shell effect: 12 orbitals with seven electrons. All calculations were performed 

with the MOLCAS-7 quantum chemistry software [86]. In Fig. 6.1, we plot the BO 

potential energy curves for CrRb in the ground electronic states. The equilibrium 

separation for the molecule in the ground state 6 E + is Re = 3.34 A (6.31 a.u.). The 

value of the permanent dipole moment at the equilibrium distance for the 6 E + ground 

state molecule is de = 2.90 D (1.14 a.u.), which is reasonably large. 

Long-range: There are two electronic states which correlate to Rb (6s 2S) and 

Cr(3d54s 7S) ground states, 6 E + and 8 E + . At large separation, R, these curves are 

well described by —C6/R
&, where C6 is the van der Waals (vdW) coefficient. We 

calculate C6 using the Casimir-Polder [87] integral 

3 f°° 
Ce = ~ / ac?{iu)aKh{iu)du], (6.1) 

n Jo 

where the dynamic polarizability of each atom, a(ico), is given by 
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The calculation of the dynamic polarizability requires knowledge of the oscillator 

strengths /0A between the atomic ground state of energy eo and the atomic excited 

states of energy e\. The summation is understood to also include integration over con­

tinuum. Our calculated value of C6 for the Cr + Rb system, 1770 a.u., is obtained from 

the highly-accurate values of the Rb dynamic polarizability at imaginary frequencies 

[68] and the recently accurate values for the Cr dipole polarizability [36, 39]. This 

should be compared to the values of C6(Rb2) = 4691 a.u. [68, 87], and C6(Cr2) = 770 

a.u., [38]. Both 6 E + and 8 E + curves share the same CQ coefficient. 

The calculated static dipole polarizability for the molecule is acrRb(O) = 701 a.u. 

We should mention that aRb(0) = 319 a.u. [88] and aCr(0) = 86 a.u. [36]. The 

molecular value is 40% larger than the sum of atomic polarizabilities. Having van der 

Waals coefficients and static polarizabilities for Cr and Rb, the value of C6 = 1753 

for CrRb is obtained using, [89], 

r/CrRb _ 2 a C r Q R . b C 6
 TC6 , , 

° 6 aRb + ° 6 aCr 

The relative difference of this estimate and the previously computed value is of the 

order of 1%. 

The dearth of spectroscopic and collisional information about the CrRb molecule 

limits what can be extracted from our calculations at ultracold temperatures. Nev­

ertheless, we can inform the discussion by modifying the interaction potentials and 

evidence the changes to the phase shifts and/or cross sections at very low energies. 

Our vdW coefficient is sufficiently accurate to describe the potentials at large sepa­

rations. 
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6.2 Cross sections 

In the short range repulsive wall region, we shift the potential energy curves, 

according to the prescription in our earlier work [36], and the results for the elastic 

cross sections are shown in Fig. 6.2. Several points can be made: while the cross 

,6|Z ' i—i 111 in 

10" 10 " 10 
Energy (a.u.) 

Figure 6.2: Top panel: Elastic cross section for the 6 E + and 8 E + curves without shift 
in the inner wall (s = 0). Bottom panel: Effect of the positive shifts on the elastic 
cross section along 8 E + curve. Potential energy points for which R < Re are shifted 
according to Rs = R + s(R — Re)/(Rt — Re), where s is the shift of the zero-energy 
classical inner turning point, Rt, and Re is the equilibrium distance. Several different 
values for s were used. 

sections are insensitive to the shifts for energies above E > 10~~8 a.u., they tend 

to decrease (increase) with increasing positive (negative) shifts at very low energies. 

However, when the shifts are large enough that an additional bound state (see for 

instance Fig. 6.3) is pulled in from the continuum, the above trend does not hold. 
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Figure 6.3: The dependence of the energy of the last bound state in the 6 E + and 
8 E + potentials on the shift parameter (s), see Fig. 6.2 for the shift definition. The 
"resonances" occur when an additional bound state is pulled in from the continuum 
as s decreases. 

6.3 Zeeman cascade 

The scattering between Cr and Rb atoms in the presence of a homogeneous mag­

netic field, JB, is governed by the following Hamiltonian 

Id2 P 
H = -rT-ftg]pR + 2~R2 + V*s + ^ P + 2 ^ s ( S A + S B ) • S + AMsB • iB , (6.4) 

where the constants fi, (1B and AM represent the reduced mass of the CrRb molecule, 

the Bohr magneton, and the Rb isotropic hyperfine interaction constant of the ground 

state, respectively. The first two terms in the Hamiltonian represent the nuclear 

kinetic energy of the molecule, where I is the rotational angular momentum of the 

nuclei. The explicit form of Ves, the operator of the electrostatic interaction, and 

Vdip, the operator of the magnetic dipolar interaction, will be given below. The spin 
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operators sA(iA) and SB(«B) represent the electronic (nuclear) spins of atom A (Cr) 

and atom B (Rb), respectively. For the 52Cr + 8 7Rb system, the electronic and nuclear 

spins are SA = 3, iA = 0, SB = 1/2 and i-Q = 3/2. The linear atomic Zeeman terms and 

the isotropic hyperfine interaction for Rb are also given. The i?-independent terms 

in the Hamiltonian (6.4) determine the scattering channels, which can be related 

through a unitary transformation \(3) = Y^a Upa\a), to the product states of the total 

electronic spin, S = sA + SB, and the nuclear spin, I = iA + *BJ \a) = \SMsIMi). 

In this work, we neglect the interaction of the Rb nuclear magnetic moment with B. 

The matrix of the dipolar interaction (4.66) can be evaluated analytically as 

demonstrated in (4.69), or elsewhere [90, 91]. It is the only term in the Hamilto­

nian that can couple channel wave functions with different rotational numbers, I, 

according to 

Al = 0, ±2; while 0 ^ 0 is forbidden. (6.5) 

A similar rule holds for the change of the total electronic spin of two atoms 

AS' = 0 , ± 1 , ± 2 . (6.6) 

The dipolar interaction preserves the angular projections, Mj and Ms + mi, indepen­

dently. 

The Zeeman interaction term is 2fi0BMs, where Ms is the projection of S on 

B. The hyperfine interaction term can be directly evaluated in the coupled basis 

I / A / B ^ M F ) , where fA = iA + sA, / B = *B + sB , and F = fA + fB, and then through 

the chain of transformations 

\fAfsFMF) -> \SIFMF) - • \SMsIMj), (6.7) 
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expressed in the \SMsIMilmi) basis. On how to calculate the hyperfine interaction 

matrix elements directly in the \SMsIMilmi) basis see (4.60) or elsewhere [92, 93]. 

The highest low-field seeking state is chosen as the initial channel for the Zeeman 

relaxation of maximally stretched Cr and Rb atoms. In this state, the spin numbers 

for 52Cr are / = 3 and rrtf = 3, while for 87Rb the relevant spin numbers are / = 2 

and rrtf = 2 (see Fig. 6.4). The results do not change much when we exclude states 
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Figure 6.4: Zeeman diagram for 87Rb atoms in the ground state. Upper manifold 
corresponds to / = 2 spin, lower manifold corresponds to / = 1 spin. 

which represent the decrease of the total spin projection, MF, by more than 2 units. 

Figure 6.5(a) contains the cross sections as a function of energy at three values of 

B. The cross sections display characteristic dipolar shape resonances, and roughly 

correspond to cross sections for Cr-Cr scattering scaled down 10 times. The inelastic 

cross section contribution from the dipolar interaction scales as [37] 

cr, 
CrRb 
inel 
CrCr (T. mel 

SRbV/2 Z/fCrRbV 
SO / V MCrCr / 

(6.8) 
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Figure 6.5: (a) Energy dependence of inelastic cross sections for the relaxation of max­
imally stretched 52Cr, | /=3 ,m/=3) , and 87Rb, | /=2 , ra/=2), atoms in the presence 
of a magnetic field, (b) Rate constants for elastic and inelastic scattering processes 
presented in (a). 

The Zeeman relaxation rates, Fig. 6.5(b), provide a valuable tool in assessing the 

efficiency of CrRb evaporative cooling in a magnetic or optical trap. Ratios of elastic 

to inelastic collisions in the \iK regime of about 100—1000 times are possible. 

6.4 Resonances 

In CrRb, we have an interesting system where strong hyperfine and dipole-dipole 

interactions compete to produce rich spectra. When only the hyperfine interac-
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tion in 87Rb is considered, the scattering length dependence on the magnetic field, 

Fig. 6.6 (bottom panel), shows a number of hyperfine-coupled Fano-Feshbach reso­

nances, where the initial state |52Cr : / = 3 , m/=—3; 87Rb : / = 1 , T O / = 1 ; l=Q,mi=Q) 

is the lowest high-field seeking state. When the Cr magnetic dipole interaction with 

the spin of the Rb atom is turned on, a much richer spectrum (top panel in Fig. 6.6) is 

obtained, where the additional resonances, due to the dipolar interaction, have (s, d) 

wave character. 
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Figure 6.6: Competing hyperfine and dipolar interactions in the I = 0 entrance 
channel state: | / = 3 , m/=—3) for 52Cr, and | / = l , m / = l ) for 87Rb. Bottom panel: 
Resonances caused by Rb hyperfine interaction, Top panel: Effect of dipolar interac­
tion coupling the entrance s-wave channel to the closed <i-wave channels. 
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CHAPTER 7 

HE-OH(2n) COLLISIONS 

In this chapter we present rigorous quantum calculations for low-temperature 

collisions of OH(2n) molecules with He atoms in the presence of external electric and 

magnetic fields. Understanding the mechanism of inelastic collisions and chemical 

reactions of open-shell molecules is necessary for quantitative modeling of processes 

in atmospheric chemistry [94], combustion [95], and astrochemistry [96]. The main 

theoretical challenge in describing these processes comes from the complicated energy 

level structure of molecules in degenerate electronic states, which can be perturbed 

by fine, hyperfine, spin-rotation, spin-spin, and Coriolis interactions [97]. Therefore, 

in addition to purely rotational energy transfer, collisions of molecular radicals may 

lead to spin depolarization and non-adiabatic mixing of different electronic states 

[98, 99, 100, 101, 102, 103]. Studies of such transitions often provide a wealth of 

valuable information about the non-adiabatic effects in chemical dynamics [104] and 

photodissociation [105]. 

The OH radical is of fundamental importance to astrophysics [96], atmospheric 

chemistry [94], and precision spectroscopy [106]. The ground electronic state of OH 

is of 2 n symmetry, so the molecule can be efficiently manipulated with time-varying 

electric fields. In a series of groundbreaking experiments, Meijer and co-workers 

combined Stark deceleration [107] with electrostatic trapping [108] to carry out high-

resolution spectroscopic measurements of the radiative lifetime of OH(v = 1) [109], 

and to study cold collisions of OH molecules with Xe atoms in crossed molecular 
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beams [110]. Also, collisions of OH molecules with He and Ar atoms were studied 

in crossed molecular beam experiments [98] and strong steric effects were observed 

in the presence of an external electric field [99]. Similar measurements were also re­

ported for metastable CO(3n), NH(3n), and ground-state ammonia molecules [107]. 

Generally, molecules are confined in electrostatic traps in their highest-energy Stark 

level of the ground rotational state, but collisions with background atoms lead to 

depopulation of the Stark level and trap loss. Therefore, understanding the mecha­

nisms of collision-induced Stark relaxation is essential for minimizing trap losses and 

optimizing evaporative cooling of molecules in electrostatic traps [111, 112]. 

The formal quantum-mechanical theory for collisions of n-state molecules with 

atoms was developed by Klar [113], Shapiro and Kaplan [114], and Alexander [115]. 

Alexander and co-workers were able to calculate the cross sections for transitions 

between fine-structure and A-doublet levels of OH, NO, CN, and CH molecules in 

collisions with structureless particles [116, 117, 118]. Avdeenkov and Bohn analyzed 

the effects of electric fields on the collision dynamics of OH molecules and discovered 

new field-linked molecular states [119, 120, 121]. The propensity rules for state-to-

state inelastic transitions in ultracold He-OH collisions were analyzed by Gonzalez-

Sanchez et al. [122]. In the recent past, Lara et al. have improved the theoretical 

approach taking into account the non-adiabatic and hyperfine interactions and applied 

it to calculate the rate constants for inelastic relaxation in collisions of OH molecules 

with Rb atoms [111, 112]. In the following sections, we briefly outline the theory of 

collisions between OH molecules in 2H electronic states with 3,4He atoms and then 

discuss the results of their collisions in the presence of external electric and magnetic 

fields. 
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7.1 Theory 

The collision between an atom and a diatomic molecule can be described by the 

Hamiltonian 

" = -2k&R+Sp+nR'rJ)+^- ( 7-'> 
where r = \r\ is the internuclear distance in the diatomic molecule, R = \R\ is the 

length of the atom-molecule separation vector, 9 is the angle between the vectors R 

and r (see Fig. 7.1), ji is the atom-molecule reduced mass, and I is the orbital angular 

momentum for the relative motion of the collision partners (here He and OH). 

H 

He 

R 

Figure 7.1: He-OH system 

Because the fundamental frequency of OH (u> = 3569.64 cm""1) by far exceeds the 

energy scale of cold collisions (1 mK - 200 K), we can assume that the vibrational 

motion of OH is frozen out, that is r = re, where re = 1.226 A is the equilibrium 

distance of OH in the ground electronic state. The Hamiltonian Hmo\ determines the 

energy level structure of the molecule in the presence of external fields. The effective 

Hamiltonian for the ground vibrational state can be written as [123, 124, 125] 

£moi = Be[J2 - 2J2
Z - J+S_ - LS+] + (A + 2Be)LzSz + HB + HE + HA, (7.2) 
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where Be is the rotational constant of the molecule, J = N + L + S is the total angular 

momentum, N is the rotational angular momentum of the nuclei, L is the electronic 

orbital angular momentum, and S is the electron spin. The first two terms in Eq. 

(7.2) represent the rotational and spin-orbit (SO) Hamiltonians expressed through 

the ladder operators J±ST and the molecule-fixed projection of the total angular 

momentum Jz. We neglect the weak hyperfine interaction due to the H nuclear 

spin [123]. The term ALZSZ accounts for the diagonal part of the SO interaction 

parametrized by the SO constant A. The off-diagonal part of the SO interaction 

mixes the ground (2II) and excited (2E) electronic states, leading to A-doubling effects 

described by the Hamiltonian H\ [123]. Also included in Eq. (7.2) is the interaction 

Figure 7.2: Hund's case (a) angular momentum coupling scheme. 

of the permanent electric dipole moment of the molecule d with a dc electric field E 

HE = -Ed cos 8r, (7.3) 
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which depends on the orientation angle 9r of molecular axis in the space-fixed frame. 

The interaction with magnetic fields is given by 

HB = fi0B(L + 25) • B, (7.4) 

where B is the field strength and /i0 is the Bohr magneton. We assume that the electric 

and magnetic fields are co-aligned along the space-fixed z-axis [126]. Changing the 

orientation of the quantization axes does not alter the collision dynamics except near 

infrequently occurring avoided crossings [127]. 

The eigenfunctions of the Hamiltonian (7.2) can be expanded in parity-adapted 

Hund's case (a) basis functions (see Fig. 7.2) 

\JMQe) = \ [ | J M Q ) | A = l , E = n - l ) + 

e ( _ ) ^ - i / 2 | J M _ ^ | A = _ 1 ) E = _ 0 + l ) ] . (7.5) 

where the primitive case (a) functions are 

/o 7+ 1 \ 1/2 

|JMfi)|A£) = ( ~ ^ - J 2>£n(xr,0r,O)|AE>. (7.6) 

Here, M and Vt are the projections of the total angular momentum J on the space-fixed 

and molecule-fixed quantization axes, respectively, D ^ n is the Wigner .D-function, 

|AE) is the electronic wave function, and Vt = \Q\. The z-axis of the molecule-fixed 

coordinate frame coincides with that of the diatomic molecule, whose orientation in 

the space-fixed frame is specified by two Euler angles Xr and 9r. For 2U electronic 

states, the molecule-fixed projections of L and S are A = ±1 and E = ±1/2, so the 

parity-adapted basis functions are characterized by the absolute value of O = 1/2, 
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3/2. The parity quantum number e = ±1 in Eq. (7.5) characterizes the symmetry 

of the basis functions with respect to inversion. For an isolated 2II molecule in the 

absence of external fields, e is conserved, but intermolecular interactions and electric 

fields break the inversion symmetry and couple the states with different e. 

The eigenstates of the OH molecule can be written as linear combinations of 

Hund's case (a) basis functions 

|7>= E CjMnen\JMQe), (7.7) 
J,M,U,e 

where the field-dependent coefficients CJM^ta can either be obtained by numerical 

diagonalization of the Hamiltonian matrix or estimated using perturbation theory. 

In order to solve the scattering problem, we expand the total wave function of the 

atom-molecule system as [123] 

»4^f,(%(ftf), (7.8) 
R , 

where 

ipf,(R,r) = \JMne)\eme), (7.9) 

are the uncoupled angular basis functions composed of direct products of Hund's case 

(a) functions (7.5) and the spherical harmonics \img) describing the relative motion 

of the collision partners in the space-fixed coordinate frame. In Eq. (7.8), /3 is used 

as a collective index for {J, M, D,,e, £, m^}. When substituted into the Schrodinger 

equation, the expansion (7.8) yields a set of close-coupled (CC) differential equations 

Y2\iE 
dR2 F^(R) = 2^(MR^)\V(R,9) + ^+Hmol\M^r))Fp/(R), (7.10) 
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which can be solved by using a log-derivative algorithm [128, 129]. 

The interaction of a OH(2II) molecule with a structureless He atom is charac­

terized by two potential energy surfaces (PESs) of A' and A" symmetries [115]. In 

this work, we use the most recent ab initio interaction potentials calculated by Lee 

et al, [130], using the partially spin-restricted coupled cluster method with single 

and double excitations and non-iterated triples [RCCSD(T)] with an aug-cc-pVTZ 

one-electron basis set extended with bond functions. The matrix elements of the 

interaction potentials in Eq. (7.10) can be readily evaluated from their expansions in 

associated Legendre polynomials [123, 131]. 

After transforming the asymptotic wave function to the field-dressed scattering ba­

sis, the scattering ^-matrix elements can be determined by analyzing the asymptotic 

form of the solutions F1g.rnt(R) [126]. The cross sections for elastic energy transfer 

and inelastic scattering for a given collision energy Eco\\ and electric field strength are 

calculated as the sum of the ^-matrix elements as described in detail in Sec. 2.5.1 

T Aftot £,me e',m'e 

and the thermal rate constants are obtained by averaging the cross sections over 

a Maxwell-Boltzmann distribution of collision energies for transitions between the 

individual Stark states. 

7.2 Results 

Before getting into the details of the collision cross sections and rate coefficient, I 

discuss briefly the effect of external electric and magnetic fields on the 2II electronic 

state of the OH molecule. 
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Fig. 7.3: A schematic representation of the energy levels of OH in the absence of 
external fields. The individual A-doublet sublevels are labeled according to their 
inversion parity e — ± . The e/f notation is illustrated for the Fi, J = 3/2 energy 
level. Different pathways for collision-induced inelastic relaxation: fine-structure (ko), 
rotational (fcj), and A-doublet changing (k\). 

7.2.1 Energy levels of OH 

The energy levels of OH molecules in the absence of external fields are shown in 

Fig 7.3. Collisions with the He atoms can follow three different pathways for inelastic 

relaxation through fine-structure (k^), rotational (kj), and A-doublet (k\) coupling. 

Since the rotational constant of OH molecule is not negligible compared to the SO 

constant (\A/Be\ = 7.5), different values of 0, are coupled by the cross terms J±S^ in 
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Eq. (7.2). The rotational states in the Fx manifold can be expanded in Hund's case 

(a) basis functions as 

\F1,J=lM,e) = aj\J=lQ= §,M,e) + bj\J = §,f) = ±,M,e>, (7.12) 

where the expansion coefficients aj and bj characterize the degree of mixing of differ­

ent Q-states (in a pure Hund's case (a) molecule, the ^-states are uncoupled). The 

coefficients (aj,bj) are (0.985,0.174) for J = 3/2, (0.964,0.264) for J = 5/2, and 

(0.943,0.337) for J = 7/2. The F2 states can be expanded in the same way as in Eq. 

(7.12), with the coefficients given by (0,1) for J = 1/2, (-0.174,0.985) for J = 3/2, 

and (—0.266, 0.964) for J = 5/2. The Coriolis interaction between different Q-states 

also becomes stronger with increasing J and the molecule starts to approach Hund's 

case (b) limit. The only exception is the lowest rotational level in the F2 manifold, 

which can be represented by a single basis function. 

In Fig. 7.4 we show the electric field dependence of the energy levels displayed 

in Fig. 7.3. At small electric fields (E < E* = d/AA, where AA = 0.057 cm - 1 is 

the A-doublet splitting in OH) the energy levels depend quadratically on the electric 

field strength. As the electric field approaches the critical value of E* ~5 kV/cm, the 

first-order Stark effect starts to set in. At E > E*, all energy levels exhibit linear 

Stark shifts. Because the matrix elements of the A-doubling Hamiltonian increase 

linearly with J and so does the splitting AA [97], rotationally excited levels of OH 

exhibit progressively smaller Stark shifts as J increases. The same conclusion applies 

to E-state molecules [132] because the energy separation between the rotational levels 

J and J — 1 increases linearly with J. 

The presence of quasi-degenerate, opposite-parity levels in 2U molecules pushes 

the onset of the first-order Stark effect to low ^-fields (~10 kV/cm for a typical A-

doublet splitting of ~0.1 cm - 1). In contrast, the Stark effect in E-state molecules is 
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determined by couplings between different rotational states. Typical rotational level 

splittings in most molecules are >10 times larger than the A-doublet splittings, so 

large electric fields are required to induce appreciable Stark shifts in E-state molecules. 

For example, the first-order Stark effect in CaH (Be = 6.1 cm - 1) occurs at electric 

fields above 200 kV/cm, and for the heavy YbF molecule (Be = 0.24 cm - 1) , this value 
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Fig. 7.4: (Left panel): Stark levels in the i*\ manifold (2n3/2) vs the applied electric 
field. (Right panel): Stark levels in the F2 manifold (2ni/2) vs the applied electric 
field. The initial states for scattering calculations are shown by dashed lines. The 
Stark levels in different J-manifolds are drawn to scale and labeled for J = 3/2 by 
the absolute value of M. The label e (/) denotes the lower (upper) A-doublet in the 
absence of an electric field. The zero of energy corresponds to the ground state of 
OH(2II) at zero electric and magnetic fields. 
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is about 50 kV/cm. We therefore expect that collisions of El-state molecules will be 

more sensitive to electric fields than collisions of E-state molecules. 

7.2.2 Cross sections - the effect of electric field 

The CC equations (7.10) were integrated out to i?max = 60 a0 using the improved 

log-derivative algorithm [128, 129] with a constant step size of 0.1 a0. The spectro­

scopic constants of OH used in scattering calculations are (in cm - 1): Be — 18.55, 

A = -139.273, p = 0.235608, and q = -0.03877 (where p and q are the A-doubling 

parameters[124, 125, 123]). We use d = 1.68 D for the permanent electric dipole mo­

ment of OH in the v = 0 vibrational state [133, 121]. The basis set expansion included 

the rotational states up to Jmax = 11/2 and partial waves up to £max = 5. In order 

to make calculations at higher collision energies feasible, we reduced the basis set to 

Jmax = 7/2 and augmented it with partial waves up to £max = 30. The resulting cross 

sections were converged to better than 5%. Fig. 7.5 shows the cross sections for inelas­

tic relaxation in collisions of OH molecules in different initial rotational states with 

3He atoms as functions of collision energy. The initial states are the fully stretched 

low-electric-field-seeking states \Fi,J,M = J, f) shown by dashed lines in Fig. 7.4. 

The total inelastic cross section is the sum of the cross sections for transitions between 

different fine-structure, rotational, and Stark levels (see Fig. 7.3). At low collision 

energies, the OH molecules prepared in the ground state |Fi, J = 3/2, M = 3/2, / ) 

can only undergo downward transitions to the Stark states \FX,J = 3/2,M',e') as 

long as the collision energy does not exceed the splitting between the ground and the 

first excited rotational levels (~84 cm - 1). The Stark relaxation is mainly determined 

by the couplings between the different M components of the J = 3/2 state induced by 

the anisotropy of the interaction potential [123]. As an important consequence, the 

rates for collision-induced Stark relaxation of 2H molecules are large and insensitive 
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to the magnitude of the rotational constant. This is in contrast with the relaxation 

dynamics of E-state molecules, where different M-sublevels of the ground rotational 

state are uncoupled [127, 132]. The large inelastic rates of 2U molecules prevent their 

sympathetic cooling using 3He buffer gas but can be mitigated by electric fields at 

temperatures below 0.01 K [123]. As shown in the upper panel of Fig. 7.5, the cross 

sections for inelastic transitions in collisions of ground-state OH molecules are highly 

sensitive to the electric field strength. An electric field of only 7 kV/cm leads to the 

enhancement of the inelastic cross sections by two orders of magnitude at a collision 

energy of 100 mK. The rate constants for inelastic transitions in 3He-OH collisions 

at a temperature of 0.5 K are presented in Table 7.1. The rate constants in general, 

increase with increasing field strength. Also, the rate constants increase (decrease) 

with increasing the initial J for the i*\ (F2) manifolds. 

Table 7.1: The total rate constants for inelastic transitions (in 10~12 cm3/s) from 
different initial rotational states in the Fi and F2 manifolds for several electric field 
strengths (in kV/cm) at T = 10 mK. 

Electric field 
J 

3/2 
5/2 
7/2 
J 

1/2 
3/2 
5/2 
7/2 

0 

0.02 
0.34 
3.13 

10.3 
7.67 
6.18 
5.44 

5 
Fl 

0.09 
0.98 
3.76 

F2 

10.3 
7.62 
6.22 
5.50 

50 

0.60 
2.76 
4.43 

10.8 
8.16 
7.41 
7.44 

100 

0.89 
3.49 
5.52 

10.9 
9.15 
8.20 
7.93 

Similarly to Fig. 7.5, the cross sections for inelastic relaxation of rotational states 

in the F2 manifold are shown in Fig. 7.6. 
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Fig. 7.5: Collision energy dependence of the inelastic cross sections for He-OH(2Il) 
collisions. The OH molecules are in the maximally stretched \Fi, J, M = J, f) initial 
states with J = 3/2 (upper panel), J = 5/2 (middle panel), and J = 7/2 (lower 
panel). Different curves in each panel refer to different electric fields: zero (full line), 
5 kV/cm (short dashed line), 50 kV/cm (long dashed line), and 100 kV/cm (dash-
dotted line). The magnetic field is 1 G. 
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The corresponding rate constants are presented in Table 7.1. The variation of the 

cross sections with electric field and initial rotational state is insignificant, because of 

the presence of efficient fine-structure relaxation channels \F2, J) —>• \FX, J'). Indeed, 

the partial rate constants k^ presented in Table 7.2 are ten times larger than those for 

J-changing and A-doublet changing transitions. Figure 7.7 shows the inelastic cross 

sections for 3He-OH as functions of electric field at a collision energy of 10~3 cm""1, 

which corresponds to the s-wave regime in Fig. 7.5. The cross sections display a 

complicated resonance structure at electric fields between 7 and 30 kV/cm, and grow 

monotonously as the field strength increases past 30 kV/cm. The resonance structure 

occurs only for collisions of molecules in the ground rotational state \Fi,J = 3/2). For 

higher rotational states, the availability of many decay channels leads to more efficient 

inelastic relaxation (cf. Fig. 7.5), leading to suppression of scattering resonances [81]. 

This tendency is even more pronounced for the initial states in the F2 manifold. The 

Table 7.2: The rate constants for f2-changing, J-changing, and A-changing transitions 
(see Fig. 7.3) for different electric field strengths (in kV/cm). The rate constants are 
given in units of 10~12 cm3/s for the initial states \Fi, J = 5/2, M = 5/2, / ) and 
\F2, J = 3/2, M = 3/2, / ) at T = 10 mK. 

Electric field 0 5 100 

Fi 

kA 

kj 

0.023 
0.312 

0.115 
0.865 

1.55 
1.91 

F2 

k\ 
kj 

ko, 

0.033 
0.697 
6.87 

0.037 
0.683 
6.90 

0.365 
0.593 
7.92 

lower panel of Fig. 7.7 shows that the cross sections for inelastic relaxation out of 

the \F2,J) states are almost independent of the electric field. Rotational excitation 
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Fig. 7.7: (Upper panel) Electric field dependence of the cross sections for inelastic 
scattering of OH(Fi, J, M = J, f) with He for different initial rotational states J. 
(Lower panel) Same as in the upper panel but for the OH(F2, J, M = J, / ) initial 
state. The collision energy is 10~3 cm - 1 . 
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of molecules opens up new pathways for relaxation. As shown in Fig. 7.3, the OH 

molecules in the J = 7/2 state can undergo A-doublet changing, J-changing, and 

fine-structure transitions. The relative efficiency of these relaxation pathways can be 

quantified in terms of the partial rate constants k^, kj, and k^. The rate constants 

for these processes are presented in Table 7.2 for a temperature of 10 mK. The rate 

constants for A-doublet changing transitions increase by two orders of magnitude 

with increasing electric field from zero to 100 kV/cm. The electric field dependence 

of the A-doublet changing rates for rotationally excited OH molecules is not as dra­

matic. Similarly, the rate constants for rotational relaxation become less sensitive to 

the electric field strength with increasing J. The collision dynamics of SO-excited 

OH molecules is determined by the very efficient fine-structure relaxation process 

\F2, J) —> \Fi,J'), which is insensitive to electric field. In order to elucidate the 

rich resonance structure shown in Fig. 7.5, it is useful to analyze the cross sections 

for individual Stark transitions [Eq. (7.11)]. A plot of the state-resolved cross sec­

tions versus collision energy for different final states is shown in the upper panel of 

Fig. 7.8. A few distinct propensity rules are immediately apparent from Fig. 7.8. The 

dominant transition \FX,J = 3/2, M = 3/2, f) ->• \FUJ' = 3/2, M' = 1/2, / ) con­

serves the inversion parity and corresponds to a minimal change of M. However, this 

propensity rule breaks down near the shape resonance at Ecoii ~ 0.2 cm - 1 , where the 

parity-changing transition \FUJ = 3/2, M = 3/2, /} -> \FUJ' = 3/2, M' = 3/2, e) 

dominates. A closer inspection of Fig. 7.8 shows that, in general, the probability for 

the transition \Fi,JMe) ->• |Fi, J'M'e') decreases with increasing AM = M' - M 

and Ae. This is on a par with the observations made by Gonzalez-Sanchez et al. in 

their computational study of 4He-OH collisions [122]. 

At zero electric field, the state-to-state cross sections exhibit a series of resonance 

peaks. Because the total angular momentum projection, Mtot = M+M^ is conserved, 
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Fig. 7.8: (Upper panel): State-to-state cross sections for inelastic scattering of 
OH(Fi, J = 3/2, M = 3/2, / ) with 3He at zero electric field. The magnetic field is 1 
G. (Lower panel) Partial wave contributions to the cross section marked as "3/2e" in 
the upper panel. The magnetic field is 1 G. See text for details. 
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the inelastic transition M —>• M' must necessarily be accompanied by the transition 

me —»• rri£ + AM [123]. Thus, even for s-wave collisions {£ = 0), there is always a 

centrifugal barrier in the outgoing collision channel, which may lead to temporary 

trapping of the collision partners to form a quasi-bound state (or shape resonance). 

Outside the s-wave regime, the quasibound states can also occur in the incoming 

collision channel. The lower panel of Fig. 7.8 shows the decomposition of the cross 

section for the inelastic transition \Fi,J = 3/2,M = 3/2,f)->\FuJ' = 3/2,M' = 

1/2,/) into different partial-wave contributions [cf. Eq. (7.11)] 

<7r/l-+n/>e' = j£2 ̂ 2 ] C 5Z \8n,6U'5ml,m'l ~ S y ^ . y ^ / ?• (7-13) 
T Mtot rne m'£ 

By analyzing the ^-resolved cross sections as functions of collision energy, each reso­

nance can be assigned the quantum numbers £ and £'. The analysis shows that the 

broad peak at Eco\\ ~ 0.65 cm - 1 can be identified as an £ = 3 shape resonance, and 

the lowest-energy peak is due to an £ = 1 shape resonance (in these cases, £' = £, i.e., 

the resonances occur in both the incoming and outgoing collision channels). There 

are also resonances corresponding to the centrifugal barriers in the outgoing collision 

channel. An example of such a resonance due to the £ = 0 —>• £' = 2 transition is 

shown in the lower panel of Fig. 7.8. We note that many of the resonances shown 

in the lower panel of Fig. 7.8 do not show up in the total cross section because of 

the averaging, which occurs when different partial wave contributions are added to­

gether. Electric fields couple the opposite parity states (Ae = ±2), which alters the 

selection rules for individual Stark transitions. The upper panel of Fig. 7.9 shows the 

state-to-state inelastic cross sections as functions of collision energy in the presence 

of an electric field of 5 kV/cm. A comparison with Fig. 7.8 shows that electric fields 

alter field-free propensity rules in such a way that the incoming collision flux gets 
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Fig. 7.9: Same as in Fig. 7.8 but for the electric field of 5 kV/cm. 
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redistributed more evenly between different outgoing channels. The absolute values of 

the cross sections and the number of shape resonances increase considerably compared 

to the field-free case. 

The electric-field-induced couplings of the opposite parity states lead to indirect 

couplings between different partial waves [134]. This, in turn, leads to the suppression 

of diagonal contributions to the scattering amplitude (i —> t) and enhancement of non-

diagonal transitions (£ —> £ ± 1) [134]. As a result of these indirect couplings, many 

more partial waves become involved in the collision process and shape resonances get 

suppressed. As illustrated in the lower panel of Fig. 7.9, the I —> £ ± 1 transitions 

result in many additional resonant contributions, which shift and split the individual 

resonance lines, leading to electric-field-induced resonance "broadening". 

In order to explore the generality of our results, we analyze the sensitivity of 

the cross sections to various parameters of the Hamiltonian (7.2). In Fig. 7.10, 

we plot the total cross section for Stark relaxation in 3He-OH collisions from the 

\Fi,J = 3/2, M = 3/2, / ) initial state calculated with the rotational constant of the 

OH molecule multiplied by factors of 0.5 and 2. Although the scaled cross sections 

exhibit a different resonant structure, the background value of the cross sections at 

Eco\\ > 0.1 cm - 1 is not sensitive to the rotational constant. This confirms our pre­

vious conclusion [123] that M-changing transitions in 2II molecules occur via direct 

couplings of different Stark levels induced by the anisotropy of the interaction poten­

tial. As these couplings are typically strong, the collision dynamics of 2II molecules 

tends to be insensitive to their rotational structure. 

7.2.3 Comparison with experiment 

The cross sections for electronic and rotational energy transfer in collisions of 2II 

molecules with rare gas atoms were measured in a number of experiments 
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Fig. 7.10: (Upper panel): Collision energy dependence of the inelastic cross sections 
for OH(Fi, J = 3/2, M = 3/2, / ) with 3He at an electric field of 5 kV/cm calculated 
with the rotational constant of OH multiplied by factors of 0.5 (dashed line) and 2 
(dotted line). The original 3He-OH cross section (full line) is also shown for compar­
ison. (Lower panel): same as in the upper panel but for the OH molecules initially 
in the \F2, J = 1/2, M = 1/2, / ) state. The magnetic field is 1 G (upper panel) and 
104 G (lower panel) 104 G 
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[98, 99, 100, 101, 102,110, 135]. In a recent experimental study, Sawyer et al. observed 

collisions of magnetically trapped OH molecules in the \Fi, J = 3/2, M = 3 /2, / ) 

initial state with a supersonic beam of 4He atoms [135]. By analyzing the time 

dependence of trap loss, they were able to measure the absolute scattering cross 

sections at seven collision energies between 60 cm - 1 and 200 cm - 1 . The measured 

cross sections displayed an interesting variation over a narrow interval of collision 

energies from 70 to 130 cm - 1 , which was attributed to a threshold effect. As shown 

in Fig. 7.4, the A-doublet components of the first rotationally excited state (J = 5/2) 

lie 83.9 and 84.1 cm - 1 above the field-free ground state (J = 3/2). An electric field 

of 5 kV/cm further splits the components into six thresholds lying within 0.1 cm - 1 

of each other. According to the Wigner threshold law for s-wave scattering, the cross 

section for rotational excitation J = 3/2 —>• J' = 5/2 should vary as \JE — EthT, 

where EthT is the threshold energy and E is the total energy [136]. 

In order to interpret the experimental findings of Ref. [135], we extended our 

quantum calculations to higher collision energies to obtain converged cross sections for 

elastic scattering and rotationally inelastic transitions in 4He-OH collisions (through­

out this section, we consider collisions with the 4He isotope). The calculations were 

performed at the seven collision energies probed in the experiment [135]. To eluci­

date the role of inelastic transitions in He-OH collisions, we complemented the mul­

tichannel CC calculations with a simple model, which ignores the anisotropy of the 

atom-molecule interaction potential. This approximation decouples the CC equations 

(7.10) to yield a set of one-dimensional (ID) Schrodinger equations, which we solve 

for a given partial wave £ and collision energy Eco\\. By summing the resulting partial 

cross sections over £, we obtain the total elastic cross section. To parametrize the ID 

model, it is most natural to use the isotropic part of the atom-molecule interaction 

potential given by 
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V0(R)= \\VA, {R, &) + VA„(R,e)\ sin 6d6, (7.14) 
Jo 

where VA>(R,0) and VA"(R,9) are the He-OH interaction potentials of A' and A" 

symmetry [130]. The ID model is advantageous since the calculations are less com­

putationally intensive compared to the full multichannel CC calculations. As shown 

below, the isotropic model (ID) does a good job at describing elastic energy transfer 

in He-OH collisions. We expect the ID model to yield a comparable level of accu­

racy for many other atom-molecule systems, where elastic collisions dominate over 

inelastic relaxation. We therefore recommend the ID model as a fast and simple way 

to estimate the elastic cross sections for atom-molecule system collisions. The upper 

panel of Fig. 7.11 shows the calculated and measured total cross sections for collisions 

of OH molecules initially in the \Fi,J = 3/2, M = 3/2, / ) state with He atoms at 

an electric field of 5 kV/cm. The calculated cross sections decrease monotonically 

with increasing collision energy while the observed cross sections follow the opposite 

trend. At variance with experimental data, the calculated total cross sections display 

no threshold structure near Ecou ~ 84 cm - 1 . However, the inelastic cross sections 

shown in the lower panel of Fig. 7.11 do increase significantly as the collision energy 

is tuned across the J = 5/2 threshold. The absence of the threshold structure in the 

total cross section becomes clear when we compare the absolute magnitudes of the 

elastic and inelastic contributions: on average, the inelastic cross section accounts for 

less than 5% of the total cross section. The good agreement between the results of 

the ID model and full multichannel CC calculations shown in Fig. 7.11 also suggests 

that the total cross section is dominated by the elastic contribution. 

Figure 7.12 shows the cross sections for elastic and inelastic scattering in He-OH 

collisions calculated on a fine grid of collision energies in the vicinity of the J = 5/2 

threshold. 
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Fig. 7.11: (Upper panel): Total cross sections for 4He-OH(F1; J = 3/2, M = 3/2 , / ) 
as functions of collision energy: multichannel CC calculations (triangles), isotropic 
model (full line), experiment (squares with error bars). (Lower panel) Collision energy 
dependence of the inelastic cross section for the same system from multichannel CC 
calculations. The electric field is 5 kV/cm, the magnetic field is 1 G. 
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Fig. 7.12: (Upper panel) Calculated total (full line) and elastic (dashed line) cross 
sections as functions of collision energy near threshold. (Lower panel) The inelastic 
cross section as a function of collision energy near threshold. Note the different Y-
axis scaling for total and inelastic cross sections. The electric field is 5 kV/cm, the 
magnetic field is 1 G [1]. 
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The complicated resonance structure in the lower panel of Fig. 7.12 is due to the 

overlapping threshold dependencies of the cross sections for inelastic transitions from 

the rotationally ground state to the first rotationally excited state. As shown in 

Figs. 7.11 and 7.12, the total cross section is dominated by elastic scattering, and 

hence shows little sensitivity to collision energy near threshold. These observations 

agree well with the previous experimental and theoretical studies of Xe-OH colli­

sions near threshold based on multichannel CC calculations and accurate ab initio 

interaction potentials [110] calculated using the same ab initio method as the He-OH 

potentials used in this work. The calculations of Gilijamse et al. shown in Fig. 7.5 of 

their paper [110] demonstrate that the inelastic cross section accounts for only a small 

fraction (<10%) of the total Xe-OH scattering cross section for collision energies from 

50 to 300 cm - 1 . In our calculations, this fraction is even smaller due to the weaker 

anisotropy of the He-OH interaction. A possible source of the disagreement between 

theory and experiment may be traced to the He-OH interaction potentials used in 

scattering calculations. In order to explore the sensitivity of our results to variations 

of the interaction potential, we calculated the elastic cross sections with the isotropic 

term (7.14) multiplied by a constant scaling factor / s . To avoid expensive multichan­

nel calculations, we employed the ID model to calculate the elastic cross sections as 

functions of collision energy for several values of fs. The results presented in Fig. 7.13 

demonstrate that scaling the isotropic part of the interaction potential by factors 0.5 

and 1.5 modifies the magnitude of the cross sections but not their dependence on col­

lision energy. The scaling factors chosen are large given the accuracy level typical of 

present-day ab initio interaction potentials (~10-20 %). An independent calculation 

of the bound states of the He-OH van der Waals complex yielded good agreement with 

high-resolution spectroscopic measurements [137], further supporting the reliability 

of the ab initio interaction potentials calculated by Lee et al. [130]. We therefore 
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believe that the uncertainties in our calculated cross sections are significantly smaller 

than shown in Fig. 7.13 for fs = 0.5 and 1.5. 
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Fig. 7.13: Same as in the upper panel of Fig. 11, but for the isotropic interaction 
potential multiplied by 0.5 (lower trace) and 1.5 (upper trace). 

The cross sections for elastic scattering are also sensitive to the location of the 

repulsive wall of the interaction potential [138]. We performed calculations with 

the interaction potential shifted to smaller or larger R by 1 a0. Figure 7.14 shows 

that these modifications do not affect the dependence of the cross sections on collision 

energy and the overall effect is very similar to that produced by scaling the interaction 

potential by a constant factor (see Fig. 7.13). As with the scaling procedure mentioned 

above, shifting the interaction potential by 1 ao is a substantial modification that 

increases the rotational constant of the He-OH weakly bound complex by as much as 
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30% (the inaccuracy of the calculated rotational constants is normally on the order 

of a few percent [130]). 
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Fig. 7.14: Same as in the upper panel of Fig. 11, but for the isotropic interaction 
potential shifted by 1 a0 to the left (upper trace) and right (lower trace). 
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CHAPTER 8 

CONCLUSION 

In this work, the prominence of magnetic dipole-dipole interaction on cold and ul-

tracold collision dynamics between paramagnetic atoms (Cr and Rb) was investigated. 

Chromium atoms have been used to illustrate the mechanical effect of the magnetic 

dipolar force on a superfluid gas of Cr atoms and the collapse of a pure dipolar BEC 

has been demonstrated. Zeeman relaxation of Cr spin states in cold and ultracold 

collision of Cr isotopes was calculated by quantum multichannel methods and the 

scattering lengths for the spin multiplets were obtained by tuning the short-range 

parameters with magnetic fields through Fano-Feshbach resonances. New resonances 

have been predicted. The short-range molecular interactions were calculated with 

ab initio techniques and accurate Born-Oppenheimer potential energy curves were 

matched to numerically calculated long-range dispersion potential energies. In the 

bosonic collisions, all resonances are due to dipolar collision and for the mixed-isotopic 

cases, the interplay between the dipolar and hyperfine resonances is studied. Detailed 

comparisons with observations are made. Calculations presented in this thesis have 

been helpful for buffer-gas cooling experiments. In Cr-Rb collision, a molecular state 

with a large permanent electric dipole moment is identified. This molecule has both 

large electric and magnetic dipole moments. 

Paramagnetic molecules, such as hydroxide (OH), are also buffer gas cooled and 

magnetically trapped. In this work, ab initio quantum collisional techniques were 

used to calculate the cross sections for collision of trapped OH molecules with a cold 
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supersonic atomic helium beam. It was shown that by considering the effect of the 

trapping potential on the collision, it may be possible to obtain reasonable agreement 

with observations. 

Larger Bohr magneton paramagnetic atoms (such as dysprosium) are now Bose 

condensed with an eye toward simulation of many-body systems with strong dipolar 

interactions. The techniques developed in this thesis will be useful for determining the 

efficiency of production for strongly-interacting systems. Inelastic collisions, which 

can be harmful to trapping of atoms and molecules, are extremely important for 

isolating the infinity of the Hilbert system. 
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APPENDIX A 

BESSEL FUNCTIONS 

The reaction matrix K is determined by the asymptotic form of the wave function 

W(r) = J(r)-N{r)K, (A.l) 
r—>oo 

where J(r) and N(r) are diagonal matrices constructed using spherical and modified 

spherical Bessel functions, respectively. In this work we use 

[J(r)]u = -^{hr^Ahr) (A.2) 

[N(r)}u = ^ ( f e r K t e r ) (A.3) 

for open channels, and 

lJ(r)}u = \ll(w)ik(Kir) (A.4) 

[N(r)]u = ^ f ( ^ r ) ^ r ) (A.5) 

for closed channels. Here, k is the orbital angular momentum quantum number and 

ki is the absolute value of the channel momentum. For the Bessel functions, we follow 

the conventions set in [41]: 
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Spherical Bessel functions of the first and second kind 

JoO) 

n0(x) 

ni(x) 

n2{x) 

— sin(x) 
x 

sin(a;) cos(x) 
x x 

sin(x) cos(x) 
x° x xz 

--cos(a;) 
x 

cos(a;) — — sin(x) 
ar x 

3 1 \ 3 
1 cos(x) sm( i ) 

x° x x< 

Modified spherical Bessel functions of the first and second kind 

i0(x 

ii{x 

i2(x 

k0(x 

ki(x 

k2(x 

= - sinh(x) 

cosh(x) 
1 

sinh(x) 
x • • x' 

3 A . , ^ 3 

— H— sinh(x) cosh(x) 
X6 XJ X1 

— exp(—x) 
x 

1 ! \ / N 

— + - exp(-ar) 
x1 x I 3 3 1' , , 
-» + -o + - exp{-x) 
X6 Xz X 

The asymptotic forms of [J(x)]u and [N(x)]u are 

[J(r)}u = ~j= sin ( 

[N(r)]« = — cos [fcjr - / » -

(A 

(A 
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for open channels, and 

[J{r)]u = - = [exp(^r) - (-1)'* exp( -^ r ) ] (A.8) 

[JV(r)]« = y | e x p ( - « i r ) (A.9) 

for closed channels. 

The exponential character of the closed-channel functions defined by (A.4), the ex­

ponential decrease in particular, is a potential source of numerical difficulties, namely 

overflow and underflow. The rest of this appendix shows how to avoid this problem 

by calculating the matching function ratios instead. In this work we limit ourselves 

to two propagation methods: log-derivative and renormalized Numerov. 

Bessel function ratios 

As we have seen, there is a need for either the log-derivative of closed-channel 

functions or the ratio of closed-channel functions at two consecutive grid points. The 

simple approximation yields +ki: —ki for the log-derivative method and exp(+kih), 

exp(-kih) for the renormalized Numerov method. If we want more precision, then 

there are two cases to consider. 

A.l Log-derivative method 

Here, the prescribed way (see [43]) of handling boundary conditions requires eval­

uation of the log-derivative of the modified spherical Bessel functions 

i'N(Kr)/i^(K,r), and k'N{Kr)/k^{Kr). (A.10) 
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The evaluation of i'N(z)/iN(z) , where z = nr, involves a recursive scheme [41] 

in-i(z) - in+i(z) = in{z) (A.ll) 

nin-x{z) + (n + l)in+i{z) = (2n + l )^(^) . (A.12) 

After dividing both equations with in(z) and rearranging the terms we get 

In(z) = - 2 - ^ + I~\(z) (A.13) 

»n(*) = (n + *)Jn(*) + ^n-l(^) ^ - ^ 
in{z) 2n + l 

where we use the ratio 

In(z) = % ^ . (A.15) 
W ) 

To find the ratio i'N(z)/iN(z) using (A.14) we need IN(Z) and I^^z), which are 

obtained from (A.13). The solution of (A.13) is initiated with 

^44 = coth(z) - - , (A. 16) 
IQ(Z) Z 

and iterated from n — 1 to n = N. The evaluation of k'N(z)/kN(z) also involves a 

recursive scheme [41] 

2n + 1 
fc„_i(z) - kn+i(z) = kn(z) (A. 17) 

nkn^(z) + (n+ l)kn+1(z) = -{In + l)k'n(z). (A.18) 
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After dividing both equations with kn(z) and rearranging the terms we get 

Kn(z) = 2-^- + K-\(z) (A.19) 

KM. = (n + l)Kn(z)+nK-^(z) 
kn(z) 2n + l 

where we use the ratio 

*„(*) = % $ . (A.21) 

The ratio k'N(z)/kN(z) from (A.20) depends on KN{z) and K^^z), which are ob­

tained from (A.19). The solution of (A.19) is initiated with 

rn = 1 + 1- (A-22) 

k0{z) z 

A.2 Renormalized Numerov method 

Here, the prescribed way (see [45]) of handling boundary conditions requires eval­

uation of the ratios of modified spherical Bessel functions at two consecutive points 

Z2lNi;t and ^ 4 4 , (A.23) 
ziiN(zi) zikN(zi) 

where Z\ = nr, z2 = n(r + h), r is the matching distance and h is the integration step. 

The evaluation of [z2iN(z2)]/[ziiN(zi)] involves a recursive scheme [41] 

in(z) = Qn(z) sinh(2;) + q_{n+1)(z) cosh(z), (A.24) 

where functions qn(z) are themselves defined through a recursive equation 

qn-2{z) = qn{z) + \n-i{z), (A.25) 
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which is initialized with q0(z) = 1/z and qx(z) = — 1/z2. After multiplying (A.24) 

with z and introducing qn{z) = zqn(z), we get 

zin(z) = qn{z) sinh(» + q_{n+1){z) cosh(z). (A.26) 

To find qn(z) and q~-(n+i)(z), for n > 3, we use 

U*) = Qn-tW - ^Y^qn-iiz) (A.27) 

9-(n+l)(*) = ?-(n-l)(*) ~ 9-n(z)- ( A " 2 8 ) 

The initial values are determined by io(z), 

zi0(z) = sin(z) —> q0(z) = 1, q_±(z) = 0, (A.29) 

and ii(z), 

1 l 
^1(2;) = — sinh(-z) + cosh(2;) —> qi(z) = — , 9-2(2) = 1- (A.30) 

Equation (A.27) is initialized with q0(z) = 1 and qY{z) = — 1/z, while (A.28) is 

initialized with q^i(z) = 0 and q_2{
z) = 1- With the help of the basic properties of 

hyperbolic functions 

sinh^i + Kh) = sinh(zi) cosh(Kh) + cosh(zi) sinh(K/i) (A.31) 

cosh(zi + Kh) — cosh(zi) cosh(Kh) + sinh(;zi) sinh(/c/i), (A.32) 
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we get the final expression for the required ratio 

Z*N^\ = (A.33) 

qN{z2)[sinh(«/i) + cosh(/«/i) tanh(zi)] + q_(N+i\(z2) [cosh.(nh) + sinh(Kh) tanh(^x)] 

QN(ZI) + Q-(N+I)(ZI) tanh(zi) 

where cosh(Kh) and sinh(«;^) are less prone to numerical difficulties, due to of nh « 

zl,z2. The evaluation of [z2k^(22)]l\z\fcjv(-zi)] is based on a recursive equation for 

the modified spherical Bessel functions of the second kind 

kn(z) = exp(z)fn(z), (A.34) 

since fn(z) is itself defined through recursion 

In — 1 
fn(z) = fn-2(z) + f^{z\ (A.35) 

X 

in which the initial values are f0(z) = \jz and fi = (z + l)/z2. After multiplying 

(A.34) with z and introducing fn(z) = zfn(z), we get 

zkn(z) = exp(-z)Jn(z) (A.36) 

where fn(z) are found using the recursive equation 

_ _ 9r7 — 1 — 

/nW = fn-M + ^ ^ / n - l W , (A"37) 

which is initialized with f0(z) = 1 and fi = {z+ l)/z. The final expression for the 

required ratio is 

Z2kN{z2) . iJN{z2) , . QQx 
—;—-.—r = exp(—KK)^=~—- . (A.38) 
ZikN(z1)

 yK JfN(Zl) 
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APPENDIX B 

WIGNER-ECKART THEOREM 

The Wigner-Eckart theorem enables us to find the matrix elements of an irre­

ducible tensor operator Tq ' in a basis that includes angular momentum numbers: 

(ljm\T^\1'j'm') = (-iy-
j k f 

i —TO q m! j 

< 7 J | | T W | | 7 / ) , (B.l) 

where the variable 7 represents all other quantum numbers. The conventional inter­

pretation is that the geometric part gets factored out through 3j Wigner coefficients, 

and the rest, which depends on the specific interaction, is contained in the reduced 

element (p/j | \T^ 11 7 ' / ) . 

Special attention should be paid to different phase definitions and to the scaling 

of the reduced elements. Some authors choose to keep the phase coefficient (—l)2fc 

explicit even though k has to be an integer, hence the phase factor is identical to 

one. The half integer rank tensors would represent non-physical operators that mix 

fermions and bosons. In this work we follow the conventions set in [92]. 

Very often, while working in the coupled basis, we need to evaluate operators that 

act in only one of the uncoupled spaces and are extended by tensor product onto the 

coupled space according to 

7 W 7\ ® J2, and T2 -> h <g> T2. (B.2) 
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The coupling scheme of two angular momenta serves as an example 

3 = 3\ + h • (B.3) 

The relation between the reduced matrix elements of 7\ in the coupled (\j, m)) and 

uncoupled (|ji,mi)) representations is 

(Jih)J T^k) U'l32)f) = 

^ ^ ( - I ) i l + J 2 + / + V ( 2 j + l)(2j ' + 1) { Jl n J }[3i 
3' k j[ 

Tl(k) 3[), (B.4) 

and likewise for To 

{3i32)3 T^k) 
V'l&f) = 

3i 32 3 
* i i j i ( - l ) i l + i i + J ' + V ( 2 J + l)(2j ' + l) \ } {32 

k f j'2 

T9( fc) 32) • (B.5) 

To fix the convention, we give the reduced matrix element for the angular momentum 

operator 

f) = y/jU + l)(2j + l)Sjtjl. (B.6) 

B.l An example 

The direct application of the above expressions is useful when we need the matrix 

elements of the electron spin operator sz in the coupled basis defined by the angular 

momentum operator f = s + i. Since we want to evaluate the matrix elements of 
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angular momentum operators, which are irreducible tensors of rank 1 (k = 1), the 

zero component (q — 0) in particular, we list only the coefficients for which Aj = 0 

or 1 and Am = 0. 

For the j —¥ j transition matrix element evaluation, we need the following 3j 

coefficient in (B.l) 

3 3 1 
= ("I ) 0-m_ m 

m —m 0 [j(j + l)(2j + l) 
(B.7) 

and a 6j coefficient from (B.4) or (B.5) 

3\ 32 3z 

1 h h 

/ 1 ) s + i 2[y3(J3 + l ) + J 2 ( j 2 + l ) - j i ( j i + l)] 

y/2j2(2j2 + l)(2j2 + 2)2j3(2j3 + 1)(2J3 + 2)' 
(B.8) 

where s = j i + j 2 + j 3 -

For the j — 1 —> j transition matrix element evaluation, we need the following 3j 

coefficient in (B.l) 

3 +1 3 Is 

m —m 0y 

= (_ iy ' - m _ 1 (j + l)2 — rri 
L(2j)(2j + l)(2j + 2). 

(B.9) 

and a 6j coefficient from (B.4) or (B.5) 

3\ 32 33 

1 J3 — 1 32 

, _ 1 V 2(a + l ) ( s - 2 j 1 ) ( 5 - 2 j 2 ) ( s - 2 j 3 + l) 
1 M / 2j2(2j2 + l)(2j2 + 2)(2j3 - l)2j3(2j3 + 1)' l > 

where s = j 1 + j 2 + j 3 . 
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B.2 Symmetry properties of 3j, 6j and 9j symbols 

A quick glance at any table of Wigner coefficients shows that not all arrangements 

of a given set of constituent angular momentum numbers are included: in short, 

tables are compacted by exploiting symmetry properties of Wigner symbols. We may 

encounter a situation where we have the listed values of Wigner symbols, be they 

numerical or analytical expressions, but the constituent numbers are in the "wrong" 

order. Only the absolute values of the symbols are known, but to extract the correct 

signs we must manipulate the symbols using their symmetry properties [92], listed 

below: 

3j) Column permutation introduces sign change e 

JP(1) JP(2) JP(3) 

mP(i) mP(2) mp(3) 

/ • • • \ 
J l J2 J3 

\mx m2 m3J 
(B.11) 

where e depends on the parity of the permutation P 

e = < 
1 even permutation, 

(—l)s odd permutation, 

(B.12) 

and S = Y%=1ji. 

Sign change of all magnetic projection numbers introduces sign change 

/ • \ 
31 J2 33 = (-1) jl+32+33 

J l 32 33 

m-i m2 m3 

(B.13) 

182 



6j) - Column permutation leaves the 6j symbol unchanged 

JP(1) JP(2) JP(3) 

lp(l) lp(2) ^P(3) 

(B.14) 

Simultaneous interchange of any two numbers in the top row with the 

corresponding numbers in the bottom row leaves the 6jf symbol unchanged 

(B.15) 

9j) - Reflection about any of two diagonals leaves the 9j symbol unchanged 

J l J2 J3 

S k k k 

k k k 

Jl J4 3l 

> = < 

J9 J6 J3 

k k k ( - } k k k 

J3 J6 J9 3i 3A J I 

(B.16) 

The 9j symbol changes its sign under permutation of columns 

JP(1) JP(2) JP(3) 

^P(l) h{2) h(3) } 

^ P ( l ) kp{2) fcp(3)> 

= e < 

Jl 

h 

h 

1 

J2 k 

k h > 

k2 h 

(B.17) 

or rows 
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jp(l) lp(l) fcp(l) 

\ JP(2) lp(2) kp(2) 

JP(3) h{3) kP{3) j 

> = e < 

h 

J2 

h 

h 

h 

h 

h 

fa > , (B.18) 

where the sign e depends on the parity of permutation P 

e = i 
1 even permutation, 

(—l)s odd permutation, 

(B.19) 

fmdS = Y,3i=1(ji + li + ki)-
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APPENDIX C 

TESTING EXAMPLES 

Here, we give a list of a number of known solutions for the Schrodinger equation 

2m 
fl>"(x) + ̂ (E-V{x))il>{x)=0 (C.l) 

that are simple enough to implement and yet sufficient to verify the correctness of a 

single-channel or a multichannel solver execution. 

C.l Harmonic oscillator 

This is a well known example for which the analytical solutions of (C.l) for the 

harmonic potential 

V(x) = \muj2x\ (C.2) 

where a: is a displacement variable, are expressed using the Hermite polynomials. The 

bound type solutions, normalized to unity, are 

i;n(x) = J—— exp(-x2 /2)Hn(x) (C.3) 
V7r1/22«n! 

and the corresponding bound state energies are 

En = {n + \), (C.4) 
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where we set h = m = to = 1. To calculate wave functions we need Hermite polyno­

mials, the first five of which are given below: 

H0(x) 

H^x) 

H2(x) 

H3(x) 

# 4 0*0 

= 1 

= 2x 

= Ax2 - 2 

= 8x3 - \2x 

= 16x4 - A8x2 + 12 

(C.5) 

The polynomial series grows very quickly so its evaluation becomes difficult and an­

other approach is needed. The following recurrence relation can be used instead 

Hn+i(x) = 2xHn(x) - 2nHn_1(x), (C.6) 

initialized with 

HQ(x) = 1, Hx{x) = 2x . (C.7) 

The first derivative of the Hermite polynomial is obtained using 

H'n(x) = 2nHn_1(x) , (C.8) 

while the first derivative of the wave function is 

^n(X) = \h^n-l{x) - t h r ^ + l W 
n + 1 (C.9) 
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If only the log-derivative of the wave function is needed, Hermite polynomials are 

sufficient, since 

CW = H'Jx) x (C10) 
tpn(x) Hn{x) 

C.2 Morse potential 

The Morse potential [139] 

V{x) = D exp(-ax) (exp(-aar) - 2) , (C.ll) 

where a; is a displacement variable and the parameter D determines the depth of the 

potential, has the known expression for bound levels 

^ = - t £ ( " - 8 ) 2 ' (C'12) 
where the parameter s is given by 

2s + l=2V^D 
an 

The corresponding wave functions are 

My) = Nny
s-neM-ymL2

n
is-n\y) , (C.14) 

where Ln (y) are associated Laguerre functions of the variable y defined by 

y = (2s + 1) exp(-ax) . (C.15) 
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The values of the gamma function r(a;) are required for the computation of the 

normalization constant 

/ « ( 2 a - 2 n ) r ( n + l) 
n V F(2s-n + l) K ' 

The associated Laguerre polynomials (the first four) are given below: 

L°t = -x + a + 1 

La
2 = \x2 -(a + 2)x + ±(a + 2)(a + 1) (C.17) 

L3 = - ^ 3 + o ( " + 3 ) ^ 2 + «(<* + 3) (a + l)x + -{a + 3) (a + 2)(a + 1) 

The polynomial evaluation for higher orders becomes cumbersome and is replaced 

with a recursive scheme 

(n + l)La
n+1{x) = (2n + 1 + a - x)La

n{x) - (n + a)L^(x) , (C.18) 

with the following initialization 

L£ = l, L? = - x + a + l . (C.19) 

The first derivative of associated Laguerre functions is obtained using 

Lan{x) = -I%t\(x) . (C.20) 
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C.3 Scattering length and phase shifts 

Attractive exponential potential 

For the exponential potential, 

V(r) = —Aexp(—fir), (C.21) 

where the constant A > 0 determines the strength and /i > 0 determines the range 

of the interaction, the analytical expression for the scattering phase shift is, [42], 

5 = arg [ ^ / ^ ( a ) ] + arg T(l + i 
2k, 

7'J 
2k a 

(C.22) 

where Ji2k/fj,(a) a r e cylindrical Bessel functions of the first kind, and T(l + i2k/fi) are 

Gamma functions of the complex argument. The Bessel functions of complex order 

are evaluated at 

a — 
2y/2mA 

(C.23) 

The wave number k = 2mE/h2, with E > 0. Both Bessel and Gamma functions yield 

complex values. 

For the case of E = 0, the expression for the scattering length is 

a = i ( 2 ( 7 + ln( 
a\ Y0(a 

7T 
J0(a)J ' 

(C.24) 

where 7 = 0.577... is the Euler-Mascheroni constant, and J0, ^0 are zero order Bessel 

functions of the first and second kind, respectively. 
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Repulsive exponential potential 

By changing the sign of the attractive exponential potential, we get the repulsive 

exponential potential 

V(r) = Aexp(—fj,r), (C.25) 

keeping constant A positive, for which the analytical expression for the phase shift 

is, [42], 

S = arg [li2k/»(&)] + arg r,1 + £ 2k a 
(C.26) 

The transition in the phase shift expression from the attractive interaction to repulsive 

interaction is effected by replacing the Bessel functions of the first kind J with the 

modified Bessel functions of the first kind I. 

For the case of E = 0, the expression for the scattering length is 

a = - 7 + ln( - ) + ——— 
fx\ 2 I0(a) 

(C.27) 

where Io, K0 are zero order modified Bessel functions of the first and second kind, 

respectively. All other definitions are unchanged with respect to the case of attractive 

exponential potential. 

Lennard-Jones potential 

For this potential, 

V(r) = V0 ctr-ffl (C.28) 
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where V0 denotes the potential depth and r0 the minimum position, the analytical 

expression for the scattering length is, [140], 

a = r0 

n x - i - r 

n-1 

-x + n — 1 
2 n - 4 

n 
n 

-x + n — 3\ fn— 1 
r 2 n - 4 n - 2 

(C.29) 

where x, a dimensionless parameter, is 

x = r0 

2mV0 (C.30) 

C.4 A three-channel bound state example 

A step further in complexity in the bound single-channel calculations is to use a 

potential matrix instead of a single potential. A simple choice is to use a diagonal 

potential matrix to form a multichannel Schrodinger equation 

2m 
0"(r) + ^ ( E - W ( r ) ) 0 ( r ) = O. (C.31) 

The potential structure is given by a diagonal matrix 

D = 

a 0 

0 b 

,0 0 

°) 
0 

c , 

(C.32) 

where real numbers a, b, and c can be used to create different scenarios in which 

we can have either all or some of the energy levels degenerate. The wave function, 

solution of (C.31), is a column made of three functions (one for each channel) 
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<£ ( a )(r)^ 

(r) 0(b) (r) 

0^(r) 

(C.33) 

/ 

Since V(r)D is a diagonal matrix, meaning there are no couplings, solving (C.31) is 

reduced to solving a system of three uncoupled differential equations: 

2m 
<f>{a)"{r) + — (E - aV{r))^a\r) = 0 , 

2m 
0 ( b ) » + -j^{E - bV{r))(f^\r) = 0 , 

2m 
4>{c)"(r) + jp(E- cV{r))^c\r) = 0 . 

(C.34) 

Assuming that we can find the bound energy spectrum for each channel, that is we 

M) do) i M have E\a) and 4>\ (r), for channel a, Ej ' and 4>\ 0") for channel b, Ejf' and <j)k (r) (P), <c) dc)l 

for channel c, the multichannel solution is then expressed as 

0(r) = C<->#( ' 

M 
0 

\ 0 / 

+ <?<»># (r) 

^ 

v0/ 

c(cVic|M 

^ 

0 

V1/ 

(C.35) 

This decomposition suggests that there could be a triple degenerate level if it happens 

that each of the equations in (C.34) supports a normalizable solution for the same 

value of energy, E. In that case, any bound state solution is a linear combination of 

three basic solutions: 

/ ,(a), A / 
4>\ >{x) 

0 

0 

0 

0f}(r) 

0 

\ 

and 

' 0 ^ 

0 

V^c)(rV 

(C.36) 
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In the case of the non-degenerate level, the sum collapses to one term only. 

The next step is to complicate the uncoupled picture (C.34) using an orthogonal 

matrix Q (Q_ 1 = QT) to obtain a potential that couples components of the solution 

4>, (C.35). To do that, we form a non-diagonal matrix 

A = QDQ-1. (C.37) 

After multiplying, from the left, equation (C.31) with the matrix Q and introducing 

a new solution ip(r) = Q(f>(r), we get the coupled Schrodinger equation 

2m 
/ ( r ) + - ( £ - A 7 ( r M r ) = 0 . (C.38) 

The term V(r)QD(j)(r) was processed by inserting the identity matrix Q~lQ between 

the matrix D and the vector (j>(r), and then applying (C.37). If we think of the 

orthogonal matrix Q as consisting of three orthogonal basis column vectors 

A = [ui;u2;u3] (C.39) 

then its action on another basis set 

e,; = (C.40) 

is given by Aei = Vi. Now, a simple substitution, e* —¥ Wj, yields the result of the 

action of Q on 0(r): 

^(r) = Q<j){r) = C(aV(a)(^)^i + C^^b)(r)v2 + C (c )0 (c )(r>3 , (C.41) 
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which shows that we can have up to three vectors 

</>(a)(rH , <f>(b\r)v2 , and <j>{c)(r)v3 , (C.42) 

as linearly independent solutions of the coupled Schrodinger equation (C.38) for the 

same energy E. 

For illustration purposes we will use the Morse potential 

V(r) = exp(2(r - r0)) - 2exp(r - r0) , (C.43) 

where r0 is an arbitrary minimum position, and we set 2m — 1 and h = 1. The 

orthogonal matrix Q (Q~l = QT) is constructed using the three orthogonal column 

vectors 

1 

V2 
h) 

i 

V °J 

1 

' VE 
H 

- 1 

1 V 

I f1) 
1 

w 
(C.44) 

The general solution of (C.38) is 

i> = C^^\r)-^ 
h) 

I 

(°) 
+ C^\r)-L 

h) 
- 1 

( V 

+ c W ^ » M ^ 

M 
1 

w 
(C.45) 

The first term describes a solution where one component is zero and the two other 

components are of the same magnitude and have the opposite sign. The second term 
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describes a solution where two components are the same and the third one is twice 

larger in magnitude than the first one and has the opposite sign. The third term 

describes a solution where all components are equal. 

Non-degenerate levels 

Setting a = 3, 6 = 5 and c = 7 in the diagonal matrix 

D 

u 
0 

v° 

0 

5 

0 

°) 
0 

7 

(C.46) 

will cause all levels to be non-degenerate 

E = 

-(V3-i~0.5f; 

1-(V5-J-0.5) 2; 

i = 0,1 (from channel a), 

j = 0,1 (from channel b), 

k = 0,1, 2 (from channel c). 

(C.47) 

The rotated matrix , QDQ l, with non-zero coupling elements is: 

' 14 5 2 ^ 

A = 5 14 2 

2 2 17 

(C.48) 

Partially degenerate levels 

Considering that 

Al = QD'Q-\ (C.49) 
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we can use the diagonal potential matrix 

' 9 0 0 * 

D2 = 0 25 0 

0 0 49 

(C.50) 

to obtain the coupled potential structure matrix 

' 2 5 16 8 

A2 
16 25 8 

8 8 33 

(C.51) 

According to the uncoupled potential structure matrix D2, the bound spectrum is 

E 

- ( 3 - i - 0 . 5 ) 2 ; 

- ( 5 - J - 0 . 5 ) 2 ; 

- ( 7 - & - 0 . 5 ) 2 ; 

i = 0,1, 2 (from channel a), 

j = 0 , 1 , . . . 4 (from channel b), 

k — 0 , 1 , . . . 6 (from channel c). 

(C.52) 

Out of the seven bound levels, the lowest two are non-degenerate, the next two are 

double degenerate, and the last three are triple degenerate. 

C.5 A two-channel free state example 

A simple two-channel example that connects the scattering K matrix elements in 

the coupled picture to the phase shifts 8 in the uncoupled picture is presented here. 

Using potentials from Sec. C.3 and the potential structure matrix D with A > 0, 

D = 
A 0 \ 

(C.53) 
0 -A 

/ 
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the two-channel Schrodinger equation 

2m 
0"(r) + — ( E - W ( r ) ) ^ ( r ) = 0 , (C.54) 

for E > 0, has the solutions with the asymptotic (r —>• oo) form 

61 (r) = sin(fcr) + cos(fcr) tan(5i) 

62 (r) = sin(Ar) + cos(Ar) tan(<52) , 

(C.55) 

where k = 2mE/h2. Next we change the representation picture using an orthogonal 

matrix 

Q = 
cos(0/2) -sin(0/2) 

^sin(#/2) cos(0/2) } 

(C.56) 

where 9 is a real number. It is done by rotating the potential structure matrix D 

A = QDQT, (C.57) 

and transforming the solution <fi according to ip(r) = Q<fi(r). Thus, we obtain the 

coupled two-channel Schrodinger equation 

2m 
r(r) + —(E-AV(r))^(r) = 0 

(C.58) 

where the potential structure matrix A has non-zero couplings 

A = X 
cos{9) sin(0) 

isin(0) -cos(#)y 
(C.59) 
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The scattering boundary conditions in the coupled picture 

ipi(r) = sm(kr) + cos(kr)Kn (C.60) 

fair) = cos(kr)K2i 

are further transformed, using <j>(r) = Qrip{r), into the scattering boundary condi­

tions in the uncoupled picture 

0i (r) = cos(0/2)(sin(fcr) + cos(kr)[Kn + tan(0/2)K21]) (C.61) 

02(r) = -sin(0/2)(sin(fcr) + cos(kr)[Kn - cot{6/2)K21}), 

where we can identify the phase shifts, 8, for each channel: 

t a n ^ ) = Kn + tnn(6/2)K2l (C.62) 

tan(52) = Kn - cot(9/2)K2i. 

By adding and subtracting two equations, we get the expressions for the K matrix 

element in the first channel 

= cot(fl/2) tan(gi) + tan(fl/2) tan(£2) . , 
11 cot(0/2)+tan(0/2) ' l ' ' 

and for the K matrix element in the second channel 

= tan(fli) + tan(£2) ( , 
21 cot(0/2) + tan(0/2)" V ' ' 
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APPENDIX D 

BASIC CHROMIUM PROPERTIES 

The ground state 7S3 configuration of chromium atoms: ls22s22p63s23pe3d5As1. 

Table D.l: Basic properties 

Isotope Nuclear Spin Nuclear Symmetry Atom Symmetry Ahf [MHz] 

52Cr 

5 3 C r 

0 

3/2 

Boson 

Fermion 

Boson 

Fermion -83.5985 ± 0.0015 

ms mt 

-3 /2 
, . 1/2 

+ -> +1/2 
+3/2 

3/2 

+2 + $ 
(3/2 

V2 
+ [ +1/2 

3/2 
0 +1/2 

+3/2 

+3/2 
2 + l / 2 
1 1/2 

3/2 

i i 2 
1 1 2 

1 ; 

2 

Figure D.l: 53Cr hyperfine energy plot. Zero magnetic field: hyperfine spin numbers 
are 3/2, 5/2, 7/2, 9/2 (top to bottom ordering). 

199 



BIBLIOGRAPHY 

[1] Unless indicated otherwise, all calculations reported here are for a magnetic field 

of 1 G. Test calculations show that electric and magnetic fields have a negligible 

effect on scattering cross sections at collision energies above 60 cm~1., unless 

indicated otherwise, all calculations reported here are for a magnetic field of 

1 G. Test calculations show that electric and magnetic fields have a negligible 

effect on scattering cross sections at collision energies above 60 cm - 1 . 

[2] M. Anderson, J. Ensher, M. Matthews, C. Wieman, and E. Cornell, Observation 

of Bose-Einstein condensation in a dilute atomic vapor, Science (Washington) 

269, 198 (1995). 

[3] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, 

D. M. Kurn, and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium 

Atoms, Phys. Rev. Lett. 75, 3969 (1995). 

[4] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose-

Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys. 

Rev. Lett. 75, 1687 (1995). 

[5] E. Tiesinga, S. J. M. Kuppens, B. J. Verhaar, and H. T. C. Stoof, Collisions 

between cold ground-state Na atoms, Phys. Rev. A 43, 5188 (1991). 

[6] R. Cote, A. Dalgarno, and M. J. Jamieson, Elastic scattering of two "' Li atoms, 

Phys. Rev. A 50, 399 (1994). 

200 



[7] P. S. Julienne and J. Vigue, Cold collisions of ground- and excited-state alkali-

metal atoms, Phys. Rev. A 44, 4464 (1991). 

[8] P. J. Leo, C. J. Williams, and P. S. Julienne, Collision Properties of Ultracold 

l33Cs Atoms, Phys. Rev. Lett. 85, 2721 (2000). 

[9] J. P. Burke, C. H. Greene, and J. L. Bohn, Multichannel Cold Collisions: Simple 

Dependences on Energy and Magnetic Field, Phys. Rev. Lett. 81, 3355 (1998). 

[10] M. Vengalattore, S. R. Leslie, J. Guzman, and D. M. Stamper-Kurn, Sponta­

neously Modulated Spin Textures in a Dipolar Spinor Bose-Einstein Condensate, 

Phys. Rev. Lett. 100, 170403 (2008). 

[11] K. Gawryluk, K. Bongs, and M. Brewczyk, How to Observe Dipolar Effects in 

Spinor Bose-Einstein Condensates, Phys. Rev. Lett. 106, 140403 (2011). 

[12] H. Margenau, Van der Waals Potential in Helium, Phys. Rev. 56, 1000 (1939). 

[13] J. Kim, B. Friedrich, D. P. Katz, D. Patterson, J. D. Weinstein, R. DeCar­

valho, and J. M. Doyle, Buffer-Gas Loading and Magnetic Trapping of Atomic 

Europium, Phys. Rev. Lett. 78, 3665 (1997). 

[14] Y. V. Suleimanov, Zeeman relaxation of magnetically trapped Eu atoms, Phys. 

Rev. A 81, 022701 (2010). 

[15] J. D. Weinstein, R. deCarvalho, C. I. Hancox, and J. M. Doyle, Evaporative 

cooling of atomic chromium, Phys. Rev. A 65, 021604 (2002). 

[16] R. deCarvalho and J. Doyle, Evaporative cooling at low trap depth, Phys. Rev. 

A 70, 053409 (2004). 

201 



[17] S. V. Nguyen, R. deCarvalho, and J. M. Doyle, Cold 52Cr elastic and inelastic 

collision-rate determination using evaporative cooling analysis, Phys. Rev. A 

75, 062706 (2007). 

[18] A. S. Bell, J. Stuhler, S. Locher, S. Hensler, J. Mlynek, and T. Pfau, A magneto-

optical trap for chromium with population repumping via intercombination lines, 

Europhys. Lett. 45, 156 (1999). 

[19] C. C. Bradley, J. J. McClelland, W. R. Anderson, and R. J. Celotta, Magneto-

optical trapping of chromium atoms, Phys. Rev. A 61, 053407 (2000). 

[20] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Bose-Einstein 

Condensation of Chromium, Phys. Rev. Lett. 94, 160401 (2005). 

[21] S. B. Hill and J. J. McClelland, Atoms on demand: Fast, deterministic produc­

tion of single Cr atoms, Applied Physics Letters 82, 3128 (2003). 

[22] J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau, S. Giovanazzi, P. Pedri, 

and L. Santos, Observation of Dipole-Dipole Interaction in a Degenerate Quan­

tum Gas, Phys. Rev. Lett. 95, 150406 (2005). 

[23] S. Giovanazzi, P. Pedri, L. Santos, A. Griesmaier, M. Fattori, T. Koch, J. Stuh­

ler, and T. Pfau, Expansion dynamics of a dipolar Bose-Einstein condensate, 

Phys. Rev. A 74, 013621 (2006). 

[24] G. Bismut, B. Pasquiou, E. Marechal, P. Pedri, L. Vernac, O. Gorceix, and 

B. Laburthe-Tolra, Collective Excitations of a Dipolar Bose-Einstein Conden­

sate, Phys. Rev. Lett. 105, 040404 (2010). 

202 



[25] T. Lahaye, T. Koch, B. Frohlich, M. Fattori, J. Metz, A. Griesmaier, S. Gio-

vanazzi, and T. Pfau, Strong dipolar effects in a quantum ferrofluid, Nature 

448, 672 (2007). 

[26] T. Lahaye, J. Metz, B. Frohlich, T. Koch, M. Meister, A. Griesmaier, T. Pfau, 

H. Saito, Y. Kawaguchi, and M. Ueda, d-Wave Collapse and Explosion of a 

Dipolar Bose-Einstein Condensate, Phys. Rev. Lett. 101, 080401 (2008). 

[27] J. Metz, T. Lahaye, B. Frohlich, A. Griesmaier, T. Pfau, H. Saito, 

Y. Kawaguchi, and M. Ueda, Coherent collapses of dipolar Bose-Einstein con­

densates for different trap geometries, New Journal of Physics 11, 055032 

(2009). 

[28] D. C. E. Bortolotti, S. Ronen, J. L. Bohn, and D. Blume, Scattering Length 

Instability in Dipolar Bose-Einstein Condensates, Phys. Rev. Lett. 97, 160402 

(2006). 

[29] R. M. Wilson, S. Ronen, and J. L. Bohn, Stability and excitations of a dipolar 

Bose-Einstein condensate with a vortex, Phys. Rev. A 79, 013621 (2009). 

[30] R. M. Wilson, S. Ronen, J. L. Bohn, and H. Pu, Manifestations of the Ro-

ton Mode in Dipolar Bose-Einstein Condensates, Phys. Rev. Lett. 100, 245302 

(2008). 

[31] M. Abad, M. Guilleumas, R. Mayol, M. Pi, and D. M. Jezek, Vortices in 

Bose-Einstein condensates with dominant dipolar interactions, Phys. Rev. A 

79, 063622 (2009). 

[32] M. Abad, M. Guilleumas, R. Mayol, M. Pi, and D. M. Jezek, Dipolar conden­

sates confined in a toroidal trap: Ground state and vortices, Phys. Rev. A 81, 

043619 (2010). 

203 



[33] B. Pasquiou, G. Bismut, Q. Beaufils, A. Crubellier, E. Marechal, P. Pedri, 

L. Vernac, O. Gorceix, and B. Laburthe-Tolra, Control of dipolar relaxation in 

external fields, Phys. Rev. A 81, 042716 (2010). 

[34] S. Ronen, D. C. E. Bortolotti, D. Blume, and J. L. Bohn, Dipolar Bose-Einstein 

condensates with dipole-dependent scattering length, Phys. Rev. A 74, 033611 

(2006). 

[35] P. O. Schmidt, S. Hensler, J. Werner, A. Griesmaier, A. Gorlitz, T. Pfau, and 

A. Simoni, Determination of the s-Wave Scattering Length of Chromium, Phys. 

Rev. Lett. 91, 193201 (2003). 

[36] Z. Pavlovic, B. O. Roos, R. Cote, and H. R. Sadeghpour, Collisional properties 

of trapped cold chromium atoms, Phys. Rev. A 69, 030701 (2004). 

[37] S. Hensler, J. Werner, A. Griesmaier, P. Schmidt, A. Gorlitz, T. Pfau, S. Gio-

vanazzi, and K. Rzazewski, Dipolar relaxation in an ultra-cold gas of magnet­

ically trapped chromium atoms, Applied Physics B: Lasers and Optics 77, 765 

(2003). 

[38] Z. Pavlovic, R. V. Krems, R. Cote, and H. R. Sadeghpour, Magnetic Feshbach 

resonances and Zeeman relaxation in bosonic chromium gas with anisotropic 

interaction, Phys. Rev. A 71, 061402 (2005). 

[39] J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni, and 

E. Tiesinga, Observation of Feshbach Resonances in an Ultracold Gas of52Cr, 

Phys. Rev. Lett. 94, 183201 (2005). 

[40] S. Hensler, A. Griesmaier, J. Werner, A. Gorlitz, and T. Pfau, A two species 

trap for chromium and rubidium atoms, J. Mod. Opt. 51, 1807 (2004). 

204 



[41] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists: A Com­

prehensive Guide, Sixth edition, Academic Press (2005). 

[42] N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions., Third 

edition, Oxford University Press (1965). 

[43] B. R. Johnson, The multichannel log-derivative method for scattering calcula­

tions, Journal of Computational Physics 13, 445 (1973). 

[44] J. M. Blatt, Practical points concerning the solution of the Schrodinger equation, 

Journal of Computational Physics 1, 382 (1967). 

[45] B. R. Johnson, New numerical methods applied to solving the one-dimensional 

eigenvalue problem, The Journal of Chemical Physics 67, 4086 (1977). 

[46] D. E. Manolopoulos, An improved log derivative method for inelastic scattering, 

The Journal of Chemical Physics 85, 6425 (1986). 

[47] F. Mrugala and D. Secrest, The generalized log-derivative method for inelastic 

and reactive collisions, The Journal of Chemical Physics 78, 5954 (1983). 

[48] D. E. Manolopoulos, M. J. Jamieson, and A. D. Pradhan, Johnson's Log Deriva­

tive Algorithm Rederived, Journal of Computational Physics 105, 169 (1993). 

[49] B. R. Johnson, Comment on a recent criticism of the formula used to calculate 

the S matrix in the multichannel log-derivative method, Phys. Rev. A 32, 1241 

(1985). 

[50] B. R. Johnson, The renormalized Numerov method applied to calculating bound 

states of the coupled-channel Schroedinger equation, The Journal of Chemical 

Physics 69, 4678 (1978). 

205 



[51] M. Houbiers, H. T. C. Stoof, W. I. McAlexander, and R. G. Hulet, Elastic and 

inelastic collisions of 6Li atoms in magnetic and optical traps, Phys. Rev. A 

57, R1497 (1998). 

[52] C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics (2 vol. set), 

Wiley-Interscience (2006). 

[53] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, The physics 

of dipolar bosonic quantum gases, Reports on Progress in Physics 72, 126401 

(2009). 

[54] E. J. Thomas III, J. S. Murray, C. J. O'Connor, and P. Politzer, The Cr2 

molecule: some perspectives, Journal of Molecular Structure: THEOCHEM 

487, 177 (1999). 

[55] S. R. Langhoff and C. W. Bauschlicher, AB Initio Studies of Transition Metal 

Systems, Annual Review of Physical Chemistry 39, 181 (1988). 

[56] K. P. Lawley (editor), Advances in chemical physics, ab initio methods in quan­

tum chemistry, John Wiley & Sons Inc (1987), B. O. Roos. 

[57] I. Prigogine and S. A. Rice (editors), Advances in chemical physics; new methods 

in computational quantum mechanics, John Wiley &; Sons Inc (1996), B. 0 . 

Roos. 

[58] B. O. Roos and K. Andersson, Multiconfigurational perturbation theory with 

level shift - the Cr2 potential revisited, Chemical Physics Letters 245, 215 

(1995). 

[59] B. O. Roos, The Ground State Potential for the Chromium Dimer Revisited, 

Collect. Czech. Chem. Commun. 68, 265 (2003). 

206 



[60] S. M. Casey and D. G. Leopold, Negative ion photoelectron spectroscopy of 

chromium dimer, J. Phys. Chem. 97, 816 (1993). 

[61] V. E. Bondybey and J. H. English, Electronic structure and vibrational frequency 

of Cr2, Chemical Physics Letters 94, 443 (1983). 

[62] B. O. Roos, to be published, the primitive basis set was: 21sl5pl0d6f4g. These 

basis sets are under construction for the entire periodic system. 

[63] K. Andersson, Different forms of the zeroth-order Hamiltonian in second-order 

perturbation theory with a complete active space self-consistent field reference 

function, Theoretical Chemistry Accounts: Theory, Computation, and Model­

ing (Theoretica Chimica Acta) 91, 31 (1995). 

[64] B. M. Smirnov and M. I. Chibisov, Electron Exchange and Changes in the 

Hyperfine State of Colliding Alkaline Metal Atoms, Soviet Physics, JETP 21, 

624 (1965). 

[65] E. L. Duman and B. M. Smirnov, , Opt. Spectros. 29, 229 (1970). 

[66] H. B. G. Casimir and D. Polder, The Influence of Retardation on the London-

van der Waals Forces, Phys. Rev. 73, 360 (1948). 

[67] S. G. Porsev and A. Derevianko, High-accuracy calculations of dipole, 

quadrupole, and octupole electric dynamic polarizabilities and van der Waals 

coefficients C6; C$, for alkaline-earth dimers, J. Exp. Theor. Phys. 102, 195 

(2006). 

[68] A. Derevianko, W. R. Johnson, M. S. Safronova, and J. F. Babb, High-

Precision Calculations of Dispersion Coefficients, Static Dipole Polarizabilities, 

207 



and Atom-Wall Interaction Constants for Alkali-Metal Atoms, Phys. Rev. Lett. 

82, 3589 (1999). 

[69] T. Y. Chang, Moderately Long-Range Interatomic Forces, Rev. Mod. Phys. 39, 

911 (1967). 

[70] M. Marinescu, Dispersion coefficients for the nP-nP asymptote of homonuclear 

alkali-metal dimers, Phys. Rev. A 56, 4764 (1997). 

[71] B. Zygelman, A. Dalgarno, and R. D. Sharma, Molecular theory of collision-

induced fine-structure transitions in atomic oxygen, Phys. Rev. A 49, 2587 

(1994). 

[72] D. R. Lide (editor), CRC Handbook of Chemistry and Physics, 83rd Edition, 

83rd edition, CRC Press (2002). 

[73] NIST Atomic Spectra Database. 

[74] D. A. Verner, P. D. Barthel, and D. Tytler, Atomic data for absorption lines 

from the ground level at wavelengths greater than 228 A, A&AS 108, 287 (1994). 

[75] D. A. Verner and D. G. Yakovlev, Analytic fits for partial photoionization cross 

sections., A&AS 109, 125 (1995). 

[76] L. D. Landau and L. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory, 

Third Edition: Volume 3, 3 edition, Butterworth-Heinemann (1981). 

[77] R. V. Krems and A. Dalgarno, Threshold laws for collisional reorientation of 

electronic angular momentum, Phys. Rev. A 67, 050704 (2003). 

[78] A. Volpi and J. L. Bohn, Molecular vibration in cold-collision theory, Phys. Rev. 

A 65, 064702 (2002). 

208 



[79] R. V. Krems and A. Dalgarno, Disalignment transitions in cold collisions of3P 

atoms with structureless targets in a magnetic field, Phys. Rev. A 68, 013406 

(2003). 

[80] R. V. Krems, G. C. Groenenboom, and A. Dalgarno, Electronic Interaction 

Anisotropy between Atoms in Arbitrary Angular Momentum States, The Journal 

of Physical Chemistry A 108, 8941 (2004). 

[81] J. M. Hutson, Feshbach resonances in ultracold atomic and molecular collisions: 

threshold behaviour and suppression of poles in scattering lengths, New Journal 

of Physics 9, 152 (2007). 

[82] J. Stuhler, P. O. Schmidt, S. Hensler, J. Werner, J. Mlynek, and T. Pfau, 

Continuous loading of a magnetic trap, Phys. Rev. A 64, 031405 (2001). 

[83] K. Andersson, P.-A. Malmqvist, and B. O. Roos, Second-order perturbation 

theory with a complete active space self-consistent field reference function, The 

Journal of Chemical Physics 96, 1218 (1992). 

[84] B. O. Roos, V. Veryazov, and P.-O. Widmark, Relativistic atomic natural or­

bital type basis sets for the alkaline and alkaline-earth atoms applied to the 

ground-state potentials for the corresponding dimers, Theoretical Chemistry Ac­

counts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 111, 

345 (2004), 10.1007/s00214-003-0537-0. 

[85] B. O. Roos, R. Lindh, P.-t. Malmqvist, V. Veryazov, and P.-O. Widmark, New 

Relativistic ANO Basis Sets for Transition Metal Atoms, The Journal of Phys­

ical Chemistry A 109, 6575 (2005). 

[86] G. Karlstrom, R. Lindh, P. Ake Malmqvist, B. O. Roos, U. Ryde, V. Verya­

zov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, and L. Seijo, 

209 



MOLCAS: a program package for computational chemistry, Computational Ma­

terials Science 28, 222 (2003), Proceedings of the Symposium on Software De­

velopment for Process and Materials Design. 

[87] M. Marinescu, H. R. Sadeghpour, and A. Dalgarno, Dispersion coefficients for 

alkali-metal Aimers, Phys. Rev. A 49, 982 (1994). 

[88] R. W. Molof, H. L. Schwartz, T. M. Miller, and B. Bederson, Measurements 

of electric dipole polarizabilities of the alkali-metal atoms and the metastable 

noble-gas atoms, Phys. Rev. A 10, 1131 (1974). 

[89] K. T. Tang and J. P. Toennies, The van der Waals potentials between all the 

rare gas atoms from He to Rn, The Journal of Chemical Physics 118, 4976 

(2003). 

[90] R. V. Krems and A. Dalgarno, Quantum-mechanical theory of atom-molecule 

and molecular collisions in a magnetic field: Spin depolarization, The Journal 

of Chemical Physics 120, 2296 (2004). 

[91] A. M. Arthurs and A. Dalgarno, The Theory of Scattering by a Rigid Rota­

tor, Proceedings of the Royal Society of London. Series A, Mathematical and 

Physical Sciences 256, pp. 540 (1960). 

[92] R. D. Cowan, The Theory of Atomic Structure and Spectra (Los Alamos Series 

in Basic and Applied Sciences, 3), University of California Press (1981). 

[93] T. V. Tscherbul, P. Zhang, H. R. Sadeghpour, and A. Dalgarno, Collision-

induced spin exchange of alkali-metal atoms with 3He: An ab initio study, Phys. 

Rev. A 79, 062707 (2009). 

210 



[94] M. E. Summers, R. R. Conway, D. E. Siskind, M. H. Stevens, D. Offermann, 

M. Riese, P. Preusse, D. F. Strobel, and J. M. Russell, Implications of Satellite 

OH Observations for Middle Atmospheric H20 and Ozone, Science 277, 1967 

(1997). 

[95] R. Atkinson, Kinetics and mechanisms of the gas-phase reactions of the hy­

droxy! radical with organic compounds under atmospheric conditions, Chemical 

Reviews 85, 69 (1985). 

[96] A. Dalgarno, Introductory Lecture The growth of molecular complexity in the 

Universe, Faraday Discuss. 133, 9 (2006). 

[97] J. M. Brown and A. Carrington, Rotational Spectroscopy of Diatomic Molecules 

(Cambridge Molecular Science), Cambridge University Press (2003). 

[98] M. C. van Beek, J. J. ter Meulen, and M. H. Alexander, Rotationally inelastic 

collisions of OH(X2Yi) + Ar. I. State-to-state cross sections, The Journal of 

Chemical Physics 113, 628 (2000). 

[99] M. C. van Beek, J. J. ter Meulen, and M. H. Alexander, Rotationally inelas­

tic collisions of OH(X2H) + Ar. II. The effect of molecular orientation, The 

Journal of Chemical Physics 113, 637 (2000). 

[100] S. Marinakis, G. Paterson, J. Klos, M. L. Costen, and K. G. McKendrick, 

Inelastic scattering of OH(X2U) with Ar and He: a combined polarization 

spectroscopy and quantum scattering study, Phys. Chem. Chem. Phys. 9, 4414 

(2007). 

[101] G. Paterson, S. Marinakis, M. L. Costen, K. G. McKendrick, J. Klos, and 

R. Tobola, Orientation and alignment depolarization in OH(X 2U) + Ar/He 

collisions, The Journal of Chemical Physics 129, 074304 (2008). 

211 



[102] M. Brouard, A. Bryant, Y.-R Chang, R. Cireasa, C. J. Eyles, A. M. Green, 

S. Marinakis, F. J. Aoiz, and J. Klos, Collisional depolarization of OH(A) with 

Ar: Experiment and theory, The Journal of Chemical Physics 130, 044306 

(2009). 

[103] A. V. Komissarov, A. Lin, T. J. Sears, and G. E. Hall, State-resolved thermaliza-

tion of singlet and mixed singlet-triplet states of CH2, The Journal of Chemical 

Physics 125, 084308 (2006). 

[104] A. W. Jasper, C. Zhu, S. Nangia, and D. G. Truhlar, Introductory lecture: 

Nonadiabatic effects in chemical dynamics, Faraday Discuss. 127, 1 (2004). 

[105] A. G. Suits and O. S. Vasyutinskii, Imaging Atomic Orbital Polarization in 

Photodissociation, Chemical Reviews 108, 3706 (2008), pMID: 18681483. 

[106] B. L. Lev, E. R. Meyer, E. R. Hudson, B. C. Sawyer, J. L. Bohn, and J. Ye, OH 

hyperfine ground state: From precision measurement to molecular qubits, Phys. 

Rev. A 74, 061402 (2006). 

[107] S. Y. T. van de Meerakker, H. L. Bethlem, and G. Meijer, Taming molecular 

beams, Nat Phys 4, 595 (2008). 

[108] S. van de Meerakker, N. Vanhaecke, and G. Meijer, Stark deceleration and 

trapping of OH radicals, Annual Review of Physical Chemistry 57, 159 (2006). 

[109] S. Y. T. van de Meerakker, N. Vanhaecke, M. P. J. van der Loo, G. C. Groe-

nenboom, and G. Meijer, Direct Measurement of the Radiative Lifetime of Vi-

brationally Excited OH Radicals, Phys. Rev. Lett. 95, 013003 (2005). 

212 



[110] J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, 

and G. Meijer, Near-Threshold Inelastic Collisions Using Molecular Beams with 

a Tunable Velocity, Science 313, 1617 (2006). 

[Ill] M. Lara, J. L. Bohn, D. Potter, P. Soldan, and J. M. Hutson, Ultracold Rb-OH 

Collisions and Prospects for Sympathetic Cooling, Phys. Rev. Lett. 97, 183201 

(2006). 

[112] M. Lara, J. L. Bohn, D. E. Potter, P. Soldan, and J. M. Hutson, Cold collisions 

between OH and Rb: The field-free case, Phys. Rev. A 75, 012704 (2007). 

[113] H. Klar, Theory of collision induced rotational energy transfer in the -state of 

diatomic molecules, Journal of Physics B: Atomic and Molecular Physics 6, 

2139 (1973). 

[114] M. Shapiro and H. Kaplan, On the theory of H+OH ^li) collisions and inter­

stellar OH maser action, The Journal of Chemical Physics 71, 2182 (1979). 

[115] M. H. Alexander, Rotationally inelastic collisions between a diatomic molecule 

in a2H electronic state and a structureless target, The Journal of Chemical 

Physics 76, 5974 (1982). 

[116] M. H. Alexander, W. R. Kearney, and A. F. Wagner, Theoretical studies of 

He(lS)-l-CH(X2H). II. Fully ab initio cross sections for the inelastic scattering 

and comparison with experiment, The Journal of Chemical Physics 100, 1338 

(1994). 

[117] A. D. Esposti, A. Berning, and H.-J. Werner, Quantum scattering studies of the 

Lambda doublet resolved rotational energy transfer of OH(X2H) in collisions 

with He and Ar, The Journal of Chemical Physics 103, 2067 (1995). 

213 



[118] X. Yang, P. J. Dagdigian, and M. H. Alexander, Experimental and theoretical 

study of rotationally inelastic collisions of highly rotationally excited CN(A2Ti) 

with Ar, The Journal of Chemical Physics 112, 4474 (2000). 

[119] A. V. Avdeenkov and J. L. Bohn, Collisional dynamics of ultracold OH 

molecules in an electrostatic field, Phys. Rev. A 66, 052718 (2002). 

[120] A. V. Avdeenkov and J. L. Bohn, Linking Ultracold Polar Molecules, Phys. Rev. 

Lett. 90, 043006 (2003). 

[121] C. Ticknor and J. L. Bohn, Influence of magnetic fields on cold collisions of 

polar molecules, Phys. Rev. A 71, 022709 (2005). 

[122] L. Gonzalez-Sanchez, E. Bodo, and F. A. Gianturco, Quantum scattering of 

OH(X2U) with He(lS) : Propensity features in rotational relaxation at ultralow 

energies, Phys. Rev. A 73, 022703 (2006). 

[123] T. V. Tscherbul, G. C. Groenenboom, R. V. Krems, and A. Dalgarno, Dynam­

ics of OH^Ilj-He collisions in combined electric and magnetic fields, Faraday 

Discuss. 142, 127 (2009). 

[124] J. M. Brown, M. Raise, C. M. L. Kerr, and D. J. Milton, A determination of 

fundamental Zeeman parameters for the OH radical, Molecular Physics 36, 553 

(1978). 

[125] J. M. Brown and A. J. Merer, Lambda-type doubling parameters for molecules 

in II electronic states of triplet and higher multiplicity, Journal of Molecular 

Spectroscopy 74, 488 (1979). 

214 



[126] R. V. Krems and A. Dalgarno, Quantum-mechanical theory of atom-molecule 

and molecular collisions in a magnetic field: Spin depolarization, The Journal 

of Chemical Physics 120, 2296 (2004). 

[127] T. V. Tscherbul and R. V. Krems, Controlling Electronic Spin Relaxation of 

Cold Molecules with Electric Fields, Phys. Rev. Lett. 97, 083201 (2006). 

[128] B. R. Johnson, The multichannel log-derivative method for scattering calcula­

tions, Journal of Computational Physics 13, 445 (1973). 

[129] D. E. Manolopoulos, An improved log derivative method for inelastic scattering, 

The Journal of Chemical Physics 85, 6425 (1986). 

[130] H.-S. Lee, A. B. McCoy, R. R. Toczylowski, and S. M. Cybulski, Theoretical 

studies of the X2U and 2E+ states of the He-OH and Ne-OH complexes, The 

Journal of Chemical Physics 113, 5736 (2000). 

[131] M. H. Alexander, Quantum treatment of rotationally inelastic collisions involv­

ing molecules in II electronic states: New derivation of the coupling potential, 

Chemical Physics 92, 337 (1985). 

[132] T. V. Tscherbul and R. V. Krems, Manipulating spin-dependent interactions in 

rotationally excited cold molecules with electric fields, The Journal of Chemical 

Physics 125, 194311 (2006). 

[133] K. I. Peterson, G. T. Fraser, and W. Klemperer, Electric dipole moment of X2Ii 

OH and OD in several vibrational states, Canadian Journal of PhysicsPeterson, 

K. I.; Fraser, G. T.; Klemperer, W. 62, 1502 (1984). 

[134] T. V. Tscherbul, Differential scattering of cold molecules in superimposed elec­

tric and magnetic fields, The Journal of Chemical Physics 128, 244305 (2008). 

215 



[135] B. C. Sawyer, B. K. Stuhl, D. Wang, M. Yeo, and J. Ye, Molecular Beam 

Collisions with a Magnetically Trapped Target, Phys. Rev. Lett. 101, 203203 

(2008). 

[136] H. R. Sadeghpour, J. L. Bohn, M. J. Cavagnero, B. D. Esry, 1.1. Fabrikant, J. H. 

Macek, and A. R. P. Rau, Collisions near threshold in atomic and molecular 

physics, Journal of Physics B: Atomic, Molecular and Optical Physics 33, R93 

(2000). 

[137] J. Han and M. C. Heaven, Bound states and scattering resonances of OH(A)-

He, The Journal of Chemical Physics 123, 064307 (2005). 

[138] R. B. Richard Barry Bernstein, H. Pauly in Atom-Molecule Collision Theory: 

A Guide for the Experimentalist (Physics of Atoms and Molecules), Springer 

(1979). 

[139] E. Aydiner, C. Orta, and R. Sever, Quantum Information Entropies for the 

Morse Potential, Turkish J. Phys. 30, 407 (2006). 

[140] J. Pade, Exact scattering length for a potential of Lennard-Jones type, Eur. 

Phys. J. D 44, 345 (2007). 

216 


