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We explore collisions of atomic particles in two different regimes. In the first 

part of this work, we study atom-atom collisions of alkali metals at ultracold 

temperatures and conditions typically found in modern experiments. Feshbach 

resonances induced by external magnetic fields present a way to change collisional 

properties and exhibit control over cold collisions. We perform a fully quantum 

coupled-channel calculation in molecular orbital formalism to calculate collisional 

properties and characterize Feshbach resonances in ultracold Li+Na and Li+Rb 

systems. Furthermore, we use the results of these calculations as a foundation to 

propose a novel scheme for formation of stable ultracold molecules in their lowest 

rovibrational level. The formation scheme relies on the fact that the photoas-

sociation rate becomes greatly enhanced in the vicinity of a Feshbach resonance, 

resulting in a large increase of the number of produced excited molecules. Efficient 

production of stable ultracold molecules is a prerequisite for realization of various 



proposed platforms for quantum computing with neutral atoms and molecules. 

In addition, we suggest a way to exploit specifics of the photoassociation rate 

behavior near its minimum for a precision measurement experiment to detect hy

pothetical variation of the electron-proton mass ratio in time. 

The second part of this study examines ion-atom collisions in our solar system. 

Highly charged ions present in the solar wind collide with neutrals, capture one or 

more electrons into high excited states and deexcite, radiating energetic X-ray and 

UV photons. In particular, we study X-ray emissions charge-exchange collisions 

between fully stripped C6+, N7+, and 0 8 + solar wind ions and heliospheric hy

drogen. We analytically solve the two-center Schrodinger equation and construct 

electronic potential curves for the aforementioned molecular ions. Subsequently, 

we compute polarization of the X-rays emitted in a single-step deexcitation fol

lowing charge-exchange collisions and construct a polarization map for the eclip

tic plane, as observed from Earth. Our analysis indicates that the heliospheric 

charge-exchange X-rays are slightly polarized, with the polarization P close to ten 

percent for the optimal line-of-sight. 
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Chapter 1 

Introduction 

Collisions have occupied a central place in physics since its early days and much 

of our understanding of fundamental particles and their interactions has been 

derived from scattering experiments. While the hypothesis of "fundamental indi-

visable particles," or atoms, existed from the ancient times, the first conclusive 

experiments which related macroscopic and microscopic physics were conducted 

by Bernoulli (1739). Even though Boyle (1662) and Mariotte (1667) found the 

relation between the pressure and volume of a gas, Bernoulli was most likely the 

first person to realize that the pressure of a gas was a collective net effect of col

lisions between the "gas particles" and the container. In the second half of the 

nineteenth century the kinetic theory of gases was developed by, among others, 

Maxwell, Boltzmann, Kronig and Clausius, who strived to find general laws appli

cable to all gases. They based the theory on a concept that all physical parameters 

of a gas such as energy, momentum and mass move around within the gas because 

of particle collisions which occur at an averaged velocity based on the statistical 

distribution of the sample (Maxwell treated the particles as rigid classical "billiard 
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balls"). Successes of classical kinetic theory in predicting macroscopic behavior of 

gases were also a confirmation that underlying assumptions, including the mecha

nism of particle collisions, were correct. Later, deviations from the theory for real 

gases were observed, only to be resolved by the quantum theory. 

With the development of quantum mechanics and atomic theory, the rich 

structure of atomic particles was revealed and treatment of atomic collisions be

came a much more complex problem than envisioned by the pioneers of kinetic 

theory of gases. Notable triumphs of scattering theory in the early twentieth 

century include work of Ernest Rutherford (1911). He is perhaps best known 

for the Gold foil experiment, where he deduced the orbital model of the atom, 

with electrons orbiting around the positively charged nucleus, by observing the 

distribution of scattered alpha particles off thin gold foil. Soon after Niels Bohr 

combined the results of Rutherford's experiment with his own quantum theory 

of light and derived a theory of hydrogen atom, advancing atomic physics and 

physics in general into the modern era. 

Discussing "collisions in physics" is almost meaningless in modern physics: 

the topic is simply too broad and spans over different areas of physics and energy 

scales. In fact, different collisional energies emphasize different physics and require 

different models. In this work, we will narrow down the topic to two specific 

topics: the ultracolcl collisions of atoms and ion-atom charge-exchange collisions 

at non-relativistic energies. 



1.1 Ultracold collisions 

Not so long ago, pioneering work by J. Dalibard and C. Cohen-Tannoudji (1985) 

[1,2] and W. D. Phillips, J. V. Prodan and H. J. Metcalf [3], demonstrated that 

light can be used to trap and cool atoms to submilliKelvin temperatures, initiating 

a shift towards atomic and molecular physics at ultracold temperatures. As new 

phenomena, such as Bose-Einstein (BEC) condensation, matter-wave coherence, 

Efimov states and Fermi degenerate gases, were subsequently explored, collisions 

maintained a central role. In a more recent review article [4] Weiner, Bagnato, 

Zilio and Julienne state: 

"Cold and ultracold collisions occupy a strategic position at the 

intersection of several powerful themes of current research in chem

ical physics, in atomic, molecular and optical physics, and even in 

condensed matter." 

This statement is certainly true, if not too broad. Perhaps the first direct 

consequence of this effect that comes to mind in the domain of ultracold physics is 

Bose-Einstein condensation. Namely, to cool an atomic gas to the temperature at 

which it undergoes the Bose-Einstein condensation, we must utilize evaporative 

cooling in addition to laser cooling [5]. The reason is simple: the momentum 

transfer achieved by laser light in a trap during the optical cooling cycle can greatly 

reduce translational motion of the atoms but it cannot maintain the required phase 
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space density for condensation. To perform the evaporative cooling the atoms are 

loaded into an approximately harmonic magnetic trap and its potential is lowered 

using a radio-frequency field, which removes the hottest atoms, while the rest of 

the sample thermalizes via elastic collisions. However, "unfavorable" collisions 

heat the trapped gas, ejecting pairs of atoms from the shallow magnetic trap. 

Such collisions are the main factor in determining the sample's maximum lifetime 

in a trap. The s-wave two-body scattering length plays a crucial role during 

the condensation as well as in determining the condensate's properties [6]. Its 

sign determines if the gas can be cooled beyond the optical limit and condensed, 

while modern mean-field theories, which predict the condensate's lifetime, size and 

dynamics, as well as kinetic theories that describe formation of the condensate, 

base the interaction term on the atom-atom scattering length a. A good overview 

of existing BEC theories is given in [7]. 

Another important aspect of particle collisions at ultracold temperatures is 

the study of weak long-range forces. Atomic collisions at ultracold temperatures 

happen very slowly. This allows very long interaction times during a collision. 

Weak long-range forces acting between the atoms, such as the electric dipole-dipole 

interaction, that are usually negligible can become very important. Consequently, 

this makes ultracold collisions an ideal system to study such forces. External 

electromagnetic fields introduce additional couplings between atoms and can be 

used both to study atomic or molecular structure and to control the outcome 
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of collisions. Perhaps the best known example of the latter is the application 

of the magnetic field to induce a Feshbach resonance and modify the scattering 

length [8]. This is, in principle, possible to realize in all systems where the average 

collision energy of atoms is not greater than a few percent of the atomic hyperfine 

splittings. Magnetic Feshbach resonances have been used in numerous experiments 

and remain a tool of choice in the experiments where either enhancing the elastic 

collision rate [4], or tuning a BEC [9] are required. 

Photoassociation spectroscopy of ultracold molecules has been a particularly 

successful tool for conducting such studies experimentally [10-12]. Photoassoci

ation is a process where a bound rovibrational molecular state is excited by a 

laser which is resonant with a lower-energy molecular state that becomes acces

sible during the collision of two atoms. The low energies at which the collision 

takes place make it possible to resolve the rotational spectra in a very high res

olution often comparable to the natural linewidth. If the wavefunctions of the 

initial and photoassociated state overlap favorably (have large Franck-Condon 

factors), the process is very efficient. In addition, photoassociation can be used 

to create molecules in their ground state [13]. This usually requires two steps, 

where molecules are first formed in an excited state and then transferred to the 

ground state via either spontaneous or stimulated emission. For example, the 

stimulated Raman process has been used successfully to produce RbCs [14,15] 

and KRb [16,17] molecules in their lowest rovibrational level, and its application 
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to other heteronuclear alkali molecules is currently being investigated. 

Forming ultracold molecules in their lowest energy rovibrational state is not 

only interesting for spectroscopic measurements. Such molecules are long-lived 

and stable in traps, which makes them suitable for realizing qubits and quantum 

gates [18,19]. The possibility of using ground-state ultracold molecules as a plat

form for quantum computation, especially when combined with optical lattices 

and methods to address individual lattice sites [20], opened up a new and exciting 

venue for research. Moreover, speaking of 'forming molecules' evokes the basic 

idea of chemistry, and, indeed, a subset of atomic physicists and physical chemists 

investigate chemical reactions in ultracold gases and how to control them by elec

tromagnetic fields (see e.g., Refs. [21,22] and references therein). These topics 

constitute some of the mainstream research directions in ultracold atomic and 

molecular physics that are closely related to the research presented in this thesis. 

For a more complete overview of current developments in the field, however, we 

point the reader to the review articles referenced above. In particular, a good 

overview of directions and future applications (some of which have already been 

realized!) of ultracold molecules is given in Ref. [12]. 

1.2 Ion-atom charge-exchange collisions in space 

While ion-atom collisions and charge exchange are being actively investigated in 

the ultracold regime [23-25] (and references therein), this is not the topic of our 
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research. Instead, we apply the same underlying scattering theory to study a much 

'hotter' system: charge-exchange between solar wind ions and neutral atoms in 

our solar system (or, more generally, the circumstellar space). In this context, we 

will call such an environment 'cold,' to respect the jargon used in astrophysical 

literature. It was a surprise to observe that such a cold environment emits in 

UV and X-ray spectrum. Such energetic radiation is expected from very hot and 

violent systems, such as neutron stars, binary stars, supernova remnants or black 

holes. 

Let us present a bit of history. The first observation of X-ray and EUV 

emission from a comet (Hyakutake, C/1996 B2) was made in March 21-24, 1996 

by Krasnopolsky and Munnna with the Extreme Ultraviolet Explorer (EUVE) 

satellite [26]. A follow up observation by ROSAT confirmed that the comet was, 

indeed, a source of X-rays [27]. Charge-exchange collisions between highly-charged 

solar wind heavy ions and neutral atoms and molecules present in the cometary 

atmospheres were first proposed as a possible mechanism responsible for the X-

ray emission by Cravens [28]. Subsequent studies confirmed the radiative cascade 

produced by the captured electron from excited states of solar wind ions as the 

mechanism responsible for the process [29]. As better observational data be

came available, it became possible to identify structures in the observed spectra, 

confirming the charge-exchange hypothesis. Currently, it is believed that charge-

exchange is responsible for close to 90% of cometary X-ray and EUV emissions 
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[30,31] in our Solar system. Soft X-rays below 2 keV and EUV emissions were 

also detected from the majority of cold solar system objects including planets and 

planetary satellites, the Io plasma torus, the rings of Saturn, the exospheres of 

Earth and Mars, and the heliosphere [32]. 

The role played by charge-exchange processes in the interaction of the solar 

wind with the interstellar medium [33-35] has also been studied recently. There is 

an increasing amount of evidence that the existing models of the hot Local Bubble 

may need revision to correctly account for the charge-exchange radiation [36,37]. 

These exciting discoveries encouraged us to explore the role of polarization in 

charge-exchange X-ray emissions. 

1.3 Organization of this work 

This thesis is organized as follows. In the four chapters following the introductory 

chapter the focus is on collisions of atomic pairs at ultracold temperatures in an 

external magnetic field. In Chapter 2, we review the coupled-channel theory of 

cold collisions in a magnetic field and introduce the notation that will be used 

throughout the thesis. In Chapter 3 we present a detailed theoretical study of 

collisional properties of ultracold Li-Na and Li-Rb mixtures. To ensure that our 

calculations are accurate, we first construct new molecular potentials that can 

reproduce published experimental and theoretical results. In the next step, we 

calculate properties of Feshbach resonances, scattering lengths and inelastic rates. 
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A new efficient method for forming ultracold molecules is proposed in Chapter 4 

and applied to the previously studied systems. The method exploits the properties 

of the atom-atom scattering wavefunction near a Feshbach resonance to enhance 

molecular photoassociation rates. In Chapter 5, based on a special property of the 

enhanced formation rate derived in Chapter 4, we propose a precision measure

ment experiment to detect variation of electron-proton mass in time. Chapter 6 

briefly describes a theory of charge-exchange atom-ion collisions. A special atten

tion is given to exactly solvable three-particle systems and electronic potentials 

for CH6+, NH7+ and OH8+ molecular ions are calculated from first principles. In 

Chapter 7 we calculate the polarization of X-rays emitted in charge-exchange col

lisions that take place in our solar system, between characteristic solar wind ions 

and hydrogen. We conclude in Chapter 8, by emphasizing the most important 

results of these projects and discussing future directions. 



Chapter 2 

Theory of ultracold two-body collisions 

Scattering theory is a mature and established theory presented in detail in nu

merous specialized textbooks, such as Refs. [38-40]. Therefore, only an overview 

relevant to the study of atomic collisions in external fields is presented here. While 

the general expressions given in this chapter are valid for a broad range of energies, 

the emphasis is on the atom-atom collisions in the ultracold regime. Moreover, 

the majority of the final expressions are presented in a form in which they can 

be directly applied. In addition, instead of introducing the theory from a more 

general Lippmann-Schwinger operator formalism, we choose the Schrodinger dif

ferential equation as the starting point. Such presentation most certainly lacks 

the beauty and generality of a more abstract theory but remains more in line 

with the majority of articles in current prime literature in atomic and molecular 

physics. The last two references cited, however, offer such an approach, and we 

refer the interested reader to them for a more complete picture. 

12 
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2.1 Two-body multichannel scattering 

A collision of two atoms can be described as an extension of a free particle theory 

where an interaction potential corresponding to all the Coulombic interactions of 

the component particles is introduced and its effects on the free particle wave-

function are studied. We start from the time-independent Schrodinger equation 

H\V) = E\V), (2.1.1) 

where H is the total Hamiltonian for the system, E is the eigenenergy, and |\t) is 

the two-particle quantum state of interest. 

In a general case, we consider two colliding atoms, labeled a and b, to be 

structureless particles connected by a vector R = fa + rj, and moving with relative 

—* —t 

momentum k in the scattering potential V(R). We will assume that the scattering 

potential depends only on the relative position of the colliding particles and that 

the total wavefunction ^ can be separated in two parts. The first part describes 

the center-of-mass motion and second part describes the relative motion of the 

atoms. 

This model is valid both in free space or if an external trapping potential 

is present. To justify that, we take a closer look at the trapping potential and 

relevant length scales. A typical trapping potential can be described well by 

a harmonic potential of the form V = ^mto2R2, where m is the mass of the 

atoms in the center-of-mass coordinate system and u> is the angular frequency 
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of the trapping field. This potential is quadratic in R and still separable, while 

anharmonic terms proportional to R3 and higher order powers are typically at 

least two orders of magnitude weaker than the leading terms and can therefore be 

neglected. 

We can now rewrite Eq. (2.1.1) in a more specific form 

f - ^ V 2 + Hint + V(R)\ |tf) = E\V), (2.1.2) 

where the term H[nt contains the internal energy of the molecule and interaction 

with external fields and E is the energy associated with the relative motion of the 

colliding particles. 

A multichannel approach is usually required because of the internal degrees of 

freedom which can be excited, leading to a different outcome of the collision. We 

first write the multicomponent scattering state for the relative motion in terms of 

the incident plane wave and the scattered spherical wave: 

\%n) = e^M\Xm) + E ^ - W * . v)IXn>- (2-1-3) 
n 

Here, \xm) is the internal state of both particles, fmn is the scattering amplitude, 

m is the incident state and n is the final state after the collision. The collision 

is considered elastic if the initial and final states remain the same (m = n), and 

inelastic if they change in collision (m ^ n). 

We can perform a partial wave expansion of elk'R into spherical harmonics 

to account for the orbital motion of the colliding atoms and the corresponding 
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angular degrees of freedom. The resulting expression is 

where ip? (R) is a radial wavefunction for the channel / obtained as the ith solution 

to Eq. (2.1.2). Here we introduced the concept of a channel by forming a com

bination of an internal state \Xnf) with a specific spherical harmonic Ye
 /(t?,<p). 

The internal state can consist of any number of quantum states depending on the 

system, such as spin, hyperfine structure, and other pairwise interactions. The 

channel index / is unique and includes all quantum numbers for the particular 

combination of angular and internal states. A frequently used notation in terms 

of channels present in collisions of two atoms is I/1/2), where |/j) = \Xnf)\^i)fi, 

includes all quantum numbers for the i th atom, where i — 1,2. This notation is, 

clearly, not uniquely defined: depending on symmetries relevant for the problem, 

different definitions of channel index are possible. By solving the equation 

Hint\Xnf) = Ek\Xrif), (2.1.5) 

we can obtain Ek, the threshold energy for a linear combination of internal states 

(minimum one) that diagonalize the Hamiltonian H[nt. Channels can have differ

ent threshold energies Ek, and the difference between the collision energy E — Ek 

can be positive or negative. For E — Ek > 0 the channel is open and accessible in 

collision while for E — Ek < 0 the channel is closed. We also define the channel 

wavenumber kf = ^2fj,{E — Ef) for the channel / . If an external field is included 



16 

in the Hint and it changes the threshold energy, we call the set of states that cor

responds to that particular energy "field dressed." Field-dressing can be induced 

by static electric or magnetic fields, as well as by an optical pulse; it represents a 

useful formalism for visualizing effects of the fields on the system. 

Inserting the partial wave expansion given by Eq. (2.1.4) into Eq. (2.1.2) and 

m' 

projecting the resulting equation onto {4>p\ — {Ye,
 f Xn',\ gives an infinite set of 

coupled differential equations 

Here, 5fi is Kronecker's delta and Vfi(R) = (<pf\V(R)\(j)f) is the interaction po

tential which will be analyzed in detail in specific cases in Chapter 3. We will use 

the convention that the ith entrance channel is associated with the ith eigenenergy. 

Before this system of coupled-channel equations can be solved, the total num

ber of equations has to be reduced from an infinite number to the minimum 

number required to describe the physical behavior of the system and capture all 

interesting effects. Depending on the complexity of the system and the level of 

detail required, the number of equations can vary between a minimum of two and 

several thousand. Once obtained, the system of equations is solved numerically 

using either a multichannel propagator method or a spectral method. Numerical 

techniques are discussed in more detail below. 

In the ultracold regime, at or below a few milliKelvin, the s-wave scattering 

almost completely determines the outcome of the collision. In practice, there is 
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rarely a need to consider more than the first four partial waves. This greatly 

reduces the number of coupled equations and simplifies the problem. At the same 

time, the complexity of the problem increases elsewhere: cold collisions are very 

slow and sensitive to the weak and long-range internuclear forces. 

To obtain a meaningful solution of the Eq. (2.1.6), we need to apply the 

following boundary conditions 

4>?(R = o) = o, 
/ 9/7 /p-WiR-liit/l): _ i(ktR-enr/2) o \ 

*?'<*-»> - vJfe ( ! V — - ) • p'1-7' 
with hi = y/2iJ,Ei/h2, and S is the scattering S-matrix [39]. The 5-matrix contains 

information about both the scattered and the unscattered part of the wavefunc-

tion, and all physical observables measured in experiments can be expressed in 

terms of it. 

The boundary conditions can be used in Eq. (2.1.6), which is then solved for 

Sfi. Another important operator matrix in scattering theory is the T-matrix, or 

transfer matrix, which is defined as [41] 

Tfi = i(Sfi-Sif). (2.1.8) 

While both S'-matrix and T-matrix operators can be used when solving a col-

lisional problem, their physical interpretation is different. The S'-matrix operator 

acts on an incoming state and propagates it 

S\4>o) = |'0O> + IV'scat), (2-1.9) 
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so that the final state can be written in terms of the incident and scattered waves, 

\'ipo), and iV'scat), as in Eq. (2.1.3). In general, the S-matrix is complex. Conse

quently, in practical calculations involving inelastic collisions, it is commonplace 

to work with the iv-matrix, which is real-valued [39]. Similarly, the T-matrix 

operator acts on the incident wave and propagates it but it accounts only for the 

scattered fraction of the total wavefunction 

f |Vo> = - # s c a t ) . (2 .1 .10) 

In a multichannel collision the partial scattering cross section from an incom

ing channel i scattered to a channel / can be expressed in a simple form using the 

T-matrix: 

afi = ^\Tfi\
2. (2.1.11) 

More specifically, a ft describes the ratio of the incident flux in channel i to the 

scattering flux in channel / , where the flux is usually defined per unit area. In 

binary collisions Gj% can also be interpreted as a probability that the incoming 

particle in the initial state i will exit the collision in the state / . This is often 

expressed using the rate constant defined as 

Kif = vi<Tfi (2.1.12) 

where V{ is the initial velocity of the colliding particles. 

More insight into the problem can be gained by rewriting the asymptotic 

boundary conditions given in Eq. (2.1.7) in terms of real-valued spherical Bessel 
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functions and the if-matrix for large R. We have 

•^{R - oo) oc Y, kfR {hf{kfR)Sfl - ntj{kfR)Kfi) , (2.1.13) 
/ 

where the spherical Bessel functions are proportional to the solution of Eq. (2.1.6) 

for VSi = 0: 

(Rtyf) <x kfRjef(kfR) 

oc hfRne/{kfR), (2.1.14) 

Here jg is regular and ii£ irregular spherical Bessel function. The A'-matrix is 

real-valued and often more practical to use than the S'-matrix or the T-matrix 

when numerically solving a coupled-channel scattering problem. For the large 

argument, spherical Bessel functions behave as simple trigonometric functions 

jef(kfR) oc J-sm(kfR-efw/2) 

niAkfR) oc -^—cos(kfR-£fn/2). (2.1.15) 

kfR 

Substituting these solutions in Eq. (2.1.13) and using trigonometric identities 

results in the following expression for the channel i 

4Z) -sinik-enr^ + Vi). (2.1.16) 

The resulting equation introduces the scattering phase shift rji for the channel i for 

the diagonal terms Ku of the A"-matrix. A different manipulation of trigonometric 

identities transforms Eq. (2.1.16) into 

ipf] ~ cos r]i [sin(ki - 1^/2) + tan 7ft cos(ki - ^TT/2)] , (2.1.17) 
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which clearly shows the relation between diagonal if-matrix elements, Ku, and 

the tangent of the phase shift, tan7/j, a result that can be easily derived for a 

single-channel elastic scattering problem in one dimension. Partial cross section 

can also be related to the phase shifts as 

an = j2 sin2 r]i. (2.1.18) 

Finally, to account properly for energetically closed channels, we need to introduce 

a different boundary condition. The channel / is closed if E — Ef < 0, resulting in 

an imaginary solution for kf. To obtain the wavefunction in real space we need to 

impose an exponentially decaying boundary condition for large R in this channel. 

The closed-channel wavefunction has the form 

ipf(R -> oo) oc e~kfR. (2.1.19) 

The required boundary condition for the channel / is constructed as a linear 

combination of other open- and closed-channel solutions. 

2.2 Feshbach resonances 

A quasibound state or resonance occurs when the energy in an open channel (above 

the continuum) is close to or matches the energy of a bound level, or at which 

a bound level could have occurred. In a single-channel case such a scenario is 

possible if a potential barrier exists, leading to shape resonances [41]. A Feshbach 

resonance occurs in a multichannel case when weak coupling exists between the 
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open and closed channel. To illustrate this we consider a two-channel system with 

coupling V\2 = V21 (required condition to retain hermicity of the Hamiltonian) 

and rewrite Eq. (2.1.6): 

h2 d2 

2[xdR2 + VX{R) ^(R) + V12(R)MR) = E^iR), 

( " 2 ^ ^ + V2{R)) 'h{R) + Vn(RWQ = E^R)- (2-2-1) 

We assume that channel 1 is open, with the threshold energy E = 0, channel 2 

is closed, and that E0 is the energy of the resonant bound state with correspond

ing wavefunction ^o- These coupled equations can be formally solved using the 

Green's function method [41]. 

We obtain the position and the additional phase shift in the open channel 

that define the resonance, ER and 5: 

ER = E0 + A, 

5 = - a r c t a n f ^ J , (2.2.2) 

where A is the energy shift of the resonance from EQ, the energy of the uncoupled 

bound state in the closed channel, and F is the width of the resonance: 

A = (4>o\V2iGV12\4>0), 

T = 27r|(^0 |^i|^eg)|2. (2.2.3) 

Here, G is the Green's operator and -0reg is the regular solution to the corre

sponding homogeneous differential equation [41]. These parameters are related: 
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the width of the resonance is determined by the energy T so that the phase 5 

increases by 7r/4 and 37r/4 for E = ER — T/2 and E = ER + F/2 respectively. 

The scattering length in the vicinity of a Feshbach resonance can be parametrized 

as [42] 

a - a»* 0 " A ) • <"-4> 
Both T and ER are, in fact, energy dependent since the Green's function for 

the problem is a function of energy. Nevertheless, the definitions given above are 

commonly used in the literature related to diatomic ultracold collisions [4]. A 

more detailed approach includes analysis of the pole structure of 5 and its dynam

ics as a function of energy [39,40]. In a multichannel system with weak couplings 

between channels, such as in atomic collisions in the presence of external fields, 

more than one Feshbach resonance often exists and their parameters are calcu

lated by completely solving the scattering problem, a task typically accomplished 

numerically. 

The effect of external fields, namely a constant magnetic field, on the res

onances is discussed below and in subsequent chapters Feshbach resonances are 

calculated for several alkali metal atom pairs. 

2.3 Angular momentum representations 

The time-independent formalism used to treat atom-atom collisions is similar 

to the one used to describe physics of diatomic molecules. In both cases, to 
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model the problem correctly, we need to choose an appropriate set of quantum 

numbers, while keeping in mind that two different coordinate systems can be used, 

the molecule-fixed coordinates and the fixed laboratory coordinates. One of the 

consequences is that several different sets of quantum numbers are used, based 

on the relative importance of the interaction terms and the regime that is being 

described. Hund's cases [43] give very good guidelines for typical cases considered. 

We consider a collision (or a diatomic molecule) ab, where a and b are two 

atoms. For the purpose of describing the theory, we will assume that the atoms 

are distinguishable; the symmetrization of the wavefunction to correctly account 

for (in)distinguishable particles is discussed in detail in a separate section below. 

A detailed description of angular momenta and different coupling schemes for 

diatomic systems is given by Lefebvre-Brion and Field [43]. For the purposes 

of this work, we will restrict ourselves to commonly used angular momentum 

representations and corresponding quantum numbers relevant in the ultracold 

regime. 

One possible representation is the short-range representation, where we con

sider Born-Oppenheimer molecular potentials to be the dominant part of the 

interaction. We have 

(angular part)short range = \Sms, Imi) \£me), (2.3.1) 

where S = s"a + s~l and I = ia + % are the total electronic and nuclear spin, 

respectively, £ is the total orbital angular momentum as defined above, and ma 
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is the projection of the quantum number a on the space-fixed quantization axis. 

This representation is suitable for small internuclear separations where the Born-

Oppenheimer potentials are diagonal in a total electronic spin basis. Spectroscopic 

notation at short range is based on this representation and identifies molecular 

potentials as singlet or triplet, based on the total electronic spin. 

For large internuclear separations small corrections to molecular potentials 

due to the hyperfine interactions and interactions with external fields become 

important. Different angular momentum representations that include the total 

quantum number / for the atom i (i = {a, b}) become better suited for diag-

onalizing the Hamiltonian. One such representation is the uncoupled hyperfine 

representation 

(angular part)unc0upied = \famfa, fbmfb)\£me), (2.3.2) 

where the hyperfine quantum number for the atom i (i — {a, £>}), is fi — sa + ia. 

In the absence of external fields the hyperfine Hamiltonian can be expressed in a 

simpler form in the coupled hyperfine representation given by 

(angular part)coupied = \(fafb)fmf)\£m,e). (2.3.3) 

This representation is also useful if the external magnetic field can be treated 

as a small perturbation. If the dipole-dipole interaction term is included, the 

fully uncoupled angular momentum representation can be used since the total 
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Hamiltonian is block diagonal in it. This basis is denned as 

(angular part)fuuy uncoupled = \sam8Jarnia)\sbm8bibmib)\£rne). (2.3.4) 

In this thesis the uncoupled hyperfine representation is used when describing gen

eral properties of systems, while we use the short range representation in conjunc

tion with the Feshbach projection formalism. The fully uncoupled representation 

is used to calculate magnetic dipole-dipole matrix elements and other second-order 

effects with similar tensorial character. 

2.3.1 Identical particles and symmetrization 

The symmetrization postulate of quantum mechanics states that particles with 

spin equal to an integer multiple of h (bosons) can have only symmetric states, 

while the particles with spin equal to a half odd-integer multiple of 1% (fermions) 

can have only antisymmetric states. A third type of symmetry or partial symmetry 

states does not exist in nature [44]. Consequences of the symmetrization postulate 

are, among others, the Pauli exclusion principle and the indistinguishability of 

scattering events for identical particles. To account for the latter we need to 

allow the spatial wave function to be symmetric or antisymmetric under particle 

exchange (r*—• —f). 

The total two-particle wavefunction must be symmetrized with respect to 

the exchange of internal atomic coordinates and spatial inversion of the coordi

nate system. This can be accomplished by applying the two-particle symmetriza-
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tion operator O — (1 + (—I)p-Pi2) to the total wavefunction, where (—l)p is the 

phase factor with p — 0 for bosons and p = 1 for fermions. The radial part 

of the wavefunction is trivially symmetric since it is a function of the internu-

clear distance (spatial coordinate) R. The remaining angular and spin parts, 

\£me)\fmf) = Ylne(,d,ip)xf, contain all the information about the symmetry of a 

particular state. In the center-of-mass frame the symmetrization operator for the 

angular part of the wavefunction is equivalent to the parity operator Fi2, which 

can be applied to it resulting in 

Pultme) = (-l)e\hne). (2.3.5) 

Using the angular momentum representations introduced in the previous section 

we can proceed with the symmetrization. This is illustrated in the uncoupled 

hyperfine representation. We apply the total symmetrization operator O to the 

angular part of the wavefunction given in Eq. (2.3.2): 

0\famuJbmfb)\£me) = \famfa, fbmfb)\£m£) + (-l)p+e\fbmfbJamfa)\lmi) 

(2.3.6) 

The symmetry of the coupled hyperfine representation can be easily derived 

from the obtained expression by recoupling hyperfine components of the angular 

momenta and by using the identity relation for the 3-j coupling coefficients [45]. 
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The resulting expression is 

0\Uah)fmf)\&mt) = \(fafb)fmf)\eme)+ (2.3.7) 

(-l)p+e+U+fb-f\(fbfa)fmf)\£me). 

We can obtain selection rules directly from symmetrized expressions. If the spin 

part of the total wavefunction is indistinguishable, it follows from Eq. (2.3.6) that 

the collision of the identical atoms is permitted only if ( — l)p+i = 1. This implies 

that only even (odd) partial waves need to be considered for bosons (fermions), 

simplifying the problem significantly. From the symmetrized coupled hyperfine 

representation given in Eq. (2.3.7) we can obtain selection rules by setting fa — /&. 

Detailed derivations of symmetrized representations and a more complete list of 

selection rules is given in R.ef. [46]. 

2.4 Two-body Hamiltonian 

In general, the total Hamiltonian for a two-atom collision is rather complicated. A 

detailed derivation of the exact Hamiltonian in the molecule-fixed coordinate sys

tem is given in Ref. [47]. The problem can be simplified without a significant loss of 

accuracy by decoupling nuclear and electronic motion and neglecting all couplings 

between them. This is called the Born-Oppenheimer approximation [48], and it is 

made possible because we can separate the much faster electronic motion from the 

slower nuclear motion during a non-relativistic collision; we assume that electrons 

instantanously adjust to any change of relative position of nuclei. Lefebvre-Brion 
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and Field [43] give a detailed overview of the Born-Oppenheimer approximation 

in diatomic molecules and possible corrections to it. The description of diatomic 

collisions remains complex even after this simplification is introduced and 14 dif

ferent terms can be identified in the Hamiltonian [49]. 

At ultracold temperatures, however, colliding atoms remain in the ground 

state and many of these terms are very small and can be neglected. In ultra-

cold collisions it is easy to distinguish between the short-range regime for small 

internuclear separations which is dominated by molecular electronic interaction 

potentials, and the long-range regime where the internuclear separation is large. 

At short range, total electronic spin is well defined, locked in the singlet or triplet 

—* 

configuration, and precessing around the total angular momentum F. At large 

internuclear separation, hyperfine interactions become dominant and at ultracold 

temperatures they are often larger than the collision energy. In this regime elec

tronic spins are mostly coupled to the corresponding nuclear spins and precess 

around the total atomic angular momentum of individual atoms. Consequently, 

spin-exchange collisions are possible between two hyperfine states, implying that it 

is possible that atoms enter the collision in one hyperfine state and exit in another. 

External electric and magnetic fields introduce additional couplings between the 

fields and electronic and nuclear spins. The Zeeman and Stark interactions are 

at long range commonly of the same order as hyperfine couplings and have to 

be considered simultaneously, leading to interesting collisional physics specific to 
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2.4.1 Born-Oppenheimer potentials in T —> 0 limit 

As mentioned above, the Born-Oppenheimer Hamiltonian contains separated nu

clear and electronic terms, HBo = HN + He. Since all couplings between the 

nuclear and electronic motion are neglected, Born-Oppenheimer molecular po

tentials can be constructed by evaluating electronic eigenenergies of He for a 

set of frozen internuclear separations. The resulting curves are called molecu

lar potentials or molecular potential energy curves and are commonly used to 

describe atom-atom interactions. The same approximation can be extended to 

atom-molecule or molecule-molecule collisions, where the electronic eigenstates 

depend on more than one coordinate and the resulting potentials are multidimen

sional surfaces. Fig. (2.1) shows the two energetically lowest molecular potentials 

for the LiNa molecule. 

Obtaining accurate Born-Oppenheimer potentials usable in the ultracold regime 

is a joint effort between theory and experiment. From the theoretical side ab-

initio methods, which consider all possible electronic interactions in many-electron 

atoms as well as their excitations, can be used to calculate the short-range part of 

the potentials, typically up to 20-30 Bohr. Such calculations are rather sophisti

cated and involve a number of methods mostly based on either the Hartree-Fock 

approach or configuration interaction [50]. For larger internuclear separations 
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the overlap of the atoms' electronic clouds decreases exponentially, which can be 

described well by the exchange energy term [51] 

Kxch = ±ARae~l3R, (2.4.1) 

where the positive solution is used for the triplet spin state and negative for the 

singlet. The coefficients a and (3 are given in terms of binding energy for the 

valence electron for "one-electron" alkali metal atoms. 

The van cler Waals or dispersion interaction consist of attraction or repulsion 

of induced electric dipoles and higher-order multipoles. The fluctuation of charge 

density surrounding the atom A due to the electron motion temporarily induces 

an electric dipole moment in the charge distribution of the atom B, which then 

interacts with the first atom. The same holds true for higher order moments. 

The dispersion interaction can be accurately described by a perturbative series 

expansion in l/R, with dispersion coefficients Cn, where the positive integer n 

corresponds to the power of l/R. For two alkali ground-state atoms, the van der 

Waals interaction is given by 

The relative importance of different terms in the long-range expansion is shown 

in Fig. (2.1) (inset). For diatomic collisions of alkali atoms it is usually sufficient 

to consider the total long-range interaction to be a sum of the exchange energy 

term and the van der Waals potential, V/r = Vexch + Vv<w- Different functional 
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forms of exchange energy that offer a smoother continuation of both the short-

range and the dispersion potential have been studied by different authors [52]. 

In addition, for very large internuclear separations of the order of thousands of 

Bohr radii, it is necessary to include retardation effects, relativistic corrections 

that account for the time required for interactions to propagate. The retardation 

effects will, for example, change the nature of the factor CQ/R6 into that of C7/R7 

for very long range interactions. More detail about the retardation effects can be 

found in Ref. [53]. Since the retardation effects become important only for truly 

spatially extended molecules, and even then are very difficult to distinguish from 

uncertainties associated with other terms, we will restrict ourselves to the form 

given in Eqs. (2.4.1) and (2.4.2) when describing long-range interactions in cold 

scattering calculations. 

2.4.2 Hyperfine interaction 

The hyperfine structure of atomic energy levels is a result of the interaction of the 

electron spin with the nuclear spin. Hyperfine energy level splitting is typically 

2-3 orders of magnitude smaller than the fine structure, which is caused by the 

interaction of the electron spin and orbital angular momentum, and has to be 

considered separately for every fine structure level. In the ultracold regime the 

hyperfine interaction becomes comparable to the long-range molecular potentials 

and has to be considered in collisions. 
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A complete description of the hyperfine interaction is complicated for nuclei 

with spin i > 1/2 due to the existence of the higher order multipole terms [54]. 

To first order, however, higher order terms average to zero and contribute only 

as second-order effects to the hyperfine interaction. They can be safely neglected 

for spherically symmetric alkali atoms. The hyperfine interaction can therefore be 

modeled by the "Fermi contact term" [55,54] 

^hf = -Y^ e(0) |2( /T e / rn) , (2.4.3) 

where \xe and jln are the electronic and nuclear magnetic moments, respectively. 

The evaluation of \I/e can be avoided and replaced with measured splittings of 

hyperfine energy levels [54]. The new form is 

HM = «hf(/2 - s2 - z2), (2.4.4) 

where / = s + i for an atom and CXM is the hyperfine constant which can be 

expressed in terms of hyperfine level splittings A as 

«,„ = i j A j . (2.4.5) 

The sign of a^f is positive for "normal" energy level ordering of hyperfine states, 

E{f — * + s) > E(f = i — s) and negative for "inverted" ordering, E(f — i + s) < 

E(f = i — s). The total hyperfine Hamiltonian for two colliding atoms is a sum 

of hyperfine terms for both atoms: 

HM = a$(fa
2 - si2 - ia

2) + c&\fb
2 - sV - ib

2). (2.4.6) 
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Good examples of normal and inverted hyperfine structure are given in Refs. 

[56,57]. 

2.4.3 The spin-spin interaction 

The interaction of magnetic dipoles associated with the spins of two different 

electrons is called the spin-spin interaction or magnetic dipole-dipole interaction. 

In general, the expression for the interaction term is rather complicated [43]. For 

two alkali metal atoms, only the spin of the valence electron of each atom can 

be considered to form a magnetic dipole which interacts with the dipolar field 

created by the second atom. This is a very good description in alkali atoms. The 

resulting interaction in a vector form is [58] 

3(R • fia)(R- fib) - fia- fib ,0 , 7x 
tiss = ^3 , (2.4.7) 

where jxa and ^ are the dipole moments of atom a and b, respectively, R is the 

internuclear separation and R is the unit vector with origin in atom a and aligned 

with the internuclear axis (all in the molecular coordinate system). The magnetic 

dipole-dipole interaction is anisotropic and long-range, decreasing slower with 

internuclear separation than the leading term of the van der Waals interaction. For 

small internuclear separations, R —>• 0, the vibrational wavefunction exponentially 

goes to zero as the molecular potential becomes repulsive (electrons repel each 

other), preventing a possible divergence of the dipole-dipole term. 

The magnetic dipole-dipole interaction can be rewritten in terms of second-
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order tensor operators [46,56] 

H» = - ^ E ( - 1 ) ^ l 2 , ( s - ( 1 ) ® s"(1))2-*' ^2A8) 

where Cq — \/^-Y2q(6, 4>) is a reduced second-order spherical harmonic that acts 

on the angular part of the wavefunction, (sa^ ®Sb^)^_q is a rank 2 tensor formed 

by contracting two electron spin vectors, and a is the fine structure constant. 

The Hss operator is a scalar which, in the absence of external fields, commutes 

with the square of the total angular momentum f2, with f = fa + h- The Cq2' 

operator connects orbital angular quantum numbers with A£ = 2, of which the 

coupling of s and d partial waves is the most important for ultracold collisions 

and is sometimes included in the total Hamiltonian. 

The spin-spin Hamiltonian is diagonal and easily evaluated in the 1ST) basis, 

where E = Ea + £& is the projection of the total electronic spin onto the internu-

clear axis in the molecular coordinates [43]. The expression becomes much more 

complicated in the commonly used hyperfine coupled molecular basis {Frnp)-



The resulting matrix element is [59]: 

{otafamfJmAHssWJWfm't) = (-l)"^+™i+1 ( * 
V T 

^ ( ^ l < ) - m i l ^ > < « a / a m / a | I > 2 S | a ' 0 / > / a : 

/ \ 

-x(abfbmfb\D
{^\a'b^mf'b) 

\ 

1 1 2 

Aa Ab me - m'f J 
where 

and 

^\c{Z-m>yo = (-irv(2^+i)(2^+i] 
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(2.4.9) 

/ 
£ 2 £' 

0 0 0 

\ / 
£ £' 

-mi nil — m't m'e 

(2.4.10) 

aafam}a\D^;0\a>afam/a) = y/(2fa + 1)(2/J + l ) ( - l ) / i+ - / .+ i 

Ja -̂  /a 
X )(1)*IU/ £' " a / a l l ^ o l K a / a ) - (2-4.11) 

^ m'/o Aa - m / o y 

The abbreviated notation Aa = rrifa — m'f and Ab = rrifb — m'f is used in the 

expression above. The reduced matrix element (ciafa\\D^'*Q\\a'cJ'a) includes all re

maining relevant quantum numbers represented by a. Once the quantum numbers 

that define the state are known, the reduced matrix element can be calculated in 

a rather straightforward way by applying the Wigner-Eckart theorem [45]. For 

details see also R.efs. [59,60]. 
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2.5 External fields 

Most atoms have a non-zero internal (nuclear and electronic) spin, which can be 

oriented using external electric and magnetic fields, increasing control over their 

interaction. The external fields break the degeneracy of atomic hyperfine structure 

due to the Stark and Zeeman effect, leading to a multitude of collisional channels 

that become accessible in experiments. In case of diatomic collisions, based on 

their dependence on the magnetic field, we distinguish high-field and low-field 

seeking states. This is important in experiments with cold gases since different 

designs of a magneto-optical traps are needed to trap high-field and low-field 

seekers [4]. 

Electric and magnetic fields are treated using the same formalism, with a few 

important distinctions. The electric field is a true vector field and it can couple 

states of different parity [58], unlike the magnetic field which is a pseudovector 

which couples states of the same parity. Both Stark and Zeeman interaction terms 

are given as scalar products of a dipole moment with an external field. Their 

effects on the system are very different as the Stark interaction term depends on 

the position of the charges, while the Zeeman term depends on the gradient of the 

field. The use of a magnetic field in ultracold experiments is more widespread since 

it offers a simple way to control the interaction strength between the individual 

atomic species via Feshbach resonances [9]. The effects of the Zeeman interaction 

on atoms and diatomic molecules, as well as Feshbach resonances, are discussed 
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in the remainder of this section. 

2.5.1 The Zeeman effect 

The Zeeman interaction term of the diatomic Hamiltonian is given by 

HB = - [P/ /B(SO + si) + V>N(gNja + 9Nbib)] • B, (2.5.1) 

where g is the (/-factor for the electron, \XB is the Bohr magneton, g^a b are the 

nuclear gyromagnetic moments for atoms a and b, /.tjv is the nuclear magneton, 

—* 

and s and / are electronic spin and orbital quantum numbers. If an electric field 

is not present, we can choose an arbitrary direction of the quantization axis. A 

typical choice is to assume the orientation of the magnetic field B along the 2-axis, 

B = Bz. The exact evaluation of the Zeeman term depends on the choice of the 

molecular basis. To illustrate this, we take the first term (electronic spins) and 

write the expression for the matrix element in the coupled molecular hyperfme 

basis: 
/ r 1 / x 

{afmf\HB\a'fmf') = -fiBBy/2fTl{-iy'+mf+1 

, m'f 0 —iTif 

xiafWD^Wa'f). (2.5.2) 

Prom the symmetry argument (second row in the 3-j symbol) in Eq. (2.5.2), it 

follows that rrif — m'f, implying that the Zeeman term preserves the projection 

of the spin quantum number during the collision. The reduced matrix element 

depends on the coupling scheme [59]. In Hund's case (a), where the electronic spin 
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and angular momentum are coupled to the intermolecular axis, a commonplace 

case in diatomic alkalis, the reduced matrix element for the s-wave (I = 0) is 

(afWD^Wa'f) = \y/{2s + l)(2s' + 1)(2/' + 1 ) (_1)i+.+.'-H+/-m. 

/ / ' 1 

s' s i I \ —ms 0 m's . 

The expression for the matrix element for the second term from the Eq. (2.5.1) has 

the same form, except that all electron spins are replaced with nuclear spins. An 

analogous expression can be derived for other coupling schemes [59]. More detail 

about coupling schemes and expressions for molecular collisions can be found in 

Refs. [45,60]. 

2.5.2 Magnetic Feshbach resonances 

A magnetic field can be used to directly shift bound levels of a molecule and 

match them to the energy of the open channel, inducing a Feshbach resonance 

[61,62]. This property makes Feshbach resonances a tool of choice in a variety 

of experiments currently conducted in ultracold atomic and molecular physics. 

Feshbach resonances are invaluable for studying strongly interacting ultracold 

Bose [42,63] and Fermi gases [64], as well as systems with mixed symmetries [65]. 

They can also be used for efficient conversion of ultracold atoms into weakly bound 

molecules and back, a technique applicable to an entire ensemble [9]. Moreover, 

Feshbach spectroscopy can be used to set tight limits on the energy of the last 
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bound state in molecules, leading to an accurate determination of its long-range 

interaction potential and scattering properties [66]. 

2.6 Theory of Feshbach-optimized photoassociation 

In this section we briefly outline the theory behind a new optical method for effi

cient formation of ultracold diatomic molecules [67]. The method, which we call 

Feshbach-Optimized Photoassociation (FOPA), is based on photoassociation (PA) 

of two ultracold atoms [11,13] in a magnetic field tuned to a Feshbach resonance. 

The main difference between the non-perturbed PA and FOPA is the initial state: 

instead of an unperturbed continuum state, a nearly-resonant continuum Fesh

bach state is used as the starting point. Such "Feshbach wavefunction" has a 

significantly different nodal amplitudes than a typical continuum wavefunction. 

Namely, its short-range part is greatly enhanced due to the resonant coupling, 

resulting in a much more favorable overlap (and Francle-Condon factors) with 

vibrational wavefunctions in excited molecular states. 

We can calculate the PA rate coefficient KpA for an optical dipolar transition 

into the vibrational level v in an excited state according to the expression [68,69] 

ICPA = {vrelaPA), (2.6.1) 

where vrei is the relative velocity of the colliding atomic pair, and (TV
PA) is the PA 

cross section. The bracket stands for averaging over the distribution of vre\, where 

the velocity distribution is taken to be the Maxwell-Boltzmann distribution at the 
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temperature T. 

At low laser intensity / and ultracold temperatures only the s-wave con

tributes significantly and the maximum rate coefficient (neglecting saturation) 

can be expressed as [70] 

o_3 J , ,-1/2 

A?A = ^ - ^ | ( ^ = i | ^ ( i ? ) | ^ = o ) r , (2.6.2) 

hl c QT 

where QT = (2ir/.tkBT/h2)3/2, and D(R) is the appropriate dipole moment for the 

transition between the initial \^fete=o) and final \<j>Vlj=i) states corresponding to the 

s-wave (£ = 0) continuum wave function of the colliding pair and the populated 

bound level (v, J = 1) wave function, fcg, h, and c, are the Boltzmann and Planck 

constants, and the speed of light in vacuum, respectively. 

We determine |We^=o) by solving the Hamiltonian for a pair of atoms in a 

magnetic field [9,71]: 
, 2 2 

H='?- + VC + Y.HT • (2-6-3) 
W j=i 

Here, Vc = V0(R)P° + Vi(R)P1 is the Coulomb interaction, decomposed into 

singlet (Vo) and triplet (Vi) molecular potentials, with the associated projection 

operator P° and P1. The internal energy of the atom j consists of the hyperfine 

and Zeeman contributions, respectively: 
aU) -* - -. 

HT = it*i • h + M - ln%i) • B, (2.6.4) 

where, for the atom j , Sj and ij are the electronic and nuclear spin, a^' is the 

hyperfine constant, and B is the magnetic field. The nuclear gyromagnetic factor 
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7n is the majority of alkali metal atoms about three orders of magnitude smaller 

than the electronic gyromagnetic factor 7e, it can often be neglected. The Hamil-

tonian of a two-particle system in a magnetic field is described in detail earlier 

in this chapter. The coupled-channel Hamiltonian given in Eq. (2.6.3) can be 

diagonalized by standard numerical methods, such as, for example Johnson's log-

derivative propagator for multichannel systems [72] or the mapped Fourier grid 

adapted for the long-range potentials [73]. 

The solution is projected onto the coupled molecular hyperfine basis in order 

to incorporate singlet and triplet molecular potentials: 

N 

|W£)<=0) = Y,MR){\h^h) ® |/2,m /2»a , (2.6.5) 
a=l 

where fj = ij + Sj is the total spin of atom j , and m/. its projection on the 

magnetic axis. Here, xpa(R) stands for the radial wavefunction associated with 

channel a labeled by the quantum numbers / j , m^; the Hamiltonian, given in Eq. 

(2.6.3), couples N channels with the total projection rrif — m^ + m/2. 

2.6.1 Analytic expression for the photoassociation rate 

It is possible to derive an analytical solution to Eq. (2.6.3), as was done for a 

system with two coupled channels by Pellegrini et al. [67]. An effective model of 

a two-channel system, where the continuum wavefunction ipi associated with the 

open channel 1 (potential Vi) is coupled to the wavefunction 02 associated with 

the closed channel 2 (V2) (here we use the same notation as in Ref. [41]), can be 
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resented by 

h2 

2ii 

d2 

dR2 

AM 
W + h 

, V21 

VV2 

v2 

\ 

I 
»-<£>• ^ 

where, /.t is the reduced mass for the system, and, for clarity, the constants that 

equal to unity, such as the reduced Planck's constant h, are included in the equa

tions in this section. Here, we assume that both coupling terms, V12 and V21, are 

real numbers, and fix the threshold energy E\ of channel 1 at E = 0. If the cou

plings were switched off, the solution for the open channel 1 would be 0i —>• '(/'reg 

while the closed channel 2 would have a bound state ^ —• ipo with energy EQ. 

A resonance occurs when E is near the energy EQ of ipo. The analytical 

solutions for Eq. (2.6.6) are then [41] 

•0!(R) - Aeg(R) + tan5 ipin-(R) , 

*=°° —,\H^-MkR + Shg + 5), (2.6.7) 
cosd V Trh2k 

MR) = -J-^-smSMR)- (2-6-8) 
V 7 T l 

Here, #bg and 5 are the background and resonant phase shifts, respectively, and A; 

is the wavenumber, k = y/2fj,E/h. The asymptotic regular and irregular solutions 

are defined as 

2/.1 

ir~Wk '0reg = V~?J7:Sm(^-ft + b̂g 

'0kr = ^^cos(kR + Shs). (2.6.9) 

Finally, the width of the resonance T = T(E) is allowed to vary slowly with E. 
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In principle, scanning the magnetic field B is equivalent to scanning the col-

lisional energy E, since the energy E0 of the bound state in channel 2 is shifted 

by the Zeeman interaction. Up to the first order in k, the s-wave phase shifts are 

related to the scattering length a as tan(<5 + <5bg) = —ka, with <5bg = —ka^g, and 

the scattering length can be expressed as [71] 

" - •H ' - in rB j - (2-610) 

where a^g is the background scattering length of the atom pair (which can slowly 

vary with B), B0 is the resonant magnetic field, and A is the width of the resonance 

related to T(E) [71]. Introducing the analytical solutions into Eq. (2.6.2) leads to 

K£A = K"s |1 + d tan5 + C2 sin<5|2 , (2.6.11) 

where 
8^3 T - 1 / 2 

KS = V c " o 7 l ( ^ | j D | ! / ; r e s ) | 2 ' (2'6'12) 

is the off-resonant rate coefficient (8 = 0) with tpv being the final (target) state. 

The coefficients C\ and C2 are defined as 

{i)v\D\ipKvx) 

c\ = (^pv\D\'4)Yeg)
, 

The coefficient C\ relates to the open channel 1, while the coupling to the bound 

state V'o in the closed channel 2 is given by C%. We note that the main contribution 
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to KpA near BQ comes from C\, due to the fact that tan8 diverges at the resonance 

while sin 8 remains finite. 

The relative importance of the coefficients depends on the nodal structure of 

ipv> V'reg) tpkr, and ipo. Unless i?out of ipv accidentally coincides with a node in tpreg 

or V;irri the overlap integrals of xpv with both ipveg and ^i r r are of the same order, 

leading to \C\\ ~ 1. The relative size of Ci can be controlled by the target level 

v. For a deeply bound level, Rout is at short separation where the overlap with 

-f/Veg is small while the overlap with ?/>o can be substantial leading to jC21 ^> \C\\. 

For very extended levels v, Rout of ipv is at large separation and the overlap with 

xpo less important, leading to JC2I ^ |Ci|-



Chapter 3 

Scattering properties and Feshbach resonances in 

ultracold heteronuclear alkali metal dimers 

This chapter describes the calculations of Feshbach resonances and scattering 

properties of diatomic alkalis. We performed full quantum coupled-channel scat

tering calculations for Li+Na and Li+Rb mixtures, using the model and numerical 

techniques outlined in the previous chapter. These particular mixtures were se

lected for their richness and experimental availability, not necessarily in this order. 

For lithium, isotopes of different symmetry (i.e., 6Li is a composite fermion and 'Li 

a composite boson) exist. When lithium is paired with another alkali, a bosonic, 

fermionic or bose-fermi ultracold mixture is formed, which makes it possible to de

sign experiments to study either a molecular BEC or a two-component bose-fermi 

mixture. 

Since scattering properties in the ultracold regime are strongly dependent 

on molecular potentials, our calculation had to be performed for the best avail

able sets of potential surfaces. We used experimental trap-loss measurements for 

46 
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6Li+23Na [65] and 6,7Li+R.b [74,75] to modify the existing molecular potentials 

and to correctly reproduce the structure of observed Feshbach resonances. In 

addition, for Li+Rb mixtures, theoretical calculations are available for selected 

channels and isotopes [75,76]. Using these results, we calculated the positions and 

widths Feshbach resonances in all collisional channels, as well as other scattering 

properties of these systems. 

We have published calculated positions of Feshbach resonances and scattering 

lengths for 6Li+23Na and 7Li+23Na mixtures presented in this section [77]. 

3.1 Coupled-channel calculation of scattering properties 

In this section we construct a system of coupled-channel equations and solve it 

for ultracold collision of two alkali atoms in an external magnetic field. A detailed 

explanation of the individual interaction terms and the physics involved can be 

found in chapter 2. To better illustrate some aspects of the problem, we use real 

physical parameters corresponding to the Li+Na mixture. The outlined procedure 

is easily applicable to other heteronuclear diatomic alkali metals, although the 

final size of the system of equations depends on the nuclear spin of the atoms and 

may vary. For all alkali metal atoms the electronic spin Sj = 1/2, leading to the 

molecular electronic spin s = 0 (singlet) or s = 1 (triplet). If the wavefunction is 

properly symmetrized with respect to the exchange of nuclei, the same procedure 

can be used for collisions of homonuclear atoms. 
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For two alkali atoms of relative momentum p and reduced mass fj, colliding in 

a magnetic field, the effective two-body Hamiltonian can be written as [71,78,79] 

2 2 

H = f- + V Hf + VC + Vd, (3.1.1) 
^ 3 = 1 

where Vc is the Coulomb interaction, Vd the magnetic dipole-dipole interaction, 

and .ffjnt the internal energy of atom j (j = 1,2), consisting of the hyperfine and 

Zeeman contributions, respectively (see chapter 2). 

The internal atomic Hamiltonian is 

nU) 
Hj* = -jj^-s-adotij + {ge(5sf - gNpNi{

z
j))B, (3.1.2) 

where s} and ij are the electronic and nuclear spin for the atom j , B = Bz 

is the external magnetic field, which we choose to point in the ^-direction, a\^ 

is the hyperfine constant for the atom j>, (3 = eh/2me and PN = eh/2M are 

Bohr and nuclear magnetons defined for electronic and nuclear mass, me and M. 

ge = 2.002319 is the electron spin ^-factor [80], and g^ is the nuclear spin ^-factor 

for a particular nucleus. Hyperfine constants for the considered diatomic mixtures 

are listed in Table 3.1. While higher-order interaction terms exist in a complete 

description of a diatomic system, it has been shown that this form of effective 

Hamiltonian can reproduce observable physical quantities to the promille level 

[81]. 

At ultracold temperatures, collisional physics is dominated by the s-wave (/ = 

0 partial wave) collisions. However, for some alkali dimers, Feshbach resonances 
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ahf (MHz) nucl. spin i 
6Li 
7Li 

23Na 
3 9 K 

4 0 K 

4 1 K 

85Rb 
87Rb 

152.173 

401.752 

885.813 

230.860 

-285.7308 

127.007 

1011.910 

3417.341 

1 

3/2 

3/2 

3/2 

4 

3/2 

3/2 

5/2 

Table 3.1: Hyperfine constants and nuclear spin of alkali metal atoms considered 

in collisions. 

induced by higher partial waves were observed in experiments [9]. We consider 

both s- and p-wave collisions in our analysis. 

The collision entrance channel is determined by the atoms' initial Zeeman 

states. To evaluate the hyperfine terms we choose the uncoupled hyperfine basis 

defined as 

\fi,mfl]f2,mf2) = \fi,mfl) ® | / 2 ,m / 2 ) , (3.1.3) 

where fj = Sj + ij is the total spin of the atom j , rrij is its projection onto the 

molecular axis, and atoms are indicated by a and 6. This basis set is suitable for 

modeling the problem at large distances in the limit of two separated atoms. At 

smaller separations a coupled molecular basis \(si)fm,f) becomes more appropri

ate. Here, s = s\ + s2, i = i\ +12, f = / i + hi a n d "V is the projection of the 

total angular momentum / . 
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Fig. 3.1: Atomic hyperfine structure of 6Li and 23Na. Channels \a) and \(3) are 

indicated on the curves. 

Once the bases are defined, one can express Eq. (3.1.1) in a matrix form, 

leading to the following matrix equation for the system 

^ P ( H ) = f C(«)F(*) , 

where the coupling coefficient matrix C(R) is defined as 

(3.1.4) 

,(a',f3>)(pJ(R- R') _ / D , _ m ,T / C |D /^. / ^ 
>,/?) W RRI 

= (R(a,p)\Vc\R'(a',p')), (3.1.5) 

and F(R) is the matrix in which columns correspond to a complete set of linearly 

independent solutions. We follow the standard labeling of channels used in the 
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literature related to interactions involving hyperfine structure in a magnetic field, 

such as in Ref. [82]. The idea is to label molecular hyperfine states as a combi

nation of atomic hyperfine states, starting from the energeticaly lowest state. For 

example, for Li+Na mixture, we have: \afi), with a = 1 , . . . , 6 for 6Li, a = 1 , . . . , 8 

for 7Li, and /3 = 1 , . . . , 8 for 23Na, all in the increasing order of energy. In such 

"channel index" notation the lowest energy channel is |11). We illustrate this in 

Figure 3.1 for hyperfine states of 6Li and 23Na in a magnetic field. 

The interaction potential due to the Coulombic interactions of the component 

particles, which depends only on the magnitude of the internuclear separation R, 

can be decomposed into singlet and triplet contributions: 

VC(R) = VS(R)PS + Vt{R)Pt, (3.1.6) 

where Vs (Vt) stands for the singlet (triplet) molecular potential and Ps (Pt) is 

the associated projection operator [41,83]. It is important to emphasize how these 

operators connect electronic states so we next analyze them in more detail and 

discuss some of their properties. 

The singlet and triplet projection operators can be written as 

ps = \s = 0ma = 0)(s = 0m8 = 0\, (3.1.7) 

Pt = | 1 - 1 ) ( 1 - 1 | + |10)(10| + |11)(11|, (3.1.8) 

where quantum numbers for Pt are also s and ms, as for Ps. 

Projection operators commute with total electron spin s = s\ + s2, but not 
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with the electron spin of a single atom. In addition, they trivially commute with 

the nuclear spin i (they do not act on it; spin and nuclear quantum numbers are 

defined in mutually orthogonal subspaces of the Hilbert space for the problem). 

It follows that the projection operators commute with the hyperfme quantum 

number / = f\ + f2, but not with / i or /2. From these arguments it follows 

that the exchange transition can occur only between the states for which rrif, the 

projection of the total angular momentum / , is conserved. Physically, the system 

remains invariant under rotations with respect to the axis of the magnetic field in 

the collisions. 

Therefore, the projection rrif determines the channels which can couple to 

satisfy the symmetry requirement rrif = rrif1 + nif2. In the matrix notation used 

above, providing the coupled molecular hyperfme basis is used, the channels will 

be grouped in diagonal block matrices according to their rrif symmetry, without 

off-diagonal elements that would connect different blocks. Each rrif block of the 

Hamiltonian can be diagonalized separately, which simplifies numerical evaluation. 

Clearly, nif symmetry of the entrance channel determines a subset of channels with 

the same rrif that need to be included in the calculation. For example, in case of 

6Li+23Na there is a total of 6 x 8 channels. This reduces to an 8-channel problem 

for the entrance channel |11), as only the channels with rrif = 3/2 remain coupled. 

Only singlet and triplet electronic potentials are relevant for the calculation 

of Feshbach resonances and other collisional properties at ultracold tempera-
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tures. For all mixtures considered here, molecular potentials were constructed 

by smoothly connecting their inner part to the long-range expansion 

^ - l - l l - l ^ 1 ' - (3-1-9) 

where ± stands for the triplet and singlet potential, respectively. The exchange 

energy V̂ xch is described using either the simple form 

Kxch = Ce*e-bR, (3.1.10) 

or the Smirnov-Chibisov expression [51] 

yexch = AexR
ae-0R. (3.1.11) 

Here, Cex, b, Aex, a and f3 are real constants. 

The details of the molecular potential construction will be discussed in detail 

for individual systems in subsequent sections. 

3.1.1 Solving the coupled-channel system 

We solved Eq. (3.1.4) numerically for different values of magnetic field using 

log-derivative propagator [84] to obtain the S-matrix, from which we extract the 

phase shift rj(k) of the initial entrance channel for the radial wavefunction. The 

scattering length a is calculated using [38] 

fccot?7(fc) = — , (3.1.12) 
(X 

where, k = y/2/j,E/h is the wavenumber associated with the pair of colliding atoms 

of relative energy E. 
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Fig. 3.2: LiNa molecular potentials used in the calculation (thick lines). Dashed 

red line is Aymar & Dulieu singlet potential curve. 

3.2 6Li+2 3Na and 7Li+2 3Na mixtures 

3.2.1 Molecular potentials 

We used the singlet potential by Fellows [85], constructed from accurate spectro

scopic data via the inverse perturbation approach (IPA). Spectroscopic measure

ments were not carried out for the triplet potential; we instead used the ab initio 

potential computed using the CIPSI package [86], which was adjusted to match 

the atomic dissociation energy of Li(2s) + Na(3s) at infinity. For the long range 

form of both potentials, we adopted the dispersion coefficients (Cn) and exchange 

energy (Cex and b) of Fellows [85] (case a). 
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Next, we repeated the scattering calculation using singlet and triplet ab-initio 

potentials [86] with the long-range part constructed using dispersion coefficients 

C6, Cs and Cw calculated by Derevianko and colleagues [87,88]. Both sets of 

molecular potentials are illustrated in Figure 3.2. We choose the first set of molec

ular potentials, the singlet by Fellows [86] and the triplet by Aymar & Dulieu [85], 

since they more accurately reproduced known scattering properties of the Li+Na 

mixture. 

3.2.2 s-wave Feshbach resonances 

We first calculated the positions of Feshbach resonances for the least energetic hy-

perfine state \a(3) = |11) of 6Li+23Na. Since there is no inelastic spin relaxation 

for this channel (it is the lowest energy channel already) and the only possible de

cay is via 3-body interactions, it is especially attractive for trapping experiments. 

Stan et al. [65] have measured the positions of three Feshbach resonances for this 

state and we used their results to calibrate the singlet and triplet potentials. This 

was a necessary step since, as expected, we were not able to reproduce correct 

scattering lengths nor the resonances by using the published potentials. 

For each molecular potential we varied the inner wall by shifting data points 

for separations less than the equilibrium separation Re according to 

-̂ shifted = R + S— —, (3.2.1) 

where s corresponds to the shift of the zero-energy classical turning point Rc. 
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The slope of the repulsive inner wall changes as s changes, which affects the phase 

shift of the scattered wavefunction. We scanned the shifts for the singlet and 

triplet, ss and st, until the best agreement with the measured resonances [65] 

was achieved for the smallest shifts. Positions and widths of Feshbach resonances 

are very sensitive to molecular potentials, requiring high resolution in s, up to 1 

part in 10~4, in order to reach good agreement with measurements. Such a task, 

while numerically intensive, illustrates the precision of Feshbach spectroscopy, 

which can be used to significantly improve existing molecular potentials. The best 

agreement with measured Feshbach resonances [65] was achieved for ss = 0.06170 

a.u. (singlet) and st = —0.32878 a.u. (triplet). 

It may also be worth noting that we obtained a very good agreement with 

the experimental results only after we included the coupling with nuclear spin and 

the magnetic dipole-dipole interaction. Neglecting second-order terms results in 

agreement within ±5 Gauss for the measured resonances, as opposed to ~ ±0.1 

Gauss when the second order effects are accounted for. Results with and without 

second-order effects are illustrated and compared in Figure 3.4. 

Our results, for the entrance channel |11) and magnetic field up to 2000 Gauss, 

are illustrated in Figure 3.6 and summarized in Table 3.2. Note that we predict 

four additional Feshbach resonances at higher values of magnetic field, at 1097, 

1186, 1766 and 1850 Gauss. 
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Fig. 3.3: Top: Scattering length for 6Li+23Na in the entrance channel |11). Po

sitions and widths of the resonances are given in Table 3.2. Bottom: 

Zoom on the first three resonances. Squares indicate measured reso

nances. 
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l f f ( G ) J?0
exp(G) A(G) gb g(a0) 

746.13 746.0 ±0.4 0.044 14.003 

759.69 759.6 ±0.2 0.310 13.864 

795.61 795.6 ±0.2 2.177 13.002 

1096.68 0.153 13.902 

1185.70 8.726 12.673 

1766.13 0.156 12.500 

1850.13 0.019 12.499 

Table 3.2: Calculated s-wave Feshbach resonances for the entrance channel |11) 

and B up to 2000 Gauss in 6Li+23Na. The resonance width A and 

the background scattering length a^g are given for the resonances and 

experimental data is shown for reference. Parameters a^g and A were 

obtained by fitting to the form a(B) — abg (1 — B^B ). 
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Fig. 3.4: Top: Calculated scattering length for 6Li+23Na in the entrance channel 

111) with and without second-order effects included. 

3.2.3 Singlet and triplet scattering lengths 

Once the potentials were adjusted to accurately reproduce measured Feshbach 

resonances, we calculated the singlet (as) and triplet (aT) scattering lengths, as 

well as the energy of the last vibrational level (Elast) for both 6Li+23Na and 

7Li+23Na mixtures (see Table 3.3). Molecular potentials for the 7Li+23Na mix

ture were obtained by mass-scaling neglecting non-adiabatic terms caused by the 

isotope shifts, possibly introducing small uncertainties in the calculated positions 
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of Feshbach resonances [55,57]. 

Stan et al. [65,89] reported favorable thermalization rates for the 6Li+23Na 

mixture and relied on efficient thermalization to sympathetically cool 6Li with 

23Na to ultracold temperatures. Our results are in agreement with the estimate 

based on these rates. From their experimental thermalization rate the MIT group 

estimated the ratio of pure triplet elastic collision between 23Na-23Na (CTAA)
 a n d 

6Li+23Na {(JAB) to be OAAJVAB ~ 100 [89,90], where GAA = 87ra2
>ra_Na and aAB = 

^7raLi+Na' w ^ n aNa-Na = 85 a0 for the triplet scattering length of Na. One then 

estimates |a.Li+Na| = 12 ao for the pure triplet case. This estimate is also in 

agreement with the value of \CLT\ ~ 15 ao, obtained assuming a thermalization 

time of Ttot ~ 4r ~ 15 seconds, where the relationship between r and a is given 

in [91]. The uncertainty in the scattering length was determined by adjusting 

the inner wall of the potentials to match the uncertainty of the resonances (Table 

3.2). Alternatively, we shifted the triplet potential below the last bound state 

by ±140 MHz [65], and then adjusted the inner wall of both the singlet and 

triplet curves to match the experimental position of the resonances. We illustrate 

dependence of scattering length on shifts ss and st in Figure 3.5. The scattering 

lengths were larger without second-order effects included, which would indicate 

higher thermalization rates than measured. The last triplet bound level was then 

found to be E^ = —5720 ± 16 MHz, as compared to the estimated value of 

E^t = -5550 ± 140 MHz of Stan et al. [65]. 
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Fig. 3.5: Variation of the scattering length for the 6Li+23Na singlet and triplet 

potentials. The second-order effects are not included. Estimates of 

scattering lengths from thermalization times are indicated by pairs of 

horizontal straight and dotted lines obtained for \as\ = 12 a0 and 

|OT| = 15 CIQ. Two vertical lines indicate potential shifts for which 

the best match with measured Feshbach resonances was obtained. The 

periodically repeating character of the scattering length is due to the 

addition or disappearing of a vibrational level as the potential well 

changes. 
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Present work Ref. [91] 

7Li+23Na 6Li+23Na 6Li+23Na 

as 39.7 ±0.5 15.9 ± 0.3 39.2 

aT 36.1 ±0.3 12.9 ±0.6 31.1 

< * 4 7 4 5 

<t 12 11 

Ega (MHz) -1505 ± 3 -1.6 ±0.2 

Efca (MHz) -7112 ± 12 -5720 ± 16 

Table 3.3: 6'7Li±23Na singlet (S) and triplet (T) scattering lengths in units of 

a0, the last vibrational level, and the corresponding binding energy. 

Uncertainties are explained in the text. 

The same procedure was repeated after varying the CQ coefficient by ±5%, and 

the results were within the uncertainties given in Table 3.3. Note that Feshbach 

resonances are very sensitive to the energy of the last vibrational level, which 

thus can be determined very precisely, while the total number of levels can only 

be estimated since it depends on the entire potential, which is usually not known 

to sufficient accuracy. For the adjusted triplet state of 6Li23Na, we found 11 

vibrational levels (see Table 3.3). 

Using our adjusted singlet and triplet potential curves, we performed a sim

ilar calculation for all entrance channels for 6Li±23Na and 7Li+23Na. Predicted 
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Fig. 3.6: Feshbach resonances in 6Li+23Na for different collisional entrance chan

nels. The collisional entrance channels a/3 for which the resonances 

exist are shown. Open circles for channel |11) were observed experi

mentally. 



64 

86 
84 
82 
76 
74 
72 
67 
65 
63 

85 
83 
77 
75 
73 
68 
66 
64 
61 

8 54 
w 52 
13 48 

43 

46 
41 
37 

o 35 
33 
31 
27 
25 
23 
21 
17 
15 
13 

55 
53 
51 
47 
42 
38 
36 
34 
32 
28 
26 
24 
22 
18 
16 
14 
11 

0 

• • • • • • • 

• • • • 

• • • • • 

• • • • • • • 

• • • • • • • 

• < • 

• • • • 

• • • • 

•••• 
• • • • 

• • • • • 

• • • • 

• • • • 

• • • • • 

•••• 
• • • • •••• 
' • • • 

• • ' • • 
• • • • • • • • • • • • • • 

• 0 . . . . ^ . • » . . . . * . . » . 
» • • • • • • • • ••••• • 

• • • • • • 

• • • 

.M . . 4.. 

400 800 1200 
B(G) 

Fig. 3.7: Feshbach resonances in 7Li+23Na for different collisional entrance chan

nels. The collisional entrance channels af3 for which the resonances 

exist are shown. 
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positions of Feshbach resonances are shown schematically in Figures 3.6 and 3.7. 

It appears that the 7Li+23Na mixture has several experimentally attainable Fes

hbach resonances for the high-field seeking hyperfine states. 

3.2.4 Asymptotic bound-state model 

It is possible to qualitatively estimate positions of Feshbach resonances by looking 

at the asymptotic form of the two-particle Hamiltonian (Eq. (3.1.1)) for large 

internuclear separation R —» oo. In this limit molecular potentials V(R) vanish 

and we are left with the coupled-channel system for infinite R. This system is 

very simple to solve since it contains no dependence on R. By diagonalizing the 

asymptotic Hamiltonian we obtain energies that depend on the magnetic field. 

As for the full problem, the projection of the total magnetic quantum number 

inp remains a constant of the motion throughout the collision, and determines 

mutually non-interacting subspaces. In the other words, the interaction between 

the two hyperfine states, including the incoming channel, can occur only if they 

have the same mp. 

In order to determine the positions of Feshbach resonances, we consider an

other set of identical asymptotic solutions shifted by the energy of the last bound 

vibrational level in both singlet and triplet potentials. The two sets depend on 

the magnetic field and their intersections will give the approximate positions of 

Feshbach resonances. We recall that a Feshbach resonance occurs when the en-
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Fig. 3.8: Top: Feshbach resonances for the entrance channel |11) of 6Li+23Na 

(full calculation). Bottom: Asymptotic molecular hyperfine states for 

the same entrance channel (solid lines). Triplet states are identified in 

the basis |S'm5??T,iLimjNa). The lowest energy state (dashed black line) 

is shifted by the triplet dissociation energy of the last bound level and 

its uncertainties are indicated (dashed red lines). 
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ergy of one channel (usually the open channel) matches that of another (closed) 

channel. While in the complete description of the problem, the hyperfine energies 

will be affected by the molecular potentials, the asymptotic model can be used to 

determine the number of Feshbach resonances and approximate magnetic fields at 

which they are expected to occur. This model is sometimes called the asymptotic 

bound-state model [65,76,71]. 

Figure 3.8 compares the asymptotic model to the full coupled-channel cal

culation for channel |11) of 6Li+23Na mixture. Three intersections of the lowest 

hyperfine state shifted by the dissociation energy of the last bound level in the 

triplet potential (given in dashed line) approximately correspond to the Fesh

bach resonances at 745, 754.6 and 795.6 G. While the locations of the resonances 

are not exact, they are very useful for establishing a number of expected reso

nances and identifying resonant hyperfine states. When the diagram is extended 

to higher magnetic fields, two pairs of hyperfine states also intersect the shifted 

state, indicating that four more resonances are present, in agreement with the full 

calculation (see Table (3.2)). The asymptotic model is a very useful tool in the 

often complicated analysis of Feshbach resonances, as we illustrated for 6Li+23Na 

mixture. 
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3.2.5 p-wave Feshbach resonances 

We used the molecular potentials constructed and tested in the previous section to 

expand our study of Li+Na mixtures to include p-wave Feshbach resonances. To 

do this, we included the angular momentum operator L2/2/ii?2 in the Hamiltonian 

Eq. (3.1.1). If we expand the molecular basis to include quantum numbers £ 

and me, we obtain an extra diagonal term equal to £(£ + l)/2/if?2. The coupling 

between £ = 0 and £ = 1 partial waves is zero, which makes it possible to calculate 

scattering properties separately for s- and p-waves. 

Currently, there are no published experimental data for p-wave resonances 

in Li+Na mixtures so it was impossible to make a direct comparison of calcu

lated and measured resonances. However, a similar calculation for other alkali 

mixtures, namely Li+Rb, gave us a very accurate result that was within 1 Gauss 

of observed p-wave resonances (see the Section 3.3 below). Considering this very 

good agreement with the experimental results, and those obtained for the s-wave 

resonances, we expect a similar agreement for the p-wave resonances. Calculated 

p-wave Feshbach resonances for 6Li+23Na and 'Li+23Na are listed in Tables 3.4 

and 3.5, respectively. As for the s-wave resonances, most Feshbach resonances are 

found in the lower hyperfine state, and there are similarities between the resonant 

structure. For example, three s-wave resonances found between 750 and 800 G in 

channel |11) also appear as p-wave resonances, as both are caused by the hyperfine 

channels |1 1 1 — 1/2), |1 1 — 1 3/2), and J1 0 1 1/2), all in \s ms miLi miNa) 
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basis, except that in the p-wave case the hyperfine energies are perturbed by a 

different kinetic energy term, i.e., centrifugal barrier. 

3.2.6 Inelastic decay rates 

Decay modes of spin-polarized gases have been a subject of study even before 

the first successful experimental realizations of trapped gases in the milliKelvin 

regime. Stoof et al. [82] were among the first to perform a coupled-channel calcu

lation of spin-exchange and dipole relaxation rates in hydrogen, a system that was 

being investigated as a candidate for cooling and forming a BEC. Examining spin-

exchange relaxation between hyperfine states and relaxation rates is important for 

estimating the lifetime of a trapped atom or a molecule in a particular state. A 

majority of trap loss occurs via two-body collisions, leading to a spin-exchange in 

which a trapped object changes its state from one favorable for trapping to one 

that cannot be trapped, i.e., from a high-field seeking to a low-field seeking state, 

and is ejected from the trap. The external magnetic field affects the hyperfine 

structure and relaxation rates. In several studies, as prospects of creating BECs 

in magneto-optical traps were investigated, decay rates in a magnetic field were 

calculated for different diatomic alkali mixtures. For example, inelastic relaxation 

in an external magnetic field was calculated for Cs2 [61], and Li2 systems [92] . 

We calculated inelastic decay rates for 6'7Li+23Na mixtures in a magnetic 

field. The inelastic rate can be calculated from the S'-matrix which was obtained 



\a/3) B0 (G) 

11 542 

555 

570 

770 

870 

1390 

1480 

12 622 

648 

692 

864 

974 

1026 

1494 

13 754 

809 

1005 

14 993 

1275 

\a/3) B0 (G) 

21 577 

599 

635 

777 

884 

942 

1383* 

1427 

22 679 

726 

865 

986* 

1051 

23 845 

1053 

24 1317 

\a(3) B0 (G) 

31 542 

629 

670 

773* 

896 

967 

1409* 

1468 

32 762 

914 

1075 

33 1101 

41 1245 

1349* 

51 1166 

1245 

1351* 

52 1417 

\a0) B0 (G) 

61 1165 

1246 

62 1416 

Table 3.4: Calculated p-wave Feshbach resonances up to 2000 G in 6Li+23Na 

all entrance channels. Quasiresonances are indicated by stars. 



\a/3) B0 (G) 

11 21 

37 

12 25 

40 

117 

13 43 

130 

21 25 

39 

110 

22 42 

114 

325 

23 118 

360 

452 

\a/3) B0 (G) 

31 43* 

120 

319 

32 118 

323 

614* 

33 328 

420 

41 266* 

393 

42 296* 

393 

43 248 

81 789 

Table 3.5: Calculated p-wave Feshbach resonances up to 2000 G in 7Li+23Na for 

all entrance channels. Quasiresonances are indicated by stars. 
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by solving the coupled-channel system described by Eq. (3.1.4). We used the 

zero-temperature expression for the relaxation rate [82,92] 

Gap-+a'p' = lim —,— \Sa'p>,ap(kap) — Sia'p'yAapyl"- (3.2.2) 

Here, /i is the reduced mass of the colliding atoms, hkap is the relative momen

tum of the incoming particles in channel \a(3), and S is the scattering matrix. 

Off-diagonal elements of the S'-matrix between the channels for which the spin-

exchange is allowed contain information about the rate. We calculated inelastic 

rates for s-wave collisions and neglected the dipole-dipole interaction which could 

connect partial waves with A£ = 2, such as s- and d-waves. 

The calculated inelastic rates for 6Li+23Na mixture are illustrated in Figures 

3.9 to 3.13. Several features are shared in all the figures. The maxima of the 

inelastic rates are the smallest for spin relaxation from channels lx, where x = 2..8, 

ranging from 3 x 10~19 to 3 x 10 -18 cm3/s up to between 10-100 G where they 

are unaffected by magnetic Feshbach resonances. The largest rates of the order of 

10~12 cm3/s are obtained for higher-energy hyperfine states, that tend to decay 

faster, as well as for resonant magnetic fields. In general, resonant profiles can be 

easily identified and are present in many channels for magnetic fields greater than 

10 G. If we assume a typical density of trapped ultracold gas of n^ ~ n^g, ~ 1012 

cm - 3 and volume of 1 mm3, we can estimate the number of decay events per 

second from channel a to channel (3 as N = nun^&VGap. This gives us 103 — 109 

s^1 atom-atom relaxation events for the highest inelastic rates. 



73 

Results of a similar analysis of inelastic rates for 7Li+ 2 3Na mixture are shown 

in Figures 3.14 to 3.17. Here, to simplify presentation of the results, we have 

taken into account only the total inelastic rate, defined as a sum of inelastic decay 

rates from a particular channel to all channels allowed by the irif symmetry. 

o.oooi o.oi 1 100 
Magnetic field (G) 

10000 le+06 

Fig. 3.9: Inelastic rates GQp for 6Li+23Na from channels |11) to |18). 
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Fig. 3.10: Inelastic rates Ga/3 for 6Li+23Na from channels |21) to |28). 

le-10 

le-15 

le-20 

le-25 

le-30 

le-10 

le-15 

le-20 

le-25 

le-30 

- 1 - V. ^ J f 
U4.4. 

\ I ' ! 

0.0001 0.01 1 100 
Magnetic field (G) 

10000 le+06 

31 •> 13 
31 
31 
31 
32 
32 

— 35 
35 
35 

— 36 
36 
36 
36 
36 
36 
36 

— 37 
37 
37 
37 
37 
37 
37 
37 
37 
37 
38 
38 
38 
38 
38 
38 
38 
38 
38 

• - • • 38 

>15 
> 22 
>26 
>14 
>25 
>24 
>33 
>44 
>14 
>23 
>25 
>32 
>43 
>45 
>54 

>13 
>15 
>22 
>26 
>31 
>42 
>46 
>53 
>55 
>64 
>12 
>16 
>21 
>27 
>41 
>47 
>52 
>56 
>63 
>65 

Fig. 3.11: Inelastic rates Ga/3 for 6Li+23Na from channels |31) to |38). 
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3.3 Scattering properties of Li+Rb mixtures 

We performed a similar calculation and analysis of scattering properties for an 

ultracold Li+Rb mixture. Several experimental and theoretical studies of Li+Rb 

mixtures have been done, resulting in more available information about this 

system than about Li+Na. Suitable hyperfine states and strategy for cooling 

6Li+87Rb were identified [93], followed by a successful effort to produce ultracold 

Li+Rb molecules [94]. The same group also experimentally determined Feshbach 

resonances in trapped 6Li+87Rb [74] and 7Li+87Rb [75]. On the theory side, 

Cote and colleagues [95] studied a sympathetic cooling route that could overcome 

fermion-hole heating and estimated scattering lengths of 6,7Li+87Rb. Scattering 

parameters for the Li+Rb system were calculated using variable-phase theory on 

an ab-initio potential [96]. More recently, Li et al. performed a coupled-channel 

calculation of magnetic Feshbach resonances in 6Li+87Rb mixtures [76]. 

We started from the best currently available molecular potentials, which we 

adjusted in the same way as it was done for Li+Na (described above), to repro

duce known Feshbach resonances. We used the adjusted potentials to calculate 

scattering lengths, positions and widths of Feshbach resonances in all hyperfine 

channels and inelastic decay rates. The calculation was done for two different iso-

topic mixtures, 6Li+8 'Rb, and 7Li+87Rb, where we used mass-scaling to obtain 

molecular potentials while neglecting the isotope shift. 



3.3.1 Molecular potentials 
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Fig. 3.18: LiRb singlet and triplet potentials used in the calculation. Original 

(dashed lines) and adjusted potentials (red solid lines) are shown. 

We performed a coupled-channel calculation using recently constructed ab-

initio molecular potential by Korek et al. [97], as well as an older ab-initio potential 

by the same author [98]. The older potential was obtained through a full CI 

calculation, while their newer work focused on modeling the spin-orbit interaction 

in excited states. The newer potential also has more numerical noise for points at 

internuclear separations larger than 17 a0. While we repeated the calculation of 

basic scattering properties for both potentials, the newer potential required larger 
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adjustments to the inner wall in order to reproduce the correct scattering lengths, 

hence the decision to use the older potential. 

The long-range part of the potential was constructed using dispersion coeffi

cients C6 = 2545, C8 = 2.34 x 105 and Cw = 2.61 x 107 reported in Refs. [87,88]. 

The Smirnov-Chibisov form [51], VeXch = ARae~liR was used to model the ex

change energy with the coefficients A — 0.0058, a — 4.9417, and (3 — 1.1836 (in 

a.u.). Both singlet and triplet potentials ab-initio points were joined to the long 

range form at RQ = 13.5 a0. The potentials are illustrated in Figure 3.18, where 

both the original and adjusted curves are shown. 

3.3.2 Feshbach resonances in 6 Li+ 8 7 Rb 

We started by adjusting the singlet and triplet potentials in the same way as for 

Li+Na. The repulsive wall shifts for the singlet and triplet, ss and st, were varied 

until we reproduced correct positions of measured Feshbach resonances for the 

least energetic hyperfme state, \af3) = |11) of 6Li+87Rb [74]. The best agreement 

was for shifts ss — —0.1030 a0 and st = 0.0315 a0, and the new potentials were 

constructed according to Eq. 3.2.1. Positions and widths of Feshbach resonances 

are very sensitive to molecular potentials: a variation of 1 part in 10 - 4 in the 

inner wall shift s can significantly influence their positions. For Li+Rb mixtures 

we did not need to include the magnetic dipole-dipole interaction in order to obtain 

a good agreement with experimental measurements. Feshbach resonances in the 
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Fig . 3.19: Scattering length for 6Li+ 8 7Rb for the entrance channel 111) (solid 

line). Experimental data (squares) and s-wave Feshbach resonances 

reconstructed from Li et al. (2008) (dashed line) are shown for com

parison. 
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channel |11) are illustrated in Figure 3.19 together with previously published data 

[74,76]. Feshbach resonances found for magnetic fields up to 2000 G are listed in 

Table 3.6. We have not listed "quasi-resonances" which were included in the table 

presented by Li et al. [76], who reported that they were not able to calculate 

the width of some resonances because they "exhibited a suppressed oscillation 

clue to comparable coupling to inelastic channels." We indeed found the same 

features, but decided not to report them as Feshbach resonances because their 

origin is different and some of them are not really resonances but the result of 

strong coupling between channels due to an interplay between shape resonances 

and Feshbach resonances. A detailed theoretical treatment clarifying this point is 

presented in Marcelis et al. [99], while a more formal treatment of general theory, 

explaining the relation between resonances and the complex poles of the 5-matrix 

and their dynamics, is given in Refs. [39,40]. 

3.3.3 Feshbach resonances in 7Li+8 7Rb 

To find Feshbach resonances in 7Li+87Rb we performed the calculation with the 

correct nuclear spin for 7Li and the scaled reduced mass for the system. Fesh

bach resonances have been detected experimentally in channel |11) of ultracold 

7Li+87Rb mixtures [75]. These authors performed a theoretical analysis in the 

same system using two different models and found large disagreements in pre

dicted positions and widths of the resonances. They have concluded that mass 
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scaling ab-initio potentials adjusted to reproduce correctly Feshbach resonances 

in 6Li+87Rb could not reproduce scattering properties of 7Li+87Rb. A possible 

explanation is that due to the very small binding energy of the last vibrational 

level in the ground state of 7Li+87Rb, the system is extremely sensitive to small 

corrections in the potential. In addition, neither model has been able to assign 

the experimentally detected resonance at 535 G. 

We first calculated the resonances for the elastic channel |11) at the temper

ature of T = 900 nK, and obtained two s-wave resonances at 669 and 736 G, 

and two p-wave resonances at 487 and 537 G. A comparison with the published 

results of two models [75] shows that our resonances are all shifted towards higher 

magnetic fields by 86, 100, 92, and 99 G for Model I, or 73, 99, 91 and 98 G for 

Model II (see description of the Models in [75]), starting from the highest mag

netic field. We then readjusted the inner wall to try to reproduce the experimental 

resonances. The exact match with the results of Model II was achieved for the 

singlet inner wall shift ss(
7Li87Rb) = —0.092 a0, a change of +0.009 a0 from the 

value for the 6Li87Rb. However, it was not possible to find parameters of the 

potential that would correctly reproduce measured Feshbach resonances in both 

isotopomers. Note that we also did not find the fifth resonance at 535 G. 

As a consequence of this analysis we can conclude that either an expansion 

of the model to include the isotopic shift or, possibly, three-body processes, is 

necessary, or a reinterpretation of the experiment is required. Since the fifth 
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Table 3.7: Calculated Feshbach resonances up to 2000 G in 7Li+87Rb for all 

entrance channels. 

resonance at 535 G was not found by us nor by the other two groups [75], it could 

indicate the latter scenario. 

Finally, using the readjusted singlet potential (ss = —0.092) we calculated 

Feshbach resonances in other channels (Table 3.7). 
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3.3.4 Inelastic spin-exchange rates 

Using the two sets of adjusted molecular potentials for the 6'7Li+87Rb mixtures 

constructed in previous sections, we calculated their inelastic spin-exchange rates. 

No previous studies reported the inelastic rates, although Marzok et al. [75] dis

cussed a short lifetime of 7Li+87Rb mixture in the j21) state that prevented them 

from experimentally detecting Feshbach resonances. Furthermore, the unassigned 

resonance at 535 G in the same system might be caused by a three-body pro

cess or 'contamination' of the prepared |11) state with one or more higher-energy 

channels due to, for example, the impurity of the rf filtering. Comparing inelastic 

rates for different channels could help distinguish among these processes. 

Calculated inelastic rates for 6Li+87Rb are illustrated in Figures 3.20 to 3.22, 

and for 7Li+87Rb in Figures 3.23 to 3.26. For each channel only the total inelas

tic rates, which we find by summing all nonzero decay rates for that particular 

channel, are shown. 

The rates exhibit several universal features. In 6Li+87Rb, for magnetic fields 

below 1 G, the rates are mostly unaffected by the field, except in case of the least 

energetic channels |12), |13), and |21). The rate for channels 112) and j 13) is 

identical in the low-field region, where it first decreases from roughly 2.6 x 10~15 

cm3/s until it becomes about 3.5 x 10~16 cm3/s for B = 0.027 G, then remains 

constant until 76 G when it suddenly increases by a factor of 100. The other 

common property is that the rates are several orders of magnitude higher for 
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higher channels. For channels |l/3), this ratio is, on average, about 104. The 

experimentally attainable region below 104 G contains numerous resonances which 

are reflected in the inelastic rates. The smallest rates for such magnetic fields, 

aside from the channels which do not decay via two-body spin-spin relaxation, 

range between 2.6 x 10_1° and 10~14 cm3/s. If we assume a high density of 1012 

atoms cm - 3 of both species and a trap volume of 1 mm3, these rates correspond to 

about 106 —107 interspecies relaxations per second, resulting in very long lifetimes. 

In realistic conditions we can expect much lower densities of atoms in a particular 

combination of hyperfine states, easily reducing this number by several orders of 

magnitude. 

0.01 1 100 10000 le+06 
Magnetic field (G) 

Fig. 3.20: Total inelastic rates Gap for 6Li+87Rb for channels \lx) and \2x). 
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Fig. 3.22: Total inelastic rates Gap for 6Li+87Rb for channels |5x) and \Qx). 
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Fig. 3.24: Total inelastic rates Gap for 7Li+87Rb for channels \3x) and |4x). 
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3.4 Temperature dependence of Feshbach resonances 

Feshbach resonances are usually studied in the ultracold regime at near-zero en

ergy. They also play a very important role in BECs, where the effective tempera

ture of the system is below the condensation point [42,63,9]. In such studies, the 

scattering properties are assumed to be largely independent of temperature and 

the scattering cross section for a pair of atoms is taken to be the same as for a 

hypothetical hard-sphere, a = Aird2 for distinguishable particles, where a is the 

s-wave scattering length. 

In our calculations presented in the previous sections we assumed the tem

perature of 900 nanokelvin to closely match the experimental conditions near the 

degenerate regime at which Stan et al. [65] studied Li+Na mixtures. However, 

the experiments performed to determine properties of Feshbach resonances have 

been conducted at temperatures sometimes as high as 15 /iK [74,94,100], due to 

the technical difficulties related to cooling. For example, in the mentioned exper

iments 6Li is sympathetically cooled with 87Rb atoms, and the small scattering 

lengths result in long cooling times. In such systems it is impractical to lower 

the temperature further via sympathetic cooling. The same authors observed 

collapse of the 7Li atomic cloud below the critical temperature for condensation, 

T = 1.5 /iK, which is related to the negative scattering length of 7Li. Finally, ex

perimental determination of the temperature of the gas cloud is often conducted 

independently of the trap loss measurements used to identify Feshbach resonances, 
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resulting in a possible uncertainty in the reported temperature. 

In order to assure that the scattering properties, including the positions of 

Feshbach resonances, remain invariant or change very little within the temperature 

range of < 10 nK to 100 /iK, as is often assumed, we analyzed the scattering cross 

section as a function of temperature and magnetic field. In our analysis we took 

extra care to study the temperature dependence for nearly-resonant magnetic 

field, B = B0 — e Gauss, where e is a small number such that the scattering length 

is increased a few orders of magnitude. 

To study this dependence we first calculated the scattering cross section for 

6Li23Na as a function of temperature for several values of the magnetic field B 

close to the Feshbach resonance at 795.6 G, as well as for B = 0. This particular 

resonance is the broadest in the entrance channel |11) which we analyzed, making 

the gradient of the scattering length in its vicinity smaller and more suitable for 

illustrating dependence on the magnetic field. Calculated s-wave cross sections 

are illustrated in Figure 3.27. From this graph we can see that for magnetic fields 

far from the resonance (thick black line) the cross section remains constant and 

is approximated well by the trivial hard-sphere model up to about 1 /iK. As we 

approach the resonance, however, this approximation becomes invalid for lower 

temperatures. At B = 795.5 G, within 0.1 G of the resonance at 795.6 G, the 

temperature change from T = 1 //K to T = 10 fxK results in reduction of the cross 

section by 5%, while at T — 45 JJK the reduction increases to 14 %. At magnetic 
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Fig. 3.27: s-wave cross section vs. temperature for 6Li+23Na, entrance channel 

111). Cross sections were calculated for several values of magnetic field 

B in the vicinity of the Feshbach resonance at 795.6 G, and for B = 0 

G. 
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fields slightly past the resonance the effect is even more pronounced (red curves in 

Figure 3.27). For such magnetic fields the cross section remains constant only up 

to about 0.01 /xK, deep inside the ultracold regime. As the temperature increases 

from T = 1 /iK to T = 45 fiK, the cross section doubles. This could prove to be 

a non-negligible temperature-related property of Feshbach resonances which was 

not included, to the best of our knowledge, in any of the previous studies. For 

temperatures greater than about 10 mK, outside of the "cold regime", the cross 

section is unaffected by the magnetic field and exhibits a well-known behavior 

[38]. 

Next we consider the effect of higher partial waves in the ultracold regime. In 

Figure 3.28 the scattering cross section is shown for the first four partial waves of 

the same system. The cross sections were calculated for the zero-field case (solid 

curves) and for magnetic field B = 795.5 G (dashed curves), within 0.1 G of the 

Feshbach resonance. To simplify the calculation we neglected the dipole-dipole 

interactions which couple partial waves with A£ = 2, such as s- and rf-wave, and 

perturbes their eigenenergies by several percent. Instead, we focus here on the 

temperature dependence of higher partial waves. 

From Figure 3.28 we can easily see that the relative importance of partial 

waves in collisions at temperatures around 1-10 /JK, at which Feshbach resonances 

are observed, is negligible. The p-wave cross section in this regime is about 1 

part in 109 of the 5-wave cross section and it increases to about 0.1 % of the 
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Fig. 3.28: Temperature dependence of scattering cross section for the first four 

partial waves in the lowest hyperfine channel of 6Li+23Na. The cross 

section for B = 0 G (solid lines) and B = 795.5 G (dashed curves) is 

shown. 
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s-wave cross section at 1 mK. Other partial waves play an even smaller role. 

Above 1 mK, their contribution becomes resonantly enhanced for a set of narrow 

temperature ranges, and above 0.1 K they start to contribute significantly to the 

total cross section. Close to the resonance at 795.6 G (dashed lines), the cross 

section of partial waves becomes strongly affected for temperatures between 1 

mK and 100 mK, while remaining mostly unaffected in other regions. This is 

a different behavior than the one observed for the s-wave cross section, which 

is also illustrated in the same graph. This calculation has clearly shown that 

in the ultracold regime higher partial waves do not affect significantly collisional 

properties, even for nearly-resonant magnetic fields. 

To directly explore the temperature dependence of Feshbach resonances we 

performed a direct calculation of s-wave scattering length for a range of tempera

tures. The results are illustrated in Figure 3.29. At the collision energy of 10 -5 K 

or below there is no observable difference in the scattering length. The difference 

increases to about 2% at 100 /iK, while at the temperature of 1 mK all resonances 

become shifted by about 4 G to higher magnetic fields. Finally, at 10 mK this 

shift becomes larger than 40 G. Based on the temperature dependence of the cross 

section (Figure 3.27), we expect the positions of the Feshbach resonances to be 

affected by the temperature. However, numerical results indicate that in the ul

tracold regime, at or below 10 /xK for Li+Na, the scattering length and structure 

of Feshbach resonances remains unaffected by the temperature changes. 
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Fig. 3.29: Temperature dependence of the scattering length near Feshbach res

onances in the lowest hyperfine channel of 6Li+23Na, 

Finally, while we discussed temperature effects on Feshbach resonances and 

scattering properties in Li+Na, a similar analysis can be carried out for other alkali 

dimers. In our analysis of Li+Rb system, we originally considered the temperature 

of 900 nK or 1 fiK. However, as we were trying to explain the disagreements of our 

results, obtained by mass scaling from 6Li+87Rb to 7Li+87Rb, and the reported 

Feshbach resonances [75], we varied the temperature over a broad range, up to 10 

mK. We estimated that variations of at most 2 and 4 G for the first and second 

resonances in the channel |11), respectively, can be attributed to the temperature 
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effects. Nevertheless, we believe that this is a measurable effect which should 

be taken into account in experiments with alkali dimers and similar mixtures at 

temperatures approaching 10 /.tK. 



Chapter 4 

Production of ultracold molecules using 

Feshbach-optimized photoassociation 

In the previous chapter, we calculated positions and characteristics of Feshbach 

resonances in different heteronuclear mixtures and adjusted molecular potentials 

to correctly reproduce their scattering properties. From a theoretical perspective, 

it was sufficient to calculate the S1-matrix for the collision. In this chapter, we 

instead focus on the wavefunctions of open and closed collisional channels, as 

our goal is to calculate photoassociative formation rates of molecules for different 

rovibrational levels. 

We show that Feshbach-optimized photoassociation (FOPA) can be used to 

enhance photoassociative formation rates by several orders of magnitude and allow 

access to otherwise inaccessible rovibrational levels. We illustrate this on ultracold 

mixtures of Li+Na and Li+Rb, although the method is more general and applies to 

any system in which Feshbach resonances exist. Two different FOPA schemes are 

considered: the single-photon FOPA from the continuum and a 2-photon FOPA 
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scheme. The 1-photon scheme can be used to directly access low-lying vibrational 

levels in the ground state of polar molecules, while the 2-photon scheme is more 

general and applicable to any molecule in which accessible Feshbach resonances 

exist. 

A part of the work presented in this chapter was published in Ref. [67]. 

4.1 Techniques for creating ultracold molecules - an overview 

Ultracold molecules offer a broad variety of applications, ranging from metrol

ogy to quantum computing. However, forming "real" ultracold molecules, i.e., 

in deeply bound levels, remains a difficult proposition. In recent years several 

techniques, ranging from Stark decelerators to buffer-gas cooling, have been de

veloped to obtain cold molecules [12]. Such molecules are interesting for a range of 

applications [68] in metrology, high precision molecular spectroscopy, or quantum 

computing [101]. However, forming stable ultracold molecules in deeply bound lev

els remains a challenge: most approaches produce temperatures still considered 

too hot (roughly 100 mK - 1 K). To reach the ultracold regime (below 1 mK), 

direct laser cooling of molecules is usually not effective due to their rich and com

plex level structure [102,103]. Instead, it is possible to create ultracold molecules 

starting from ultracold atoms, via photoassociation (PA) or "magnetoassociation" 

(MA). These approaches are different: PA occurs when two colliding atoms ab

sorb a photon to form a molecule [68], while MA takes advantage of magnetically 
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tuned Feshbach resonances to convert an entire atomic gas into a molecular gas 

and back [9]. 

Over the last decade, PA has been widely used to study long range molecular 

interactions and to probe ultracold gases [68]. Magnetoassociation has been used 

to realize molecular condensates [63,64,104,105] and investigate the BEC-BCS 

crossover regime [106-109]. However, both methods usually produce molecules in 

highly excited states. According to the Franck-Condon principle, electronic tran

sitions in PA occur at large interatomic distances, leading to molecules in high 

rovibrational levels that can either decay by spontaneous emission or collisional 

quenching. To stabilize the molecules in their ground potentials, one could use 

two-photon schemes [69,110], or excited molecular states with long-range wells 

that increase the probability density at short range. The latter solution requires 

the existence of double-well molecular potentials [102] and cannot be easily gen

eralized. In MA, molecules are produced by sweeping the magnetic field through 

a Feshbach resonance, which occur when the energy of a colliding pair of atoms 

matches that of a bound level associated to a closed channel. The molecules pro

duced by MA are in the uppermost states near dissociation and thus very extended 

and fragile [9]. 
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4.2 FOPA rates for forming ultracold 6Li23Na molecules 

We describe our investigation of a novel Feshbach-optimized photoassociation 

scheme that employs a magnetic Feshbach resonance [9] to enhance the proba

bility density at short range and allows transitions to deeply bound vibrational 

levels. Feshbach resonances are commonly found in both homomiclear and het-

eronuclear systems with hyperfine interactions. We focus our attention on het-

eronuclear systems for which the presence of a permanent dipole moment allows 

transitions from the continuum directly to a rovibrational level v of the ground 

electronic molecular states [70]. Such a PA scheme is shown in Figure 4.1. 

Feshbach resonances and PA have been proposed to associate atoms [111] 

and convert an atomic into a molecular BEC [112]. However, in contrast with 

previous proposals [113,114], FOPA takes advantage of the entire wavefunction 

in a full quantum coupled-channel calculation, and is thus more general than the 

Franck-Condon principle. 

Our choice of heteronuclear LiNa as a system to illustrate FOPA represents a 

continuation of our previous work: we studied scattering properties and magnetic 

Feshbach resonances in ultracold Li+Na heteronuclear mixtures (see Chapter 3). 

As a result, we have obtained adjusted molecular potentials that reproduce well 

both the scattering length and positions and widths of Feshbach resonances. We 

use these adjusted singlet and triplet potentials in the calculation of photoassoci

ation rates conducted in this chapter. 
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Fig. 4 .1: FOPA scheme: colliding atoms (1) interact via open (blue) and closed 

(green) channels due to hyperfine interactions. A Feshbach resonance 

occurs when a bound level (2) (green wavefunction) coincides with the 

continuum state (blue wavefunction). A photon (wavelength A) can 

associate the atoms into a bound level v (3) of the ground state potential 

(red) with inner and outer classical turning points Rin and Rout-

We consider the single-photon process illustrated in Figure 4.1, where two 

ultracold atoms described by the "Feshbach state" are photoassociated into a 

deeply bound heteronuclear molecule in its ground electronic state, X1E+ . The 

continuum "Feshbach state" has an average energy of the surrounding gas and 

consists of one or more hyperfine components which are non-degenerate for B > 0. 

In general, the Feshbach state wavefunction is dependent on the magnetic field 
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and in the vicinity of a resonance its structure changes dramatically, which we 

can exploit to enhance molecular formation rates. 

To model this process and calculate the molecular formation rates for 6Li23Na 

molecules we rely on the theory presented in section 2.6. We assume that Li and 

Na atoms are initially in hyperfme states, 6Li(/ = \,nif = —\) and 23Na(/ = 

l,ra/ = — 1). In the channel notation introduced earlier, this corresponds to the 

entrance channel \a = 2,(3 = 3). We selected this particular entrance channel for 

illustrating Feshbach-optimized photoassociation since it has two broad, distinctly 

separated Feshbach resonances. The channel |11) would be a more likely choice 

in a photoassociation experiment, but the lowest-field resonance at about 746 

G is very narrow and difficult to reproduce correctly in our calculation unless 

a very large number of grid points is used, which is possible but impractical. 

In the entrance channel |23) eight hyperfme channels with the total projection 

777/ = —3/2 are coupled, and there are two s-wave Feshbach resonances at 1081 

and 1403 Gauss, as well as two p-wave resonance at 845 and 1053 Gauss (see 

Chapter 3, Figure 3.6 and Table 3.4). The s-wave resonances are, however, much 

wider and the p-wave resonances can be neglected. 

Once we have obtained the continuum "Feshbach wavefunction," it is rather 

straightforward to calculate the photoassociation rate. The wavefunctions \ipv,j), 

for bound rovibrational target levels (v, J) , can be calculated by diagonalizing a 

simple one-channel problem with an appropriate molecular potential. Our choice 
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Intemuclear separation (Bohr) 

Fig. 4.2: Free-bound dipole moment D(R) for the ground rovibrational state of 

LiNa molecule. 

of the mapped Fourier grid method [73] is particularly suitable for this task, as it 

allows us to obtain an entire set of eigenvectors and eigenvalues in a single run. 

To make the calculated FOPA rates more realistic, we use the transition 

dipole moments for LiNa molecule calculated by the Orsay group [115] (Figure 

4.2). In general, transition dipole moments D(R) are not known for majority 

of dipolar transitions in heteronuclear molecules. In the first approximation, it 

is often assumed that the free-bound dipole moment is a constant equal to the 

asymptotic (atomic) values. However, more realistic photoassociation rates can 

be obtained if the functional dependence of the dipole moment on the intemuclear 

separation is known. This is particularly important for lower vibrational levels at 
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small internuclear separations at which the dipole moment changes rapidly. 

Figure 4.3 illustrates the PA rate KpA(B) for the ground state of 6Li23Na at 

T = 50 /JK and the PA laser intensity 1 = 1 W/cm2. Near a resonance, KpA is 

enhanced by up to five orders of magnitude, even for low-lying rovibrational levels 

(v < 10). For typical gas densities (nLi = nNa, ~ 1012 cm - 3) and an illuminated 

volume V of 1 mm3, up to Nv = nun^aV KpA = 2 x 106 molecules can be formed 

in v = 0 at 1403 Gauss. Here, we neglected the stimulated relaxation by the PA 

laser which can reduce the rate by up to 50% [69]), as well as the saturation effects 

[116], resulting, nevertheless, in an equally impressive enhancement. 

The enhanced formation rates can be easily understood if we take a closer look 

at the wavefunctions. There is a sharp increase in the amplitudes of the radial 

wavefunctions tpa in the vicinity of a Feshbach resonance. We illustrate this in 

Figure 4.4 in terms of the total probability density |\J/evg=0(.R)|2 as a function of 

B. As the magnetic field approaches either of the resonances at 1081 and 1403 

Gauss, the total probability density increases by several orders of magnitude. This 

enhancement is proportionally the same in all coupled channels. 

Figure 4.5 shows the total initial probability density \tye<i=o(R)\2 on- and off-

resonance (B = 1400 and 1200 G, respectively). The main effect of the resonance 

is the appearance of a large peak at shorter distance near 40 ao (see top panel, 

inset). The peak is located approximately at the classical outer turning point i?out 

of the bound state associated to the closed channel, usually one of the uppermost 
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Fig. 4.3: Logarithm of the FOPA rate KpA in cm3s_1 vs. magnetic field (T = 

50 nK, 7 = 1 W/cm2) for bound vibrational levels v of the LiNa X^ 4 " 

potential. The atoms are initially in channel |23). Two Feshbach reso

nances at 1081 and 1403 Gauss enhance the PA rates by several orders 

of magnitude. 
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. 4.4: Probability density \^e,e=o{R)\2 vs. B. As B approaches a resonance, 

|^e^=0 |2 increases sharply (truncated above 0.01). Examples of |^e^=0 |2 

off and on resonance (orthogonal planes at 1200 and 1400 Gauss, re

spectively) are shown in Figure 4.5. 
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R (a.u.) 

Fig. 4.5: Probability density on- (black) and off-resonance (red). The resonant 

probability density |^e^=0 |2 has a maximum at R ~ 35 Bohr (top, 

inset). The upper bound level v = 44 of the singlet ground state is 

given for comparison. The bottom panel zooms in on the low-lying 

rovibrational levels v in the short range (v = 0,4 are shown). 
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bound levels. This is apparent in the top panel, where this peak almost coincides 

with the outer lobe of \(f>v-utj=i(R)\2, the uppermost bound level of XXS+ . We 

also observe that the off-resonance probability density is greatly reduced when 

compared to the on-resonance one. This is a direct consequence of the reduced 

overlap of the wavefunctions for non-resonant magnetic fields which result in a 

destructive interference. The lower panel shows the small internuclear distances. 

Here, resonant probability density is significantly greater than for the off-resonant 

magnetic fields, leading to a substantial overlap integral in KpA with deeply bound 

levels (e.g., v = 0 or 4). We also note the more complicated nodal structure of 

l^et£=0(R)\2, a direct result of the hyperfine mixing of the entrance channel |23) 

with all other channels permitted by symmetry. 

A generalization of Eq. (2.6.11) to several coupled channels is straightforward 

as we simply add their contributions. Furthermore, we found that only two or 

three channels contribute significantly to the enhanced formation rate coefficients. 

In Figure 4.6, we show KpA for the ground vibrational level v = 0 with the same 

parameters as in Figure 4.3. The top panel depicts the scattering length a with the 

two Feshbach resonances and its analytical fit. The bottom panel compares the 

exact numerical results using eight coupled channels with the analytical expression 

(2.6.11). In both cases, the agreement is impressive. We verified that similar 

agreement was obtainable for other levels v, indicating the broad and general 

validity of Eq. (2.6.11). 
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Fig. 4.6: Panel (a): scattering length a for the full coupled problem (circles) and 

the fit using a = ahg{B)(l - ^ ^ - ^ ^ ) with ahg(B) = aJJ + oi(B + 

B0) + a2(B + B0)
2. Panel (b): K£A for v = 0 at 50 /xK and 1 W/cm2 

(circles) and the simple formula (2.6.11) using tan 5 = ka\3g(B)(B^1
B + 

g ^g 9 ) . Calculated numerical parameters for the fit are also shown. 
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4.3 Forming ultracold molecules using two-photon FOPA 

The increase in photoassociation rate calculated in the previous section is not 

limited to the single-photon Feshbach-optimized photoassociation. A two-photon 

PA process can also benefit from the "Feshbach wavefunction." Increased ampli

tude of the initial Feshbach wavefunction at small internuclear separations can 

lead to larger Franck-Condon factors between the initial state and rovibrational 

levels in an excited state. As a result, a set of rovibrational levels inaccessible by 

the traditional photoassociation could be populated, leading to different possible 

applications [67]. 

For example, such an application could be creating stable ultracold molecules 

by two-photon photoassociation [117,11,13], where the Feshbach wavefunction is 

taken as the starting point. If a significant percent of the population can be trans

ferred into an excited vibrational level which has a good Franck-Condon factor 

with v — 0, or with other low vibrational levels in the ground state, it will sponta

neously decay and a part of the population will end up in the desired vibrational 

level. More control over the process can be achieved, while increasing the trans

ferred amount, through stimulated emission from the excited state induced by the 

second PA laser. Such a two-photon FOPA scheme is illustrated in Figure 4.7. 

Obtaining a significant increase of the molecule formation rates is not the 

only advantage of using the continuum "Feshbach wavefunction." The Feshbach 

wavefunction for a nearly-resonant magnetic field contains both singlet and triplet 
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components mixed by the hyperfme interaction. Consequently, excited states of 

both singlet and triplet symmetries can be accessed. This is a significant advantage 

as it allows one to access the rovibrational levels that are otherwise forbidden 

due to symmetry. The traditional photassociation can overcome this problem 

by starting from either a singlet or a triplet bound state. The corresponding 

wavefunctions, however, have high amplitudes concentrated near classical turning 

points, which are, typically, far apart from each other and it is not always possible 

to find suitable vibrational levels. In such cases using FOPA could be a viable 

alternative. 

4.3.1 2-photon FOPA rates for forming ultracold 6Li87Rb 

To quantify the two-photon FOPA rates for higher excited states we consider 

photoassociation of a 6LiS7Rb molecule starting from an ultracold Li+Rb mixture. 

In the previous chapter we have analyzed scattering properties of a Li+Rb pair in 

a magnetic field and located Feshbach resonances. We select the hyperfme channel 

111) as the initial state for the PA. There are two s-wave Feshbach resonances at 

1067 and 1278 Gauss, and two p-wave resonances at 883 and 1064 Gauss in that 

state. Moreover, channel |11) has the lowest energy in the magnetic field (see 3.1 in 

Chapter 3), resulting in only one open channel (itself) that is coupled to 7 closed 

channels with the same total projection of the magnetic quantum number m/. 

This channel is particularly interesting since it has been produced in experiments 
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Internuclear distance (aQ) 

Li(2p) + Rb(5s) J 

Li(2s) + Rb(5p) 1 

Li(2s) + Rb(5s) 

Fig. 4.7: Molecular potentials for the first three asymptotes in 6Li87Rb. Sin

glet and triplet £ and II states are shown. Two-photon stimulated 

photoassociation of the molecule through the 1 1I1 state (blue curve) 

starting from the Feshbach wavefunction is indicated (green and red 

arrows represent PA lasers). 
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[74], while lack of other open channels simplifies the interpretation of the results. 

Fig. 4.8: FOPA rate for formation of the 6Li87Rb molecules in the 1 ^ state. 

Ab-initio molecular potentials for excited states of 6Li87Rb molecule [98] (only 

E and II states going to S + P and P + S asymptotes are shown), as well as a 

schematic representation of 2-photon FOPA, are presented in Figure 4.7. Classical 

turning points, where the amplitudes of the bound-state wavefunction is the high

est, do not seem to be favorable for forming molecules in the ground rovibrational 
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level for any of the singlet excited states. To overcome this, we use 2-photon stim

ulated FOPA, while relying on the fact that the "Feshbach wavefunction" (shown 

in red) has a significantly larger amplitude (fast oscillations visible in Figure 4.7) 

than bound-state wavefunctions for R < 7 a0-

The first step is to calculate the dependence on the magnetic field of the 1-

photon FOPA formation rate KPA for the 2 1 S + molecular potential. We expect 

the maximum increase in rate around the broader s-wave Feshbach resonance 

at 1067 G. For simplification, we consider a constant transition dipole moment 

D(R), which we take to be equal to the atomic values. In addition, we assume 

the same PA laser intensity and gas densities as in the previous section. The 

obtained formation rate for the first 40 vibrational levels is illustrated in Figure 

4.8. As before, when we considered transition from the Feshbach state into the 

ground state of LiNa (Figure 4.3), the rate KPA was increased by several orders 

of magnitude near the resonances. The periodic increase and decrease of the rate 

as the v changes is easily explained by repeating constructive and destructive 

interference of the initial and target wavefunctions. The maximum enhancement 

is obtained for B = 1067 G, which is very close to the Feshbach resonance at 

B = 1067.13 G. 

Next, we consider two excited potential curves for the intermediate step in 

the 2-photon process: 1 1II (31 bound vibrational levels) and 2 1 E + (83 bound 

vibrational levels). Franck-Condon factors (FCFs) for the two 1-photon processes 
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Fig . 4 .9: Franck-Condon factors (FCF) for 2-photon FOPA in 6Li87Rb. 

Bottom: FCFs between the Feshbach wavefunction at 1067 G and the 

2 1 E + (solid black bars), and 1 1I1 states (red bars). FCFs between the 

last bound level (v = 49) of X 1 S + and the excited states, 2 1 S + (blue 

squares), and 1 1IT (green circles) states, are given for comparison. Top: 

FCFs between vibrational levels of 2 1 S + (solid black bars) and 1 1 n 

(red bars) and v = 0 of X 1 E + . 
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are shown in Figure 4.9. The bottom panel shows FCFs from the Feshbach state to 

the excited states (black and red bars), and the top panel shows the FCFs for the 

second step of the process, a bound-bound transition between the excited states 

and the ground state. From the top panel, we can see that the overlap with the 

X 1E+(v = 0) peaks at low vibrational levels, v = 2 for the 1 1II and v = 8 for the 

2 1 E + potential, indicating that the most efficient molecule formation in the v = 0 

of the ground state would require populating these states. In addition, the rate 

is higher for the 1 1 n potential. However, populating these low vibrational levels 

in the first step is not very efficient, as it can be seen from the bottom panel of 

Figure 4.9. Namely, the FCFs between the near-resonant Feshbach wavefunction 

are rather small for low vibrational levels of both excited potentials, ranging from 

roughly 10 - 8 for accessing v — 1, 2 up to about 10 -9 for v = 0 of the 1 1II state. 

The enhancement is larger, about 10 -6, for v = 0,1 for the 2 1 E + potential. For 

comparison, we also show the FCFs for bound-bound transitions between the last 

bound vibrational level, v = 49, in the ground state, and the two excited states 

(bottom panel, blue squares for the 2 1 E + state, and green circles for the 1 1 n 

state). 

While none of these pathways seem to be particularly suitable for highly 

efficient formation of ultracold 6Li87Rb molecules in v = 0 of their ground state, 

it is certainly possible to find more efficient 2-photon schemes in this or similar 

heteronuclear systems. 
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v' / C o y 10~18 cm3/s 
0 0.59437 

1 5.35983 

2 6.20424 

4 6.70457 

5 1.27794 

7 1.04711 

16 0.02041 

Table 4.1: 2-photon FOPA formation rates for 6Li87Rb molecules in v — 0 of the 

ground state. Levels v' are vibrational levels of the intermediate 1 1 n 

molecular state and the starting point is the open-channel Feshbach 

wavefunction calculated for B = 1067 G. 

Finally, we evaluate the total formation rate for the most efficient pathways. 

The 2-photon stimulated PA rate can be calculated by considering a sequence of 

two single-photon processes. Instead of repeating the derivation here, we refer 

the reader to Refs. [110,117]. The final expression, assuming sufficiently large 

separation between the levels to avoid complications due to excitations of multiple 

vibrational levels [118], is: 

Afj(T) = A(/1 , /2 , r ) | (^ , J = 1 | JD'(i?) |WM =o) |2 | (^ ,1 /=o|^(i?) |^ , j=i) |2 , (4.3.1) 

where 

A(hJ2,T) - _ _ _ y — (4.3.2) 

Here, I\ and 1^ are the laser intensities. Using the Eq. (4.3.1) we have calculated 
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two-photon FOPA formation rates for v = 0 in the ground state via the 1 1II 

molecular state. We assumed laser intensities Ii = I2 = 1000 mW/cm2 and 

temperature T = 1/JK. The rates are tabulated in Table 4.3.1. 

The 2-photon formation rates are smaller than the rates obtained in a direct 

single-photon FOPA process (see previous section, Figure 4.3). However, we be

lieve that the 2-photon process is more convenient to realize experimentally. One 

reason for that are practical limitations imposed by laser wavelengths. Since pho-

toassociation of ultracold molecules has been used extensively in spectroscopy, the 

existing equipment is well adapted for transitions to the excited states of alkali 

molecules. In that sense, the 2-photon FOPA process requires the same wave

length region as conventional PA spectroscopy. Another advantage is additional 

control over the process introduced by adding the second laser. In addition, a 

time-dependent FOPA scheme, where short laser pulses are used to transfer the 

population from the resonant Feshbach state into an excited state, also requires a 

2-photon setup [119]. 



Chapter 5 

Application of Feshbach-optimized photoassociation to 

precision measurements 

In the previous chapter we have introduced Feshbach-optimized photoassociation, 

a new method that can be used in molecular spectroscopy, as well as for realiz

ing more efficient approaches to formation of stable ultracold molecules. Here, 

we continue to build upon the results from the last two chapters as we suggest 

another possible application for FOPA in the domain of precision measurements. 

Specifically, we discuss the sensitivity of the PA formation rate K^A to the ratio 

of electron-proton mass, (3 = me/mp, a fundamental physical constant. 

5.1 Motivation: variability of physical constants? 

Quasar absorption spectra hint that the fine structure constant a may have 

changed over the history of the universe [120-122]. If proved true, the fact that 

one or several physical constants change in time would have a major impact on 

physical theories: the equivalence principle in general relativity would be violated 

121 
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and our understanding of cosmology would be profoundly transformed. Grand 

unification models and quantum chromodynamics (QCD) predict that quark and 

electron masses, as well as the strong interaction constant, depend on the fine 

structure constant [122]. Consequently, its variation could be used to distinguish 

among the existing models and advance our understanding of elementary particle 

physics. 

Besides astrophysical observations, limits on the rate of change of fundamen

tal constants have been established independently from the Oklo natural nuclear 

reactor [123] and from Big Bang Nucleosynthesis [122], as well as from precision 

measurement experiments with ultracold atoms and molecules [124]. These exper

iments so far do not contradict each other since they probe very different epochs. 

A good overview of present day limits on temporal and spatial variation, as well 

as a detailed overview of how they were established, can be found in Ref. [121]. 

5.2 Introduction 

Recent developments in ultracold atomic and molecular physics offer new possibil

ities for precision measurement experiments. A particularly suitable quantity to 

consider is the variation of dimensionless electron-proton mass ratio 5(3/(5 [125], 

with (3 = me/mp. This can be understood by considering the fact that molecules 

are bound by the electronic interaction (making molecular potential electronic in 

origin), while the mass of the individual atoms is mostly baryonic. Both scatter-
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ing and spectroscopic properties of cold molecules, such as scattering length or 

position of the last vibrational energy level, are very sensitive to (3. 

The strongest astrophysical constraint of the variability of (3 available to

day comes from the inverse rotational spectra of ammonia and HC3N molecules 

observed toward a quasar background [126,127]. Several precision measurement 

experiments that focus on the variation of electron-proton mass ratio in ultracold 

atomic and molecular systems have been proposed recently [128,129]. Such exper

iments could give an estimate of the limit of possible time variation on the order 

of a/a ~ 10~15 independently of limits obtained by atomic clocks [124]. 

Chin and Flambaum [125] have studied the variation of (3 near a Feshbach 

resonance and concluded that it is possible to relate the variation of the scattering 

length a(B) to the variation of the electron-proton mass ratio, 8(3/(3. They have 

calculated the proportionality factor between the two, and suggested a precision 

measurement experiment that could determine variation of the electron-proton 

mass ratio by measuring the relative variation of the scattering length near a 

Feshbach resonance. Moreover, their result can be easily generalized from mag

netic Feshbach resonances in diatomic molecules to any system in which Feshbach 

resonances of any type exist. 

We propose a new approach to measure the time variation of (3. Feshbach-

optimized photoassociation, presented in the previous chapter, predicts a large 

enhancement of the formation rate K^A of diatomic molecules photoassociated 
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from an ultracold atomic pair near a Feshbach resonance (see also Ref. [130]). 

Recent experimental work shows that the same holds true in a BEC [131]. 

Our analysis shows that the PA formation rate K^A for diatomic molecules 

near a Feshbach resonance can be related to the variation of (3 with an even larger 

enhancement factor than was obtained for the scattering length [125]. Contrary 

to our intuition, such enhancement can be achieved at the minimum of the PA 

rate, far from a resonance. This turns out to be advantageous because such 

measurements would not be affected by the singular behavior of the scattering 

length and different many-body effects possibly present near the resonance would 

be avoided. In addition, performing measurements of the rate at its minimum 

would not be limited by the unitarity limit which is easily reached near a resonance 

[116]. 

5.3 Model 

We consider one-photon photoassociation of two ultracold (T < 1 inK, £=0) atoms 

in their ground state into an excited state of a diatomic molecule [11]. At the tem

perature T, and assuming a Maxwell-Boltzmann distribution of relative velocities 

in the gas, the PA rate for molecules in the vibrational level v of an excited state 

K?A is [132] 
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where QT — ^n^ksT/h2)3/2 is the translational partition function, e = (hk)/2/j, 

is the asymptotic kinetic energy of the colliding atoms, /i is the reduced mass, 

Sv(e,k) is the S'-matrix element for the channel that forms a molecular bound 

state v, and ks is the Boltzmann constant. 

At ultracold temperatures, the S'-matrix element can be expressed as [117] 

i*M)i%V+&.+-*)'- (5'32) 

with the detuning A = Ev — hu>, where Ev is the energy of the bound molecular 

level v. Here, I is the PA laser intensity, 7̂  is the stimulated decay rate, and 

7u is the width of the targeted vibrational level v. For low laser intensities the 

stimulated rate 7S becomes [110] 

7.(e)*^\(v\D(R)\e)\*t (5.3.3) 

where D(R) is the transition dipole moment. Here, |e) and \v) are the energy-

normalized initial state and a molecular rovibrational state, respectively. 

Expression (5.3.1) can be further simplified if we assume that atoms have well 

defined energies, and that 7^ + 7s(e) ~ 7«(e), which is the case for low intensities 

of the PA laser. The PA rate is the highest for detuning A = kBT/2 [117,110], 

and it takes the form: 

O 3 T - 1 / 2 

Introduction of an external magnetic field will break the degeneracy of molecular 

hyperfine states and introduce a small Zeeman shift proportional to the magnetic 
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field. A Feshbach resonance occurs if the energy of a bound level is shifted to match 

the asymptotic energy of the colliding atoms. In the presence of a single Feshbach 

resonance the real part of the scattering length will depend on the magnetic field 

B as [13] 

a = abg (x + W^B) ' (5,3'5) 

where AB is the width of the resonance and Bo is the resonant magnetic field. 

In the previous chapter we used a coupled-channel theory to accurately model 

photoassociation of an atomic pair into a molecule in the presence of an external 

magnetic field. However, such a problem can only be solved numerically in a 

general case. We do not follow such an approach here. Instead, we use the analytic 

two-channel model developed in the previous chapter to describe the Feshbach-

optimized photoassociation of an atomic pair (see Section 2.6.1 for details). 

The next step is to express the dipole matrix element d = (v\D(R)\e) in terms 

of the analytic solution obtained in the two-channel model. The stimulated width 

•ys depends on d, and after the analytic solution is substituted, it can be expressed 

as [116] 

7 s ( / , k, B) = 7 f (/, fc)|l + d tan5 + C2 sin<5|2, (5.3.6) 

where j°s is the off-resonant stimulated rate, C\(k,v) and C-2(k, v) are dimension-

less ratios of dipole matrix elements between the open and closed channel defined 

in Eq. (2.6.13), and 5{k) is the phase shift. We are mainly interested in behavior 

of the dipole matrix element as the magnetic field changes. The 7°ff(/, k) has a 
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role of a constant; it depends on the laser intensity and energy, both of which are 

constant external parameters. 

To the first order in k, the s-wave phase shift is related to the scattering 

length o as 

tan(<5 + <5bg) = —ka, (5.3.7) 

where <5bg = —ka^g, and a^g is the background scattering length. 

It follows that the formation rate coefficient KpA can be expressed as 

Tfv __ rsv 11 , n fe(0- - Qbg) , r k(a ~ a b g ) ,2 /c o a \ 

kzabga + i ^ / l + A;̂ (a — «.bg)
2 

In order to relate the variation of the PA formation rate A'PA to the variation 

of (3 we vary Eq. (5.3.8) with respect to the scattering length a and background 

scattering length a^g. We then relate their relative variations to the variation of 

electron-proton mass ft, following the procedure outlined in Ref. [125]. 

For a transition from the continuum at the wavenumber k to a vibrational 

level v in the excited state we obtain 

5KpA 2C\ka 5a 2C\ka\yg 5a,bg , . 
KpA 1 + Ci&(cibg — a) a 1 + C\k(a^g — a) a^g 

Let us examine this expression more closely. As the first step, we neglected second 

order terms in k and terms proportional to the Ci coefficient. The k2 at ultracold 

temperatures introduces a negligible correction [125]. The terms proportional to 

C2 are much smaller than tan5 (in Eq. (5.3.8)) close to a Feshbach resonance, 

which is our region of interest. Consequently, it is safe to neglect these terms. 
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We can also neglect the second term in Eq. (5.3.9). The background scattering 

length abg changes slowly compared to the derivative of the scattering length 

a with respect to magnetic field evaluated near a Feshbach resonance (see Eq. 

5.3.5). This leaves us with the relation which connects relative variations of the 

photoassociation rate A'pA and scattering length a in the vicinity of a Feshbach 

resonance: 

6K$A = 2C\ka 8a (5 3 10) 
K£A 1 + Cxk(ahg -a) a' { ' ' ' 

Chin and Flambaum [125] have analyzed variation of the scattering length in 

a two-channel model for ultracold atoms near a Feshbach resonance and derived 

the expression 

8a _ M (a - qb g)2 1 8(3 

a 2 ah%a p(Em)AE 0' \ • • J 

where M is the vibrational quantum number of the closed channel bound state, 

p(Em) = 1/D is the density of states at the energy Em that can be estimated 

from the energy level splittings D of the adjacent levels. Feshbach resonances are 

typically caused by the last bound level in the molecular potential. In turn, M is 

equal to the number of bound vibrational levels that the molecular potential can 

support. 

From Eqs. (5.3.10) and (5.3.11), and assuming a sufficiently large number of 

vibrational levels [125], we obtain the proportionality factor between the relative 

variations of the PA rate for the rovibrational level v and electron-proton mass 
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ratio (5. To better illustrate this, we define the enhancement factor KV as 

where 

^ _ M (a - abg)2 1 2dfca 
2 ahga p(Em)AECik(a-ahg) - 1' ' 

Comparison to Eq. (5.3.11) shows that we have gained an extra term that depends 

on C\k, in addition to dependence on a and a^g. This extra term expresses 

dependence of KV on the combined hyperfine and Zeeman coupling between the 

initial open channel and one or more closed channels. 

To further analyze the behavior of K,V near a Feshbach resonance we assume 

that the scattering length depends on the magnetic field in a standard way, given 

in Eq. (5.3.5). Relation for KV now reads: 

(B-B0)(B-B0 + ahgC1kAB)p(Em) { ' ' ' 

Eq.(5.3.14) shows that KV will diverge not only at the resonance but also 

for B = Bo — a^gCikAB, giving rise to a second maximum that coincides with 

the minimum of the PA formation rate reported in [131,67]. This is of major 

importance for future experimental realizations: near its minimum the PA rate is 

not affected by saturation effects which would limit the intensity and the scattering 

length remains finite [116]. 

Another important feature is the dependence of KV on the coefficient C\k. 

Coefficient C\ is given by the ratio of wavefunctions of the initial and final state. 
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The extensive study of Feshbach-optimized photoassociation conducted in the 

previous chapter has shown that the photoassociative formation rate, KpA, is 

strongly dependent on the choice of target vibrational level v. Consequently, it is 

important to find a suitable transition that would result in large formation rate 

while remaining easily accessible experimentally. 

To illustrate and quantify these effects and estimate the maximum attainable 

limits by a precision measurement of A'pA, we need to apply the procedure outlined 

in this section to several realistic systems. 

5.4 Enhancement of time-variation of (3 in realistic ultracold 

mixtures 

In chapter 3 we studied Feshbach-optimized photoassociation of diatomic alkali 

molecules, namely 6Li-23Na and 7Li-23Na, from ultracold mixtures of atomic Li and 

Na. For the same system, we successfully applied the two-channel analytic model 

to reproduce the formation rate of Feshbach-optimized photoassociation (see 4.6). 

Pellegrini and Cote [116] have used the same model to analyze saturation effects 

near Feshbach resonances in ultracold Li2. However, both Li2 and Li-Na molecules 

are light and support a smaller number of bound levels than heavier molecules. 

From Eq. (5.3.14) we can see that the enhancement factor K,V depends on the 

number of bound vibrational levels M, favoring heavier molecules. Nevertheless, 

these systems can serve as a good starting point for the calculation since the model 
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parameters for some PA pathways are known. 

5.4.1 Test system: 7Li2 ultracold mixture 

We consider one-photon photoassociation of the 7Li2 molecule to v = 83 of l 3 £ t 

state in the external magnetic field B. To the best of our knowledge this is the only 

ultracold mixture for which photoassociation in a magnetic field has been studied 

experimentally [131]. The lowest energy singlet and triplet molecular potentials 

for the 7Li2 molecule are taken from Ref. [133], and additional adjustments to 

reproduce the correct scattering properties of 7Li pair were applied [131,134]. The 

excited state from Ref. [135] is used in the calculation. We take the lowest energy 

Feshbach state |a = 1,/? = 1) = |/i = 1,???.̂  = l ) | / 2 = l,™f2 = 1) to be the 

starting point for the photoassociation process. In this particular channel there is 

a broad Feshbach resonance at 736 G that can be characterized well by Eq. (5.3.5) 

with parameters BQ = 736 G, AB = 200 G, and ctbg = —18 ao [116]. As is the case 

with the other Feshbach states, |12) is a mixture of the energetically lowest singlet 

and triplet electronic states with a predominant triplet component. Moreover, a 

large Franck-Condon factor between this initial state and the vibrational level 

v = 83 in the targeted molecular state exists. 

The model and resulting coupled equations are constructed in the same way 

as it was done in the previous chapter. 7Li2 is a bosonic homonuclear molecule 

(nuclear spin of 7Li2 is / = 3/2) and we need to perform the symmetrization 
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according to Eq. 2.3.7. The close-coupling equations are solved using the mapped 

Fourier grid method [73], and we calculate the molecular formation rate KpA 

according to Eq. (5.3.1). The dipole moment D(R) for the transition into the 

13E+ molecular state is taken from Ref. [135]. Dimensionless coefficients C\ and 

C<i are determined from a numerical fit of the calculated rate with the form given 

in Eq. (5.3.8). The other parameters are T = 10 fjK, I = 1.6 W/cm2 and 

-yv = 12 MHz [135,116]. Finally, the enhancement factor Kvff3 for the 13E+ state 

is calculated according to Eq. (5.3.14). 

The photoassociation rate calculated using the model with the listed parame

ters is compared to the full calculation in Figure 5.1. Near the Feshbach resonance 

the coupling between collisional channels is strongly enhanced and the laser in

tensity required to reach the unitarity limit becomes small [116]. Consequently, 

the photoassociation rate becomes strongly dependent on the laser intensity, as 

is shown in Figure 5.2. The minimum of the PA rate at about 709 G, however, 

remains unaffected, as it depends on the intensity according to the Wigner law 

[13]. 

The enhancement factor KV for the same system is shown in Figure 5.3. Two 

maxima at 709 G and 736 G correspond to magnetic fields for which the pho

toassociation rate diverges, at the maximum of destructive interference between 

wavefunctions of the initial and final state, corresponding to the second pole of 

Eq. (5.3.14), and at the resonance. Close to the resonance the scattering length 



133 

«3 

a 
« 10 

600 650 700 750 
B(G) 

800 850 

Fig. 5.1: Photoassociation rate KV
PA for 7Li2. Molecules are photoassociated into 

v — 83 of the 13S+ molecular state from the initial Feshbach |/i = 

l,m/1 = l)|/2 = l,"2/2 = 0) state. The dashed blue line corresponds 

to the numerical calculation, the solid black line is obtained using our 

two-channel model with C\ = 13. The unitarity limit is indicated by 

the dotted line. 
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Fig. 5.2: Intensity dependence of the photoassociation rate in 7Li2 (same initial 

and final state as in Figure 5.1) 
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Fig. 5.3: Enhancement factor KV in 7Li2 (same initial and final states as above). 

The clashed line indicates the region that cannot be observed due to 

the saturation. Inset: Zoom in on the first peak. Sensitivities of 0.1 G 

and 0.01 G are indicated by dashed lines. 
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diverges and the system can no longer be treated as isolated and described by the 

two-channel model. 

We proceed to analyze the first maximum at 709 G. Here, the attainable 

enhancement factor is not limited by the unitarity limit, but by the ability to form 

and detect a small number of molecules. To obtain the limit of variation 5(5/(5, 

we assume that a typical density of ultracold gases in a trap is nu ~ 1012 cm -3 , 

the laser intensity of / = 1 W/cm2 and an illuminated volume of V = 1 mm3. At 

B = 709.09 G we predict the PA rate of K£A = 9.4 x 10"18 and the enhancement 

KV ~ 2 x 108 . If a measurement accuracy of 1% could be achieved while keeping 

the magnetic field stable to about 0.01 G at 709 G, detecting about 100 molecules 

out of 104 formed molecules would be sufficient to limit the maximum possible 

time variation of (3 to less than 5 x 10 -11. By using a higher laser intensity, 

the number of formed molecules could be increased (simplifying the detection), 

although better control of the magnetic field would be needed to further increase 

the sensitivity. 

5.4.2 Enhancement factor for a narrow resonance in 6Li-23Na 

According to Eq. (5.3.14), a better test of the time-variation of (3 could be per

formed by considering a narrow resonance in a heavier molecule. The Feshbach 

state \a = 1/3 = 1) in 6Li-23Na ultracold mixture [77], possesses a narrow Feshbach 

resonance for B = 746.0 G. We can parametrize it using the width AB = 0.044 
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G and background scattering length a^g — 14 ao-

We can use this resonance to perform a calculation of the enhancement factor 

for a hypothetical Feshbach-optimized PA scheme to form 6Li23Na molecules in 

v = 59 of the 13S+ molecular state. In addition, if the laser intensity of I = 10 

W cm - 2 at wavelength A = 660 nm is used for photoassociation, we can model 

the molecular formation rate using the two-channel model with parameters: C\ = 

—480 and K%s = 4 x 1 0 - u . The number of bound vibrational levels in the closed 

channel in 6Li23Na is M = 45 [125]. According to the model, the minimum of 

the formation rates occurs for B = 754.894 G, resulting in the formation rate 

of about 1.8 x 105 molecules per second. Note the small separation between the 

maximum and minimum. Here, we assumed the same gas density and illuminated 

volume as for Li2 molecules described in the previous section. If the stability 

of the magnetic field up to 1 mG could be realized, the maximum enhancement 

factor would be K « 1 x 109. Under assumption that the change in the formation 

rate of 10 molecules per second could be detected, the limit on the variation of (3 

would be set to about 1 in 10-13. 

5.4.3 Enhancement factor for different systems 

An even higher precision can be obtained if a heavier molecule such as Yb2 or 

133Cs2 is photoassociated in the vicinity of a narrow Feshbach resonance. For ex

ample, an optical Feshbach resonance with externally controlled coupling strength 
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[136] or a g-wave magnetic Feshbach resonance in 133Cs [137], are both very nar

row, which would maximize the enhancement factor KV even before the channel-

coupling term (the last term in Eq. (5.3.13)) is accounted for. Assuming the 

width of AB = 5 mG [137], and the detection efficiency of molecules of 0.1 % 

at the minimum of the formation rate, a test of p on the 10~15 level could be 

performed. Such accuracy is comparable to the best available measurements of 

the variability of f3. 

These parameters are not unrealistic. Astability of 1 mG has been achieved 

near a narrow Feshbach resonance [138]. In fact, more optimistic values were as

sumed by other groups, who were optimistic about achieving astability of magnetic 

field on the level of 0.01 mG with adequate magnetic shielding [125,124]. 

In conclusion, based on the extreme sensitivity of variation of the molecular 

formation rate in an ultracold gas near a Feshbach resonance, we suggested a novel 

method for testing temporal variability of p = me/mp. We show that it would 

be advantageous to perform such a precision measurement at the minimum of the 

PA rate, where the scattering length remains finite and the saturation effects are 

avoided. 



Chapter 6 

Theory of ion-atom charge-exchange collisions 

In this chapter we briefly review a formalism that can be used to model CX colli

sions of fully stripped (completely ionized) ions with hydrogen atoms. The empha

sis is placed on constructing molecular potentials for an equivalent ionic molecule. 

Such potentials describe the electronic interaction in a time-independent (molec

ular) picture which we used to treat the collisions of neutral atoms in the previous 

chapters. A more complete overview of existing semi-classical and quantum treat

ments of charge-exchange collisions can be found in Refs. [139-141]. 

6.1 Charge-exchange collisions of fully stripped ions with hydrogen 

A charge-exchange collision between an ion and a hydrogen atom can be illustrated 

as 

Aq+ + H -> A*(q-1)+{nl) + p+ - • A{g-1)+{ls) + p+ + 7 i + 7 2 + . . . , (6.1.1) 

where the relaxation after the electron capture results in emission of one or more 

photons (designated as 7;). We discuss a case where the ion charge q is such that 

139 
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the ion is initially completely stripped of electrons. 

A number of interesting astrophysical processes, such as chemical reactions in 

the early universe and charge-exchange collisions in astrophysical plasma, belong 

in this category [142]. We are particularly interested in investigating charge-

exchange collisions between solar wind ions and heliospheric hydrogen and the 

properties of radiation emitted during their collisions. 

As shown in the schematics, after the electron capture has occurred, the ion 

relaxes rapidly into its ground state, through either a series of de-excitations 

known as radiative cascade, or by a direct relaxation into the ground state. The 

emission spectra are determined by the initial excited state in which the electron 

was captured, as well as by the exact cascade pathway, while the population of the 

initial state depends on the relative energy at which the collision occurred. The 

average velocity of solar wind ions is about 400 km/s for the slow solar wind and 

about 750 km/s for the fast solar wind. This belongs in the regime of so-called slow 

collisions, where the relative velocity of hte colliding particles remains well below 

the Bohr velocity. While a semi-classical approach may work for slow collisions in 

some cases, the most accurate description of the process is usually obtained in a 

fully quantum coupled-channel model. Analogously to atom-atom collisions (see 

chapter 2), CX collisions can also be described in a time-independent molecular 

formalism. 
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6.2 Impact-parameter multistate molecular approximation 

One way to model the charge-exchange problem is by invoking the straight-line 

impact parameter approximation [143,144]. To explain the idea behind this ap

proach we first need to define the geometry for the problem. At collisional ener

gies of interest, ranging between 0.1 keV and 10 keV, differential cross sections 

of elastic and inelastic collisions peak around the projectile direction of impact 

(forward-direction). In that regime, the particle trajectories can be described well 

by straight lines. Let us call the two nuclei, the proton and the incident ion, A 

and B, and R the position vector of B defined with respect to A. Let the position 

vector of the electron with respect to A be TA, and fe with respect to B. The 

impact parameter approximation states that 

R = p + vt, (6.2.1) 

where v is the velocity of the incident particle and p is the component of R 

perpendicular to v. Eq. (6.2.1) is, in fact, a defining equation for time t in terms 

of the velocity and internuclear distance. 

For each value of p we need to solve the equation of motion 

tt(fA)t) = 0. (6.2.2) 

The operator (^) _, indicates that the variables (FA, t) are taken to be independent 

and used to express all other physical values. 

A ' - ' ; | 5 
M 
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In the molecular approximation, the total wavefunction \l/ can be expanded 

in terms of functions Xv as 

*(rA,R(t),t) = J2av(t)Xv(rA,R(t))e-is^ (6.2.3) 
V 

with 

sv(t)= f ev(\p + vt'\)dt\ (6.2.4) 
J — oo 

where R is the magnitude of the vector R. 

The functions Xv(rA,R) are the eigenfunctions of the electronic part of the 

Hamiltonian 

{Hel-6v(R)]Xv(R) = 0. (6.2.5) 

Putting everything together, Eq. (6.2.3) leads to the system of coupled-channel 

equations 

d 
-—a 
dt 

,(i) = -^aAt)(XJj) |Xv)e-tvW-^(*)]. (6.2.6) 
v' ^ ' rA 

The appropriate initial condition on ^ is 

*(rA,t)= lim ^A\rA)e-^\ (6.2.7) 
t—•—oo 

where <% and a0 are the atomic eigenfunction and eigenenergy. For our choice 

of the reactants, they correspond to the eigenvalues of the ground state of the 

hydrogen atom. 

To evaluate the matrix element in Eq. (6.2.6), we need to solve the stationary 

Schrodinger equation for the problem, given in Eq. (6.2.5). The three-body 
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Schrodinger equation is separable in prolate spheroidal coordinates and it has an 

exact analytical solution which can be, in principle, evaluated up to the arbitrary 

precision. In literature, this particular equation has been thoroughly studied under 

the name of the two-center (or two-Coulomb-center) Schrodinger equation. 

Before we proceed to discuss the two-center problem in more detail in the next 

section, we still need to show the way in which the charge-exchange cross section 

and the transition amplitude can be expressed from the defined quantities. As

suming that the electronic wavefunctions are known, we can integrate the coupled 

equations given by Eq. (6.2.6). The basis set is first truncated according to the 

charge-transfer process that we want to describe, and the coupled equations are 

integrated numerically using standard methods. For example, when truncating 

the basis set, keeping as few as three coupled molecular states is often sufficient 

to obtain a good agreement with experimental results [143,144]. 

The electron transition amplitude is extracted from the quantity av(t) in 

the following way. By integrating Eq. (6.2.2) for t —> oo, we obtain the total 

wavefunction for the electron bound to the particle A: 

<^(rA,*) = ^ e - ^ . (6.2.8) 

Similarly, if the electron is bound to the particle B, we have 

KMA, t) = ^(r£)e'*'*-to5* - \v\ (6.2.9) 

where <^, a^, </>,̂ , and a^t are the wavefunctions and energies of the atomic 
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states (nl). Note that the wavefunction $^(r.4,£) is expressed in the coordinates 

centered on the particle A and the last term in Eq. (6.2.9) is simply the distance 

between the particles. 

The transition amplitude between the total electronic wavefunction Psi and 

the electronic wavefunction of the particle A or B can be defined as 

bilB(p) = h m ( $ ^ ( r A , t ) | ^ ( r l , t ) } . (6.2.10) 
t—>oo 

When the limiting behavior is carefully accounted for, it can be shown that 

the total charge-exchange probability within the impact-parameter molecular ap

proximation becomes [143] 

\b?(p)\2 = E kB(+°°)2 = i - £ i^(+^)2- (6-2-n) 
V v' 

Finally, the total cross section for the charge-exchange is obtained by inte

grating over all incident paths 

/>oo 

Q = 2ir pdp\b*{p)\2. (6.2.12) 
Jo 

Note that within the impact-parameter approximation the existence of mo

mentum transfer is fully accounted for and the only approximation that remains 

is the truncation of the basis set. 

6.3 Two-center Schrodinger equation 

Let us examine more closely the two-center problem introduced in Eq. (6.2.5). 

The two-center Schrodinger equation for the Z^eZs system in the adiabatic ap-
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.v, v 

Fig. 6.1: Geometry of the two center problem. 

proximation can be written as 

ZA , Z. B 

2 rA rB 
(6.3.1) 

where TA and rB are the distances from the electron to the centers a and b, 

respectively, and E is the electron eigenenergy. 

Eq. (6.3.1) is separable in prolate spheroidal coordinates [145]: 

V 

TA + rB 

R ' 

rA ~ rB 

R ' 

= arctan 

;i ^ e < oo) 

(0^ip< 2TT) (6.3.2) 
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where R is the distance between the two Coulomb centers. Variables £ and r\ are 

referred to as the radial and angular spheroidal variable, since, in the limit R —> 0, 

they reduce to spherical polar coordinates. The product form of the wavefunction 

can be written as 

* = F(<p)G(£)H(ri). (6.3.3) 

After the change to prolate spheroidal coordinates, Eq. (6.3.1) can be separated 

into a quasi-radial (in variable £) and a quasi-angular (variable rf) equation 

dG~ d_ 

d_ 
drj 

(e -1) 

(i - v2 dH 

drj 

2 r 2 
+ [-\ + aq£- <f £ m~ 

+ (X-[3qr] + qlr}1 -
m2 

1 — ?72 

G(0 = 0, 

H{rj) = 0, (6.3.4) 

and into a trivially solvable azimuthal equation 

d2F 

dtp' 
+ m2F{ip) = 0. (6.3.5) 

We have introduced the separation constants A and m, and variables 

(ZA + ZB)R 
Q = R\I-§> a 0 = 

(ZA + ZB)R 
(6.3.6) 

From the solution of Eq. (6.3.5) 

1 

V2TT 
(6.3.7) 

and single-valuedness requirement, we have m — 0, ±1 , ± 2 , . . . . In this problem, 

the constant m plays the role of the magnetic quantum number. 

Eqs. (6.3.4) are examples of the generalized spheroidal equation [146,147]. 

Special cases of the generalized spheroidal equation include the ordinary spheroidal 



147 

equation (for a = 0 or (3 — 0) and the Legendre differential equation (a — 0 or 

(3 = 0 and q = 0). The generalized spheroidal equation also arises in general 

relativity [148] and within the theory of EM emitters [149]. 

6.3.1 Analytical solution 

The solution of the quasi-angular part H[rf) of Eq. (6.3.4) can be found by factoring 

out the exponential part e~q11 and expanding the remaining product into a series 

of associated Legendre polynomials: 

oo 

fffa) = e - w I > J f t m f a ) . (6-3-8) 
3=0 

The real-valued coefficients a,j satisfy the three-term recurrence relation [150,147] 

Ajdj+i + (Bj - \)dj + Cjdj-x = 0, (6.3.9) 

w. here 

q(2m + j + l)(2m + (3 + 2j + 2) 
j 2m + 2j + 3 

Bj = (m + j)(m + j + l)-q2, 

_ qk{p-2rn-2j) 

3 2m + 2j - 1 v ' 

From the requirement that the series is finite, a,- -> 0 as j -» oo, it follows 

that the eigenvalues An,; are the only allowed values of the separation constant 

A. The corresponding eigenfunctions are Hn,n(r]). In addition, Sturm-Liouville 

theory states that the eigenvalues can only be real and that we can find the 

strictly increasing sequence of eigenvalues, which we denote TJ0, r)i, rj2, 
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From the normalization on the interval where 77 is defined, 

J Hnv(V)2dV = 1, (6.3.11) 

the following relation for the coefficients can be derived 

f; f»+j)' „; = 1. ( 6 . 3 . 1 2 ) 

A closed-form solution for the eigenvalues and eigenfunctions exists only when 

ZA = ZB [147]. 

The quasi-radial equation can be expanded in a similar way in terms of La-

guerre polynomials [151]. However, the computationally most efficient form is 

Jaffe expansion [152] 

00 

G(0 = e^He ~ 1)*(£ +l)*-m-15>:c' ' , (6.3.13) 
i=o 

where a; = ( £ - l ) ( £ + l). 

The quasi-angular and quasi-radial wavefunctions have to be square integrable 

over all space. This implies that the solutions to the angular and radial equations 

cannot diverge at the poles 77 = ±1 , £ = 1, respectively. This gives us a range of 

values that the eigenenergy A can take. Moreover, A must have the same value 

in both the angular and radial equations, which in turn sets the energy E of the 

molecule. 

Furthermore, we can define the operator A as [153] 

,2 _ ,2 , i ^ j . D „ (ZA ZB ^ = F + l#pi + & p - ^ (6.3.14) 
4 * \rA rB ' 
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where / is the orbital angular momentum operator and pz is the momentum. 

Operator A in the two-center problem has a function of the generalized orbital 

angular momentum. As R —> 0, we get A2 —•>• I2, as expected. 

The natural choice of quantum numbers for the two-center systems are the 

nodal quantum numbers A^ and Nv, which are equal to the number of nodes in the 

quasi-radial and quasi-angular wavefunction. It follows that the molecular state 

can be defined in terms of (A^, Nv, m) quantum numbers. The connection between 

the nodal and familiar atomic quantum numbers (n, I, m) can be established by 

analyzing their behavior in the united atom limit, R —> 0. The relation between 

the two sets is [154] 

N(: = n - l - l , Nr, = l-m. (6.3.15) 

The states are designated in standard spectroscopic notation (using s,p, d, f,... 

for values of I, and a, TT, <5, n,... for m; note that the gerade and ungerade (g and 

u) symmetry is meaningful for the homonuclear case only). 

6.3.2 Asymptotic expansion 

Construction of asymptotic formulae for the (ZAeZB) problem has been explored 

by several authors. While the earlier works focused solely on the H^ ion, Pono-

marev and Pusynina [155] carried out several calculations for a more general 

(ZA^ZB) system. In addition, they identified the cases for which quasi-crossings 

of the potential energy curves occur. In a series of articles that followed, Ko-
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marov and Slavyanov with coworkers constructed asymptotic expansions for the 

electronic terms of the system in limits of small and large internuclear separation. 

They also found an analytical formula to compute the internuclear separation at 

which quasi-crossings occur. Their work is summarized in Ref. [156]. 

The asymptotic expression for the electronic energies at large internuclear 

separation is [156] 

ZA ZB ZB A ZBn ,rA2 2 , -1 \ 
ENiNvm = - _ - _ + ^ ^ „ A - ^ ( 6 A -n +1) 

+ 1f |4
7^4[^A(109A2 - 39n2 - 9m2 + 59) 

-ZBn{l7n2 - 3A2 - 9m2 + 19)] + 0(R~5), (6.3.16) 

where n = N^ + Nv + m is the principal quantum number and A = N$ — Nv. 

We calculated the electronic energies in the limit of large R using Eq. (6.3.16) 

and compared them to the numerically evaluated exact energy terms for several 

molecular ions. The results are given in Table 6.1. The asymptotic formula is 

particularly accurate in case of Hjt" ion, for which the error becomes of the order 

of 10~4 a.u. at R = 10. Moreover, the formula yields much better agreement 

with the exact calculation for homonuclear ions. For the OH8+ and other heavier 

heteronuclear ions the convergence seems to be much slower, resulting in relatively 

good agreement at distances of R = 100 a.u. or larger. 

A similar asymptotic expansion in a series of log R and powers of R has been 

constructed for small separations [156,157]. In addition, an expression for the 
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R(ao) 
5 

10 

15 

20 

35 

50 

100 
200 

500 

OH8+(000) 

1.40001 

0.7 
0.466667 

0.35 

0.2 

0.14 

0.07 

0.035 

0.014 

OH8+(500) 

0.586092 

0.502193 

0.372562 

0.2946 

0.180647 

0.130235 

0.0674702 

0.0343558 

0.0138958 

OH8+(520) 

1.97152 

0.562412 

0.387422 

0.302756 

0.184209 

0.132305 

0.0681087 

0.0345332 

0.013926 

He2+(000)) 

0.399485 

0.200055 

0.133344 

0.100004 

0.0571432 

0.0400001 

0.02 

0.01 

0.004 

H+(000) 

0.0208203 

0.000353729 

4.49405 x 10"6 

1.96831 x 10-7 

4.97495 x 10-9 

5.51777 x lO-10 

8.04878 x 10"12 

1.21125 x 10~13 

4.88498 x 10~15 

Table 6.1: Deviation AE of the large R asymptotic expansion from the exact 

calculation of electronic energies for different molecular ions in the 

state (nlm) (in a.u.). 

phaseshift in the continuum based on the short-range asymptotics was obtained 

[157]. Again, the emphasis was put on the Ĥ ~ molecular ion for which an im

pressive agreement was reached in the aforementioned references, as well as in 

Ref. [158]. Finally, the asymptotic approach has been applied to calculations of 

the wavefunctions. Notably, Kereselidze et al. [159] (and references within) con

structed the asymptotic form of quasi-angular and quasi-radial wavefunctions for 

both small and large internuclear separations. Instead of discussing the details of 

the listed works here, we refer the reader to the references. 
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6.4 Molecular potentials 

Exact calculations of potential curves and coupling matrix elements from the two-

center Schrodinger equation together with the multistate molecular expansion 

have been used in previous theoretical treatments of charge-exchange collisions 

corresponding to (HeH)2+, (OH)8+ and other ions [143,160-162]. 

We calculated electronic potentials of the molecular ions CH6+, NH7+ and 

OH8+, that can be used within the formulation of charge-exchange collisions that 

was outlined above. These particular ions play a significant role in CX collisions 

between the solar wind and hydrogen background that we investigate in chapter 

7. Such collisions occur for ion impact velocities of about 0.05 to 1 a.u. Pub

lished cross sections [163] suggest that in this velocity range the electron capture 

occurs in highly excited molecular states, n — 5 to n = 8. Our calculations were 

performed for the same states. 

Electron capture in slow collisions for multiply charged ions and neutrals (hy

drogen) occurs through pseudo-crossings of the adiabatic potential energy curves 

[164,165]. Basically, the pseudo-crossings are caused by the Coulomb repulsion 

between the ions after the charge-exchange process has occurred. We identify such 

crossings in the electronic potentials illustrated in Figures 6.2 to 6.5 below. 

To calculate the potentials we used the package TwoCentre.m for Mathemat-

ica 5.0 [166], that was adapted for the newer version of Mathematica. The package 

can compute generalized spheroidal harmonics up to arbitrary precision, as well 
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as find solutions of the two-center problem. We illustrate the obtained electronic 

potentials for several molecular ions below. 
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6.4.1 (OH) 8 + 

i i i i i i i i i i I i I 

0 5 10 15 20 25 30 
Intemuclear separation (Bohr) 

Fig. 6.2: Purely electronic energies as a function of intemuclear distance 

for n = 5 to n = 7 of (OH)8+. The lia state is not shown. 

Molecular potentials for (OH)8+ have been calculated by Harel and Salin 

[143], who also calculated the charge-exchange cross section for the system, using 

two- and three-state models. We performed a similar calculation of the electronic 

potentials for all molecular states from n — 5 to n = 7, with the exception of the 

7ia state, for which the numerical package could not converge for R < 11 Bohr. 
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Our results match well those of Ref. [143] for the published curves. 

The electronic potentials for m — 0 are illustrated in Figure 6.2. In the limit 

of small internuclear separation the energies correctly converge into atomic energy 

levels of the united atom, while for the large R they converge to the separated 

atom limit. There are three distinct groups of curves (n = 5,6,7), each with 

a subset of potentials for different orbital angular momenta I. The rightmost 

curves within each group, the one that has the minimum for the lowest energy, 

corresponds to the highest angular momentum. Only the electronic energies are 

shown and the Coulomb nuclear repulsion term should be included to obtain the 

total molecular potentials. Note the state Qga that intersects four states with 

quantum numbers n = 5, / = 0 to 3. A similar behavior is expected from all states 

with the highest orbital angular momentum for n > 3. Such curve crossings play 

an important role in charge-exchange collisions. 

We have also calculated the electronic potentials for all existing orbitals for 

n — 5 case. The curves are illustrated in Figure 6.3. Note the additional crossings 

that appear. A similar structure is present for other principal quantum numbers. 



156 

5 10 
R (Bohr) 

15 15 20 25 30 

Fig. 6.3: Left: Purely electronic energies as a function of internuclear distance 

for higher orbital angular momentum states for n = 5 of (OH)8+. Right: 

The total molecular energy, including the repulsive Coulomb term for 

the same states is shown. Note the inflection point for the n — 5, / = 

4, m = 4 state. 
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6.4.2 (CH) 6 + and (NH) 7 + 

In analogy to the (0H)8 + case, we have calculated the electronic potentials for 

(CH)6+ and (NH)7+ molecular ions. The results are presented in Figures 6.4 and 

6.5. As for (OH)8+, the electronic potential curves crossings of different types 

exist for the highest value of the angular momentum / for n = 5 and above. We 

have indicated the avoided crossings that contribute the most to the cross section 

on graphs. 

-0.4 

-0.6 

-0.8 

rla
rtr

ee
) 

E
ne

rg
y 

( 
i 

-1.4 

-1.6 

1 1 

7 M 7 p o _ 7 d g ^ 

_ SfS- j^^ -^S—-

^ / / /5fCT 

1 

1 1 

^ ^ 7 g a ^ ^ ^ 

"iigcT 

/ 5 g a 

1 

i 

-^•"Tha 

i 

1 ' 

6 h a ^ - ^ ' 

1 

1 ' 

1 l 

1 ' 

H+ + N6+ (n=7) -

_ 

- - ^ f T N ^ e ) -
-

H+ + N6+ (n=5) -

~ 

1 
10 15 20 
Internuclear separation (Bohr) 

25 30 

Fig. 6.4: Purely electronic energies as a function of internuclear distance 

for n = 5 to n = 7 of (NH)7+. 
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-0.25 

10 15 20 
Internuclear separation (Bohr) 

25 30 

Fig. 6.5: Purely electronic energies as a function of internuclear distance 

for n = 5 to n = 7 of (CH)6+. 
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6.4.3 Wavefunctions and matrix elements 

The coupling matrix elements relevant for the calculation are given in Eq. (6.2.6). 

In the molecular formalism, the time derivative of the initial state is replaced by 

differentiation with respect to d/dR. In addition, we need to calculate the matrix 

element of the rotational coupling, which can be expressed as the orbital angular 

momentum operator. See Refs. [139,160] for details. The two matrix elements 

that need to be evaluated are [160] {XV\JR\X'V) •> a n d (Xv\iLy\x'v)-

Molecular states that include curve crossings of any type carry the largest 

contribution to the charge-exchange process. Selecting only such states and trun

cating everything else is often sufficient to greatly simplify the calculation. For 

example, if we are interested in the charge-exchange cross section into the bga 

state in (CH)6+, the logical choice would be to consider the 6ha state which has 

an avoided cross section with the hga state at about R = 22 ao- In such a two-

state expansion we would calculate the CX cross section using Eq. (6.2.11) with 

the matrix elements (x5ga\d/dR\x6ha) and (x5ga\iLy\x6h<r) • 

We first calculated the electronic wavefunctions for the molecular ion states up 

to n = 8. As an example, we illustrate the probability density for n = 5, m = 0, 

for all orbital quantum numbers, in Figure 6.6. The ground state probability 

density is included for comparison (f). It is clearly visible that the wavefunctions 

for the two highest angular momenta extend to the hydrogen nucleus (positive z-

axis). In fact, for the highest I, the probability density surrounding the hydrogen 
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Fig. 6.6: Probability density for Xn=5,i,m=o state (a-e), and for the xn=o,z=o,m=o 

state (f) of (OH)8+. Parameters E = — 1 and R — 2 (in a.u.) were 

used. Charges Z& = I and ZB = 8 are indicated by two dots at z = 1 

and z = — 1, respectively. 



6.7: Probability density for the last two I in Xn=3,4,5,j,m=o of (OH)8+ 

rameters E = — 1 and R — 2 (in a.u.) were used. 
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nucleus becomes dominant over that of the fully stripped ion. This can be related 

to the charge-exchange cross section. Qualitatively, in the stationary picture, if 

we calculate the spatial overlap of the electronic wavefunctions of the molecular 

ion with the electronic wavefunctions of the H atom before the CX has occurred, 

it will be the largest for high I. According to this simple picture, we expect the 

electron capture cross section to be the largest for the states which exhibit such 

behavior. Only the highest I state of n = 4 and none of the n < 3 states belong 

to that category (see Figure 6.7). We confirm this prediction by comparison with 

the published cross sections for (OH)8+ [163]. 

However, when we attempted to calculate the matrix elements and CX cross 

sections for (CH)6+ and (OH)8+, we ran into difficulties related to convergence of 

numerically evaluated integrals. Because of that, we were not able to reproduce 

the cross sections published in Ref. [163]. As a result, we used the published cross 

sections in the calculation of the CX polarization of X-rays in chapter 7. 



Chapter 7 

Polarization of the charge-exchange X-rays 

induced in the heliosphere 

In this chapter we present the results of a theoretical investigation of the polariza

tion of X-ray emissions induced in charge-exchange (CX) collisions between fully 

stripped solar wind ions and neutral hydrogen atoms found in the heliosphere. In 

particular, we investigate the dependence of polarization on the velocity and the 

spatial distribution of solar wind plasma. Our main objective is to determine if 

such CX emissions in the Solar System are polarized. To do so, we need to com

bine the elements of the physics of atom-ion collisions with realistic astrophysical 

models of the solar wind plasma and neutral heliospheric gas. In chapter 6 we 

summarized a possible approach to calculating atom-ion charge-exchange cross 

sections. Here, we take the cross sections as the starting point and apply them to 

a particular astrophysical problem. 

163 
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7.1 Introduction 

Charge-exchange (CX) collisions between highly charged solar wind (SW) ions 

and neutral atoms present in heliospheric gas and the Geocorona were recently 

identified as an efficient mechanism for production of EUV and soft X-ray emis

sions [167]. There are indications that CX collisions yield between 50% and 80% of 

heliospheric soft (below 1 keV) X-ray photons [32,35,168], making the CX mecha

nism a significant contributor to the soft X-ray background (SXRB). Heliospheric 

CX X-ray emissions are sensitive to the parameters of SW plasma. For example, a 

strong correlation exists between variations in the SW intensity and composition, 

and intensity of the soft X-ray background. This has been observed and carefully 

analyzed [35,169]. These findings indicate that the heliospheric CX X-rays could 

be used for diagnostics of the solar wind composition and velocities, as well as an 

independent probe of spatial distribution of heliospheric neutral gas. There are 

already indications that the existing models of the Local Bubble and interstellar 

flow of neutral hydrogen may need to be revised to correctly account for charge-

exchange emissions. [36,170,171]. Analyzing polarization of the CX emissions is 

one way to gain more insight into interactions of the SW plasma with neutral 

heliospheric gas. 

While polarization of optical emissions is readily used in investigation of var

ious astrophysical objects, detection of X-ray polarization remains a challenging 

technical feat. Currently available observational data do not contain information 
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on polarization. However, it is realistic to expect that X-ray polarization will 

be investigated in future space missions. Consequently, an accurate theoretical 

consideration of these phenomena is necessary. As an alternative to space-based 

observations, polarization data are available from laboratory experiments in which 

CX collisions of atoms and ions of astrophysical interest were studied. In particu

lar, polarization spectroscopy of 05+(ls23p) produced in collisions of 0 6 + with He 

and H2 showed that the CX X-rays are polarized and strongly dependent on the 

projectile velocity, which was varied in the experiment from 0.34 to 0.55 au [172]. 

It is reasonable to expect the CX X-ray emissions in astrophysical environments 

to be polarized and exhibit similar velocity dependence. 

7.2 Model 

A description of the charge-exchange induced X-rays in our Solar system and 

calculated emission spectra have been published previously [32,168,173,174]. We 

consider collisions between heavy SW ions and hydrogen gas of the form 

XQ + + H - • X*(Q"1)+(np) + H+ 

-»• X ( Q-1 ) +(ls) + H + + 7 , (7.2.1) 

where X can be any fully stripped SW ion which undergoes a single relaxation 

into the ground state of the ion after the electron capture and emits the X-ray 

photon 7. We assume that H is a major component of the heliospheric gas. This 

model can be easily extended to include He and other heavy elements. 
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The line-of-sight (LOS) intensity is given by [173] 

/ L ° S = h i N^+^n^r>^an,xQ+d^ (7-2-2) 

where NXQ+(r) is the density of solar wind ions, %( r ) is the density of hydrogen, 

yrei is the relative collision velocity and <rH xQ+ (vre\) is the electron capture cross 

section. We set the upper integration limit to be equal to the heliopause as defined 

for particular distribution of heliospheric plasma and assume that vTe\ ~ v, where 

v is the SW ion velocity. The polarization of the heliospheric X-ray emission in 

LOS observations can be defined as 

p=I-nrr> (7-2-3) 

where I\\ and I±_ are the detected intensities which define the degree of polarization. 

Projections of angular momenta of the electronic states of the excited SW ions 

produced in CX collisions are oriented along the local velocity direction of the SW 

plasma. Assuming that the detector on a satellite can analyze linear polarization 

of X-ray emissions, the intensity I = I\\+ I± of radiation, emitted from a selected 

small volume of the heliosphere and normalized to a single ion emission, can be 

expressed as [175] 

m = " * Y r r g t ^ _ i f c B ) j 4 f .+3„<2 ) j 4 g) _ (7 2 4) 

where r is the distance between the detector and the CX event and h^ is the ratio 

of recoupling coefficients which contain elements of orthogonal transformations 

between the initial and final quantum state [175]. 
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Here, A^et and A^ are alignment parameters 

Adet = l ^ ( 3 c o s 2 ^ _ 1 ) ) 

Ad
2f = )-Afsm29cos2xP, (7.2.5) 

where AQ°1 is the alignment tensor and 9 is the angle between the ion velocity 

and detection axis. Angle tp indicates orientation of linear polarization analyzer. 

We define the parallel and perpendicular polarization as I\\ = I(ip = 0) and 

I± = I(I/J = IT/2), (see Figure 7.1 for details). 

We consider a case in which the alignment tensor AQ°1 is a scalar that can be 

expressed in terms of velocity-dependent partial cross section a(m^ v) for electron 

capture into the atomic state \jirrii): 

Acoi = E m i N - j l ( j i + l ) k ( m ^ ) 

The parallel and perpendicular intensities in the detector frame are then 

I\ 
47T?' ,2 

l--h{2)Af(l-3sm2e) 

{ _ ,^^^ x_h{2)A^ { 7 2 7 ) 

Since the cross sections a (mi, vrei) depend on the relative velocity of collisions vrei 

[163], the polarization is also velocity dependent. We neglect cascading relaxation 

and consider emissions from highly excited states 4p, 5p and 6p to the ground 

state. 

In order to calculate the X-ray polarization along the LOS, we work in the 

planar geometry with the Earth, Sun and the CX event located in the ecliptic plane 

file:///jirrii
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Fig. 7.1: Parallel and perpendicular intensities illustrated in the plane of ob

servation for a = 7r/2. Note the change in the direction of I\\ as the 

detector is rotated from ip = 0 to ip = n/2. 

and inside the heliosphere (see Figure 7.2). We consider the Earth (detector) to 

be at Ro = I AU from the Sun in a crosswind direction. The LOS is restricted to 

the ecliptic plane and expressed by the angle a which increases counterclockwise, 

where for a = 0 the LOS points in the direction of the Sun and for a = 7r/2 in 

the upwind direction. By r and R we indicate distances from the Earth and the 

Sun to the CX event, respectively. This particular choice of geometry makes it 

possible to compare upwind and downwind directions of observation for slow SW 

from a detector on a satellite. The X-ray flux is about 3 times larger for slow SW, 

prevalent in the ecliptic plane, than for fast SW [32]. Similar geometry was used 
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Fig. 7.2: Planar geometry with Earth, Sun and the CX event located in the 

ecliptic plane. Two different lines-of-sight are illustrated. Heliospheric 

hydrogen density is shown in the background. 

to compare different models of the charge-exchange spectra to ROSAT data [35]. 

7.2.1 Polarization for the constant hydrogen density 

We may easily estimate the scale of X-ray polarization using simplified assump

tions about the heliospheric distribution of the SW plasma and neutral gas. If 

the heliospheric hydrogen density is assumed to be constant, nu{r) = nH cm -3 , 

and distribution of SW ions to be isotropic, NXQ+{R) = ^ 1 Q + ( ^ ) 2 cm -3 . Here, 

NxQ+ a n d nH a r e densities of the SW ions and hydrogen at R = 1 AU from the 
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Sun, respectively [32]. We can integrate Eqs. (7.2.7) analytically along the LOS 

to obtain 

IL
±

0S = K0R0{Afh^-2)a0, 

rLOS 
J I I 

1 
2^o#o 

6A%*h®Ro (RH - R0 cos a) 
R?H + R2

0- 2RHR0 cos a 
(4 + Afh^) a0 ,(7.2.8) 

where RH is the limit to integration along the LOS, which is equal to distance 

from the Sun to the heliopause, KQ = N^-Q+nHVreiaHxQ+ /ldn and 

a0 
sin a 

arctan 
i?o sin a 

Ro cos a — r 
arctan 

Ro a 
—— tan — 
Ro 2 

. (7.2.9) 

The listed intensities in Eq. (7.2.8) are given in units of cm - 2 s_1. 

The analytic solution can be used to predict the qualitative behavior of po

larization, though the calculated value is about three times larger than the one 

obtained for a more realistic model. To demonstrate this, we calculated the angu

lar dependence of the X-ray polarization for emissions from 0*7+(4p, 5p, 6p) into 

its ground state. The results are shown in Figure 7.3. 
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»iK7+) 

If r 

Or'+)(np) -> 1* 

7.3: The angular dependence of polarization of the CX X-rays emitted in a 

single-step deexcitation from 4p (solid lines), 5p (dashed) and 6p (dot

ted) excited states of CH7+). Polarization is calculated using analytic 

formulae (Eq. 7.2.8) and represented by the radius-vector and Earth 

(observer) is in the origin. The axis for a = IT/2 (LOS in the upwind di

rection) is shown and the angle increases counterclockwise. Blue cones 

indicate regions within ±10° of the Sun (right side) or diametrically 

opposite (left). 
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7.3 Polarization for realistic distributions of heliospheric gas 

7.3.1 Models of heliospheric plasma 

The next step is to improve the calculation by replacing the constant hydrogen 

density with a more realistic distribution. We used two different models of helio

spheric plasma in the calculation [34,176]. The model by Lallement [34] assumes 

simple trajectories in a hot gaseous environment and it is appropriate for describ

ing density distribution of hydrogen and helium for solar maximum or averaged 

over short-term solar activity. However, the ion density distribution is not cal

culated within this model. In addition, the Lallement model does not take into 

account the boundaries between different regions, mainly the hydrogen wall and 

termination shock. Instead, the density of charged solar wind particles, including 

the ions of interest to us, is assumed to be isotropic, NXQ+(R) = N^Q+(Ro/R)2, 

where NXQ+ is the ion density at R — 1 AU from the Sun. We illustrate this 

distribution for H and He in Figure 7.4. Note the Helium focusing cone in the 

downwind direction. 

The model by Muller et al. [176], is more complex and capable of describing 

different regions within the Solar System. It is based on multifiuid magneto-

hydrodynamical (MHD) approach with four interpenetrating fluids. One 'fluid' 

represents protons of the interstellar and SW plasma and the three remaining 

components are used to model the neutrals (see [177] for details). We used density 
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ig. 7At Hydrogen (top) and helium (bottom) density distribution obtained us

ing Lallement model. Darker colors indicate higher density, up to 

n-H — 0.15 cm - 3 for H and ?7.He — 0.0726 cm - 3 for He (in the cone). 

Upwind direction is pointing down. 
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distributions of heliospheric hydrogen and SW protons from the Muller model, 

calculated for conditions that correspond to a solar minimum (Figure 7.5). In 

fact, the density distributions computed for typical conditions of solar minimum 

and solar maximum do not seem to differ significantly within the ecliptic plane. 

On the other hand, variations in solar activity do affect the distributions in the 

direction perpendicular to the ecliptic plane. We illustrate this for hydrogen in 

Figure 7.6. As a result, there were no significant differences in polarization for 

various levels of solar activity. 

Fig. 7.5: Hydrogen (left) and proton (right) density distributions obtained using 

the Muller model. Lighter colors correspond to the lower density. 

Within the Muller model, density distributions of C 6 + and 08+ ions were 

obtained by scaling the proton density distribution by the composition factors 
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7.6: Density distributions from the Miiller model. Left: Hydrogen density 

in the upwind (black), downwind (red), and crosswind (blue) direction. 

Distributions for solar minimum (solid lines) and maximum (dashed 

lines) are shown. Eight: Proton density in the upwind (black), down

wind (green) and crosswind (blue) direction. The isotropic proton den

sity Np+(R) = N^(R0/R)2, where N$ is the proton density at R = 1 

AU from the Sun, is given for comparison (thick red). 
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given in [178,168]. 

For both models the X-ray photon yield was taken to be one and all external 

perturbations, such as heliospheric and interstellar magnetic fields, were neglected. 

The polarization was integrated from the detector to the heliopause, a region 

where the plasma velocity streamlines merge. In the Miiller model, the heliopause 

was determined by a rapid increase in the plasma temperature to > 105 K, when 

compared to the interstellar medium. The Lallement model does not describe the 

heliopause and the limit of integration was set to 300 AU. The angle of observation 

was varied to cover the whole ecliptic plane (a = [0, 27r]). 

7.3.2 Polarization maps 

We calculated the polarization of X-rays for single-photon relaxation from the 4p, 

5p and 6p excited states of C*^5+' and 0*(7+) produced in CX collisions of C6+ and 

08+ ions with heliospheric hydrogen. The probability to populate these excited 

states is at least an order of magnitude higher than the probability to populate 

other excited states [163], and selected ions characterize well the slow solar wind, 

which is dominant in the ecliptic plane [168,179]. The radiative cascade from 

the excited states was not included in the calculation. Electron capture cross 

sections depend on the relative velocity of colliding particles; we computed the 

polarization for solar wind ion velocities from 200-2000 km/s, using the cross 

sections by [163]. This range of velocities includes both the slow (v = 400km/s) 
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7.7: Angular dependence of the polarization of CX X-rays emitted in a single 

deexcitation from Ap (solid lines), 5p (dashed) and 6p (dotted) excited 

states of 0*(7+\ Polarization is given by the radius-vector. The axis for 

a = TT/2 (LOS in the upwind direction) is shown and the angle increases 

counterclockwise. Blue cones indicate regions within ±10° of the Sun 

(right side) or diametrically opposite (left). Results for Lallement (red 

lines) and Muller (black lines) hydrogen distributions are shown (see 

text for details). 
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C*(5+)(»p) -* Is 

7.8: Angular dependence of the polarization of CX X-rays from 4p (solid 

lines), bp (dashed) and Qp (dotted) excited states of C*(5+). Polariza

tion is given by the radius-vector as in Fig. 7.7. Polarization for the 

slow (black) and fast (green) SW ions calculated using Mtiller hydrogen 

distribution is shown. 
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and fast (v = 750km/s) solar wind [180]. Since 08+ ions are not present in the 

fast SW we do not show them in the graph. Figure 7.7 illustrates the angular 

dependence of polarization of the CX X-rays for 0*(7+) ion. Results for both 

distributions are compared for the slow solar wind. 

500 1000 1500 

Solar wind velocity (km/s) 

2000 500 1000 1500 

Solar wind velocity (km/s) 

2000 

Fig. 7.9: Dependence of CX X-ray polarization on ion velocity for C*^5+-) and 

CH7+). Emissions from Ap (solid), 5p (dashed) and 6p (dotted) excited 

states for LOS in upwind (black lines) and downwind (green lines) are 

shown. 

Using the Miiller distribution, we calculated the polarization map for C*^5+^ 

ions, for average values of the fast and slow solar wind (Figure 7.8). In case 

of the slow SW, which is dominant in the ecliptic plane, for emissions from Ap 
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state we obtain the polarization of about 3% for the optimal QJLOS hi the upwind 

direction and less than 2% in downwind direction. The polarization of the X-ray 

photons radiated from 5p and 6p states is less than 1% for the optimal observation 

geometry. 

The results are more promising for the fast SW ions. The highest polarization, 

P — 7%, for the optimal «LOS hi the upwind direction, is obtained for emissions 

from 5p state of C*^5+\ Unfortunately, the fast SW is not present in the low 

heliographic latitudes (less than 20° within the ecliptic plane). Nevertheless, this 

result suggests that it may be possible to observe higher polarization of the CX 

X-ray emissions at higher heliographic latitudes, out of the ecliptic plane. 

7.4 Discussion 

We demonstrated that the X-rays emitted in the charge-exchange collisions be

tween neutral heliospheric hydrogen and fully stripped oxygen 0 8 + and carbon 

C6 + ions are polarized. These ions are important constituents of the solar wind 

and participate in charge-exchange processes that produce X-rays. This includes 

the CX with heliospheric hydrogen and helium, as well as CX with the atoms 

present in planetary and cometary atmospheres. The polarization is found to be 

strongly dependent on the density of the neutral gas within several AUs of the 

Sun, as well as on the velocity of SW ions. 

Two models were used to describe the heliospheric neutrals and ions. The 
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MHD model by Muller [176] is more realistic of the two, as it includes four com

ponents of the heliospheric plasma, and describes the local environment up to the 

termination shock. In our calculation of the polarization maps, we used hydrogen 

and proton density distributions for solar minimum conditions that were obtained 

from this model. We also constructed a polarization map using a simpler hy

drogen density distribution from Lallement model, and found a good qualitative 

agreement between the two. 

While the calculated polarization is small, P < 10% for the optimal choice of 

the observational geometry, it is not insignificant. If measured with the sufficient 

precision, the polarization could be a valuable complement to the X-ray spectra. 

For example, the polarization seems to be very dependent on the heliospheric 

gas density and it could be used to extract additional information about the 

distribution of neutral gas within the Solar System. Alternatively, the polarization 

can help distinguish between the CX emission spectra and extract information 

about the ion velocity distribution. In addition, polarization should be taken into 

account in accurate measurements of the CX emission intensity. 

This study can be extended to include heliospheric helium as well as higher 

gas densities found close to the bowshock region of our Solar System. Moreover, 

using a 3D density distribution of heliospheric plasma would make it possible to 

calculate the polarization in the whole space. Finally, provided that the sufficiently 

accurate detection is possible, polarization could offer valuable information about 



182 

other astrophysics! CX processes and environments. 



Chapter 8 

Conclusion and future directions 

This dissertation consists of two distinct parts unified by the underlying scatter

ing theory. First part, following the brief summary of relevant theory presented 

in chapter 2, is dedicated to diatomic collisions of trapped, ultracold alkali metal 

atoms in external fields. Specifically, the focus is on detailed theoretical anal

ysis of magnetic Feshbach resonances, and possible applications of their unique 

properties to physics of ultracold atomic gases. We used a multichannel scatter

ing theory to find and characterize Feshbach resonances in Li+Na and Li+Rb 

ultracold mixtures. These results were used to produced new sets of molecular 

potentials that correctly reproduced the resonances and were the starting point 

for developing two novel applications of Feshbach resonances. 

The first one, a technique that we named Feshbach-optimized photoassocia-

tion, was developed as we were exploring the effects of Feshbach resonances on 

the scattering wavefunction. We found that if a quasi-bound Feshbach state was 

used as the initial state for photoassociating two colliding ultracold atoms into a 

molecule, the formation rate was greatly enhanced. Photoassociation is a well-

183 
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known and proven technique; it has been widely used in atomic spectroscopy from 

the days before the ultracold temperatures were attainable, and quickly adopted 

as an essential tool for forming cold molecules. We were very excited to realize 

that a simple addition of an external magnetic field tuned to a Feshbach reso

nance can lead to significantly enhanced photoassociative formation rate. Chapter 

4 presents quantitative analysis of Feshbach-optimized photoassociation using 1-

and 2-photon schemes in ultracold Li+Na and Li+Rb mixtures. 

While working with Feshbach resonances and photoassociation rates, we re

alized that it is possible to find a connection between the Feshbach-optimized 

photoassociation rate and the electron-proton mass ratio [3 = me/mp, which is a 

fundamental constant. Consequently, it may be possible to conduct a precision 

measurement experiment to determine the variations of the two quantities with 

the precision approaching the current experimental limits. Such an experiment 

would provide an independent test of the time-variation of j3. An interesting 

property of measuring the rate, as compared to measuring the scattering length, 

is that it would be possible to perform measurements at its minimum and still 

benefit from the resonant enhancement while avoiding the saturation effects. 

In the second part of this work, covered in chapters 6 and 7, we extended 

the study of the X-rays produced in charge-exchange atom-ion collisions between 

fully stripped solar wind ions and neutral heliospheric gas. The heliospheric X-rays 

were predicted and observed in the past decade, but the ratio of local (produced 
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in charge-exchange processes or scattering in the Solar System) vs. extrasolar 

(mainly galactic) X-rays in that particular region of the spectrum remains un

certain. We relied on Fano-Macek theory [175] to model the polarization of the 

heliospheric charge-exchange X-rays, and on the current models of the heliospheric 

plasma [34,181] to calculate it. Our prediction, based on three characteristic so

lar wind ions, C6+, N7+ , and 0 8 + , is that we can expect the polarization of the 

X-rays to be 5-10%. If the next-generation X-ray space telescope will include a 

polarimeter, it will be possible to measure the polarization and gain an extra piece 

of information about the underlying physical process. 

There are different directions in which this work can be extended. Ultra-

cold atomic and molecular physics is rapidly developing as a field, and accurate 

collisional cross sections for various processes are needed for further theoretical 

modeling. At the same time, a compendium of Feshbach resonances is still incom

plete even for diatomic alkali metal atoms. Feshbach resonances are an invaluable 

tool in ultracold physics experiments and, clearly, there is a need to extend it to 

other diatomic mixtures. The other techniques proposed in this work are rather 

general. For example, Feshbach-optimized photoassociation could offer a way to 

produce stable ultracold molecules needed for experiments with optical lattices 

and realizations of platforms for quantum computing with neutral atoms. 

On the astrophysical side, the fact that the charge-exchange X-rays induced by 

the solar wind are polarized is not restricted to the heliosphere. Our theory can be 
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easily applied to other objects within our Solar System, such as the Jovian system, 

Saturn and Mars. In addition, perhaps even more interesting environments in 

which charge-exchange X-ray emission is likely to occur, are extrasolar planets of 

the hot Jupiter type and protoplanetary disks surrounding young stars. 



Bibliography 

[1] J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 2, 1707 (1985). 

[2] C. N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998). 

[3] W. Phillips, J. Prodan, and H. Metcalf, J. Opt. Soc. Am. B: Opt. Phys 2, 
1751 (1985). 

[4] J. Weiner et al, Rev. Mod. Phys. 71, 1 (1999). 

[5] W. D. Phillips, Rev. Mod. Phys. 70, 721 (1998). 

[6] W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002). 

[7] F. Dalfovo et al, Rev. Mod. Phys. 71, 463 (1999). 

[8] W. C. Stwalley, Phys. Rev. Lett. 37, 1628 (1976). 

[9] T. Kohler, K. Goral, and P. S. Julienne, Rev. Mod. Phys. 78, 1311 (2006). 

[10] H. R. Thorsheim, J. Weiner, and P. S. Julienne, Phys. Rev. Lett. 58, 2420 
(1987). 

[11] W. Stwalley and H. Wang, J. Mol. Spectrosc. 195, 194 (1999). 

[12] J. Doyle et al, Eur. Phys. J. D 31, 149 (2004). 

[13] K. M. Jones et al, Rev. Mod. Phys. 78, 483 (2006). 

[14] A. J. Kerman et al, Phys. Rev. Lett. 92, 033004 (2004). 

[15] J. M. Sage et al, Phys. Rev. Lett. 94, 203001 (2005). 

[16] K.-K. Ni et al, Science 322, 231 (2008). 

[17] S. Ospelkaus et al, Nat. Phys. 4, 622 (2008). 

[18] I. Deutsch, G. Brennen, and P. Jessen, Fortschr. Phys. 48, 925 (2000). 

187 



188 

[19] P. Jessen, in Scalable quantum computers: paving the way to realization, 
edited by S. L. Braunstein and H.-K. Lo (Wiley-VCH Verlag, Berlin, Ger
many, 2001), p. 155. 

[20] G. K. Brennen et al, Phys. Rev. Lett. 82, 1060 (1999). 

[21] N. Balakrishnan and A. Dalgarno, Chem. Phys. Lett. 341, 652 (2001). 

[22] S. Ospelkaus et al, Science 327, 853 (2010). 

[23] C. Zipkes et al., Nature 464, 388 (2010). 

[24] A. T. Grier et al, Phys. Rev. Lett. 102, 223201 (2009). 

[25] R. Cote and A. Dalgarno, Phys. Rev. A 62, 012709 (2000). 

[26] V. Krasnopolsky et al, Science 277, 1488 (1997). 

[27] C. Lisse et al, Science 274, 205 (1996). 

[28] T. Cravens, Geophys. Res. Lett. 24, 105 (1997). 

[29] V. Krasnopolsky et al, Icarus 160, 437 (2002). 

[30] V. Krasnopolsky, J. Greenwood, and P. Standi, Space Sci. Rev. 113, 271 
(2004). 

[31] T. Cravens, Science 296, 1042 (2002). 

[32] A. Bhardwaj et al, Planet. Space Sci. 55, 1135 (2007). 

[33] I. P. Robertson et al, Space Sci. Rev. 97, 401 (2001). 

[34] R. Lallement, A & A 418, 143 (2004). 

[35] D. Koutroumpa et al, Space Sci. Rev. 143, 217 (2009). 

[36] B. Y. Welsh and R. L. Shelton, AP&SS 323, 1 (2009). 

[37] S. L. Snowden, Space Sci. Rev. 143, 253 (2009). 

[38] N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, 3rd ed. 
(Oxford University Press, New York, USA, 1987). 

[39] J. Taylor, Scattering theory: the quantum theory on nonrelativistic collisions 
(Wiley, New York, 1972). 

[40] R. Newton, Scattering theory of waves and particles, 2nd ed. (Dover Publi
cations, New York, 2002). 



189 

[41] H. Priedrich, Theoretical atomic physics (Springer-Verlag, New York, 1998). 

[42] S. Inouye et al, Nature 392, 151 (1998). 

[43] H. Lefebvre-Brion and R. Field, The spectra and dynamics of diatomic 
molecules, 2nd ed. (Academic Press, New York, 2004). 

[44] L. E. Ballentine, Quantum Mechanics: A Modern Development (World Sci
entific, Singapore, 1998). 

[45] R. Zare, Angular momentum: understanding spatial aspects in chemistry 
and physics (John Wiley & Sons, New York, 1988). 

[46] J. Burke Jr, Ph.D. thesis, University of Colorado, 1999. 

[47] P. Bunker, J. Mol. Spectr. 28, 422 (1968). 

[48] M. Born and R. Oppenheimer, Ann. Phys. 84, 457 (1927). 

[49] A. Carrington, D. Levy, and T. Miller, Adv. Chem. Phys. 18, 149 (1970). 

[50] L. Piela, Ideas of quantum chemistry (Elsevier, Amsterdam, The Nether
lands, 2007). 

[51] B. Smirnov and M. Chibisov, JETP 21, 624 (1965). 

[52] K. Tang, J. Toennies, and C. Yiu, Int. Rev. Phys. Chem. 17, 363 (1998). 

[53] M. Marinescu, J. F. Babb, and A. Dalgarno, Phys. Rev. A 50, 3096 (1994). 

[54] E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977). 

[55] E. Tiemann and J. Ogilvie, J. Mol. Spectr. 165, 377 (1994). 

[56] C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum mechanics (John Wiley 
& Sons, New York, 1977). 

[57] E. Tiemann et al, Phys. Rev. A 79, 42716 (2009). 

[58] J. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, New 
York, 1975). 

[59] C. C. Ticknor, Ph.D. thesis, University of Colorado, 2005. 

[60] J. M. Brown and A. Carrington, Rotational Spectroscopy of Diatomic 
Molecules (Cambridge University Press, New York, 2003). 

[61] E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, Phys. Rev. A 47, 4114 
(1993). 



190 

[62] E. Timmermans et al, Phys. Rev. Lett. 83, 2691 (1999). 

[63] C. R. M. Greiner and D. Jin, Nature 426, 537 (2003). 

[64] S. Jochim et al, Science 302, 2101 (2003). 

[65] C. A. Stan et al, Phys. Rev. Lett. 93, 143001 (2004). 

[66] C. Chin et al, Phys. Rev. A 70, 32701 (2004). 

[67] P. Pellegrini, M. Gacesa, and R. Cote, Phys. Rev. Lett. 101, 053201 (2008). 

[68] K. M. Jones et al, Rev. Mod. Phys. 78, 483 (2006). 

[69] E. Taylor-Juarros, R. Cote, and K. Kirby, Eur. Phys. J. D 31, 213 (2004). 

[70] E. Juarros et al, Phys. Rev. A 73, 041403 (2006). 

[71] A. J. Moerdijk, B. J. Verhaar, and A. Axelsson, Phys. Rev. A 51, 4852 
(1995). 

[72] B. R. Johnson, J. Comput. Phys. 13, 445 (1973). 

[73] V. Kokoouline et al, J. Chem. Phys. 110, 9865 (1999). 

[74] B. Deh et al, Phys. Rev. A 77, 010701 (2008). 

[75] C. Marzok et al, Phys. Rev. A 79, 012717 (2009). 

[76] Z. Li et al, Phys. Rev. A 78, 022710 (2008). 

[77] M. Gacesa, P. Pellegrini, and R. Cote, Phys. Rev. A 78, 10701 (2008). 

[78] E. Tiesinga et al, Phys. Rev. A 46, R1167 (1992). 

[79] J. Harriman, Theoretical foundations of electron spi?i resonance (Academic 
Press, New York, 1978). 

[80] S. G. Karshenboim, Phys. Usp. 51, 1019 (2008). 

[81] R. M. C. Aim, J. P. H. W. v. d. Eijnde, and B. J. Verhaar, Phys. Rev. B 
27, 5424 (1983). 

[82] H. T. C. Stoof, J. M. V. A. Koelman, and B. J. Verhaar, Phys. Rev. B 38, 
4688 (1988). 

[83] A. Bambini and S. Geltman, Phys. Rev. A 65, 062704 (2002). 

[84] B. R. Johnson, J. Comput. Phys. 13, 445 (1973). 



191 

[85] C. E. Fellows, J. Chem. Pliys. 94, 5855 (1991). 

[86] M. Aymar and 0. Dulieu, J. Chem. Phys. 122, 204302 (2005). 

[87] A. Derevianko, J. F. Babb, and A. Dalgarno, Phys. Rev. A 63, 052704 
(2001). 

[88] S. G. Porsev and A. Derevianko, J. Chem. Phys. 119, 844 (2003). 

[89] C. A. Stan, Ph.D. thesis, Cambridge, MA, USA, 2005. 

[90] W. Ketterle, Private communication. 

[91] E. Timmermans and R. Cote, Phys. Rev. Lett. 80, 3419 (1998). 

[92] M. Houbiers et al., Phys. Rev. A 57, R1497 (1998). 

[93] M. Brown-Hayes and R. Onofrio, Phys. Rev. A 70, 063614 (2004). 

[94] C. Marzok et al, Phys. Rev. A 76, 052704 (2007). 

[95] R. Cote, R. Onofrio, and E. Timmermans, Phys. Rev. A 72, 041605 (2005). 

[96] H. Ouerdane and M. J. Jamieson, Phys. Rev. A 70, 022712 (2004). 

[97] M. Korek, G. Younes, and S. Al-Shawa, J. Mol. Struct. 899, 25 (2009). 

[98] M. Korek et al, Chem. Phys. 256, 1 (2000). 

[99] B. Marcelis et al, Phys. Rev. A 70, 012701 (2004). 

[100] M. Anderlini et al, Phys. Rev. A 71, 061401 (2005). 

[101] D. DeMille, Phys. Rev. Lett. 88, 067901 (2002). 

[102] A. Fioretti et al, Phys. Rev. Lett. 80, 4402 (1998). 

[103] O. Dulieu and C. Gabbanini, Rep. Prog. Phys. 72, 086401 (2009). 

[104] M. W. Zwierlein et al, Phys. Rev. Lett. 91, 250401 (2003). 

[105] K. Xu et al, Phys. Rev. Lett. 91, 210402 (2003). 

[106] D. E. Miller et al, Phys. Rev. Lett. 99, 070402 (2007). 

[107] A. Altmeyer et al, Phys. Rev. Lett. 98, 040401 (2007). 

[108] M. Greiner, C. A. Regal, and D. S. Jin, Phys. Rev. Lett. 94, 070403 (2005). 

[109] G. B. Partridge et al, Phys. Rev. Lett. 95, 020404 (2005). 



192 

110] E. Juarros, K. Kirby, and R. Cote, J. Phys. B 39, S965 (2006). 

I l l ] F. A. van Abeelen and B. J. Verhaar, Phys. Rev. Lett. 83, 1550 (1999). 

112] S. J. J. M. F. Kokkelmans, H. M. J. Vissers, and B. J. Verhaar, PRA 63, 
031601 (2001). 

113] B. Laburthe Tolra et al, Europhys. Lett. 64, 171 (2003). 

114] F. A. van Abeelen, D. J. Heinzen, and B. J. Verhaar, Phys. Rev. A 57, 
R4102 (1998). 

115] M. Aymar and O. Dulieu, Private communication. 

116] P. Pellegrini and R. Cote, New J. Phys. 11, 055047 (2009). 

117] E. A. Juarros, Ph.D. thesis, University of Connecticut, 2007. 

118] J. L. Bohn and P. S. Julienne, Phys. Rev. A 54, R4637 (1996). 

119] E. Kuznetsova et al, New J. Phys. 11, (2009). 

120] E. Reinhold et al, Phys. Rev. Lett. 96, 151101 (2006). 

121] V. Flambaum, Eur. Phys. J. 163, 159 (2008). 

122] J.-P. Uzan, Rev. Mod. Phys. 75, 403 (2003). 

123] S. K. Lamoreaux and J. R. Torgerson, Phys. Rev. D 69, 121701 (2004). 

124] C. Chin, V. V. Flambaum, and M. G. Kozlov, New J. Phys. 11, 055048 
(2009). 

125] C. Chin and V. V. Flambaum, Phys. Rev. Lett. 96, 230801 (2006). 

126] M. Murphy et al, Science 320, 1611 (2008). 

127] C. Henkel et al, A & A 500, 725 (2009). 

128] D. DeMille et al, Phys. Rev. Lett. 100, 043202 (2008). 

129] S. Kotochigova, T. Zelevinsky, and J. Ye, Phys. Rev. A 79, 012504 (2009). 

130] M. Gacesa, P. Pellegrini, and R. Cote, Phys. Rev. A 78, 010701 (2008). 

131] M. Junker et al, Phys. Rev. Lett. 101, 060406 (2008). 

132] R. Napolitano et al, Phys. Rev. Lett. 73, 1352 (1994). 



193 

133] R. Cote, A. Dalgarno, and M. J. Jamieson, Phys. Rev. A 50, 399 (1994). 

134] I. D. Prodan et al, Phys. Rev. Lett. 91, 080402 (2003). 

135] R. Cote and A. Dalgarno, Phys. Rev. A 58, 498 (1998). 

136] M. Theis et al, Phys. Rev. Lett. 93, 123001 (2004). 

137] J. Herbig et al, Science 301, 1510 (2003). 

138] M. Mark et a/., Europhys. Lett. 69, 706 (2005). 

139] B. H. Bransden and M. R. C. McDowell, Charge exchange and the theory of 
iori-atom collisions (Oxford University Press, New York, 1992). 

140] J. B. Delos, Rev. Mod. Phys. 53, 287 (1981). 

141] E. E. Nikitin, Adv. Quantum Chem. 5, 135 (1970). 

142] S. Petrie and D. Bohme, Mass Spectrom. Rev. 26, 258 (2007). 

143] C. Harel and A. Salin, J. Phys. B 10, 3511 (1977). 

144] R. McCarroll and R. D. Piacentini, J. Phys. B 3, 1336 (1970). 

145] E. W. Weisstein, Prolate Spheroidal Coordinates. From MathWorld-A Wol
fram Web Resource. 

146] C. Flammer, Spheroidal wave functions (Stanford University Press, USA, 
1957). 

147] P. Falloon, P. Abbott, and J. Wang, J. Phys. A 36, 5477 (2003). 

148] E. Leaver, J. Math. Phys. 27, 1238 (1986). 

149] R. Soummer, C. Aime, and P. Falloon, A & A 397, 1161 (2003). 

150] J. D. Power, Philos. Trans. R. Soc. London, Ser. A 274, 663 (1973). 

151] E. Hylleraas, Z. Phys. 71, 739 (1931). 

152] G. Jaffe, Z. Phys. 87, 535 (1934). 

153] B. Judd and J. Hougen, Phys. Today 29, 64 (1976). 

154] S. Sung and D. Herschbach, J. Chem. Phys. 95, 7437 (1991). 

155] L. Ponomarev and T. Pusynina, Zh. Eksp. Teor. Fiz. 52, 1723 (1967). 



194 

[156] I. Komarov, L. Ponomarev, and Y. S. Slavyanov, Spheroidal and Coulomb 
spheroidal functions (Nauka, Moscow, 1976). 

157; 

158; 

159; 

160 

161 

162 

163 

164 

165 

166 

167; 

168 

169 

170' 

171 

172 

173 

174; 

175 

176 

177 

178 

D. Abramov and S. Slavyanov, J. Phys. B 11, 2229 (1978). 

M. Klaus, J. Phys. A 16, 2709 (1983). 

T. Kereselidze, Z. Machavariani, and I. Noselidze, J. Phys. B 31, 15 (1998). 

R. Piacentini and A. Salin, J. Phys. B 7, 1666 (1974). 

R. E. Olson and A. Salop, Phys. Rev. A 14, 579 (1976). 

A. Salop and R. E. Olson, Phys. Rev. A 19, 1921 (1979). 

C. Harel, H. Jouin, and B. Pons, At. Data Nucl. Data Tables 68, 279 (1998). 

J. B. Hasted, S. M. Iqbal, and M. M. Yousaf, J. Phys. B 4, 343 (1971). 

E. Solov'ev, J. Phys. B 38, R153 (2005). 

P. F. Falloon, Ph.D. thesis, University of Western Australia, 2001. 

R. Pepino et al., ApJ 617, 1347 (2004). 

D. Koutroumpa et al, A&A 460, 289 (2006). 

I. P. Robertson et a/., Eos Trans. AGU, 89(53), Fall Meet. Suppl. 89, 
B1596+ (2008). 

R. Lallement et al, Science 307, 1447 (2005). 

D. B. Henley and R. L. Shelton, ApJ 676, 335 (2008). 

H. Tanuma et a/., J. Phys. B 33, 5091 (2000). 

V. Kharchenko, W. Liu, and A. Dalgarno, J. Geophys. Res. 103, 26687 
(1998). 

V. Kharchenko and A. Dalgarno, J. Geophys. Res. 105, 18351 (2000). 

U. Fano and J. H. Macek, Rev. Mod. Phys. 45, 553 (1973). 

H. Miiller, G. P. Zank, and A. S. Lipatov, J. Geophys. Res. 105, 27419 
(2000). 

G. P. Zank and P. C. Frisch, ApJ 518, 965 (1999). 

N. A. Schwadron and T. E. Cravens, ApJ 544, 558 (2000). 



195 

[179] D. Koutroumpa et ai, ApJ 697, 1214 (2009). 

[180] E. J. Smith et ai, Science 302, 1165 (2003). 

[181] H.-R. Miiller et a/., ApJ 647, 1491 (2006). 


