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Ultracold Chemistry of Alkali Clusters

Jason N. Byrd, Ph.D.

University of Connecticut, 2013

The calculation of non-covalent interactions of highly polarizable molecules is

an outstanding problem in chemistry and physics. Difficulties arise both in accu-

rate treatments of dispersion interactions between molecules and in the evaluation of

surfaces of sufficient size for use in further computations. While “gold-standard” cal-

culations using coupled cluster theory with singles, doubles and perturbative triples

provides a reliable method for evaluating interactions the computational cost involved

in calculating more than a few points of an interaction surface becomes prohibitive

for even medium sized molecules. Expanding the long range interaction into a van

der Waals series reduces the cost of evaluating a surface to the computation of a

few parameters. We describe here the implementation of a new computer program

for calculating van der Waals coefficients for arbitrary molecules using the sum over

states method. The laboratory-frame transformation of the computed van der Waals

surface and the inclusion of rotational state dressing on the surface is derived. An-

alytic approximations for the interactions of two linear molecules in the presence of

a small DC electric field are also derived. Recent achievements in the formation and

manipulation of ultracold polar molecules have opened the door to exciting new stud-

ies in cold chemical reactions. To characterize the energetics and reaction pathways

of trimer and tetramer formation and reactions, we have computed the structure and

thermochemistry of the model trimer Li3 and every X2Y2 alkali tetramer through Cs.

Related interest in the control of molecular ion reactions is also investigated with

recent theoretical results for the rubidium hydroxide reaction presented here.
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Chapter 1

Motivation and Overview

The primary purpose of this work is to overview the series of investigations of

alkali cluster chemistry performed by the author while in the Côté research group

at the University of Connecticut. Included is the specific theory of long range in-

teractions of diatoms [5, 6], with its generalization to arbitrary molecules and the

effects of rotational dressing on the long range potential [6]. Also covered are our

computational results for the long range interaction between alkali diatoms [3, 5, 6],

the prospects [7] and details of alignment and orientation [6] of polar alkali diatoms

using external fields as well as the thermochemical and structure calculations of the

alkali trimers and tetramers [8–11]. Additional work includes the new investigation of

rubidium with small hydrides and a lengthy appendix discussing the computer pro-

gram implementing the sum over states approach to general long range interactions

between molecules.

1.1 Current development in cold chemistry

The many advancements in the study of ultra-cold alkali atoms in the last two

decades has strongly motivated concurrent research in cold molecules [12–15]. This

motivation has brought forth many different methods for obtaining cold molecules

ranging from indirect methods such as Stark and magneto decelerators or buffer gas

cooling, which rely on forming molecules, then cooling them using external forces

1



[16, 17] (electric/magnetic dipole moments and quenching collisions with a cryogenic

gas), to direct formation methods such as magneto- and controlled photo-association

[18–22]. Due to their broad applicability to many different molecules, buffer gas

and Stark deceleration cooling methods have seen a strong push in the experimental

community [23–29]. While direct cooling of molecules is difficult due to the great

number of internal degrees of freedom and energy levels, progress has been made

even here [30]. The most progress however comes from the extensions of cold alkali

atoms to cold alkali diatomic systems, pioneered by the formation of K2 [31] and

Cs2 [32, 33]. Since then all other ultracold homonuclear alkali diatoms have been

formed via some form of magneto- and/or photo-association. The push to different

atomic species to form heteronuclear diatoms has led to the formation and trapping

of ground state KRb [34–38] and the formation of RbCs [39–42].

For chemical physics, applications of cold alkali diatoms range from precision

spectroscopy [43–46], to the study [37, 47–49] and control [45, 50] of cold chemical

reactions. Other areas of physics benefit from the use of polar molecules, such as

condensed matter physics [51, 52], and the search for novel quantum gases [53] and

phases [54]. Furthermore, dipolar gases in particular have been the subject of much

interest from the quantum information community [55–59], and ideas of atom optics

(e.g. using evanescent wave mirrors [60]) have been generalized to polar molecules [61,

62]. For strictly three-body interactions in the ultracold regime exotic Efimov states

have been predicted and measured [63, 64]. The recent achievements in molecular

alignment and control [65, 66] may also provide the ability to take advantage of the

unique properties and possible control provided by ultracold polar molecules. In

addition, there is growing interest in reactions of alkali diatoms to form tetramer

structures[10, 11, 67] with reasonable dipole moments and rich molecular structures,

which could offer good candidates for quantum computing with dipoles [68].
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In each of these applications it is crucial to accurately describe the inter-molecular

interactions and energetics. Generally speaking, to understand theoretically the be-

havior of two or more molecules interacting it is necessary to perform a complete state

to state collision calculation, requiring a many dimensional potential energy surface.

However this is itself difficult if not entirely intractable. If the systems are restricted

to cold temperatures, as found in the examples put forward above, one can notice

that the interactions are almost entirely dominated by their long range behavior [69].

Characterizing then the product and reactant energetics in addition to the long range

interaction between products can provide a significant amount of information about

the reaction process. Computing structures and thermochemistries of molecular com-

plexes can be done using the ab initio methods developed by the chemistry and physics

community over the past few decades. With care and appropriate methodologies it

is indeed possible to achieve thermochemistry accuracies better than the 1 kJoule

mol−1 (∼ 10 cm−1) standard from the chemistry community∗. However, because of

the weakness of the long range intermolecular forces as compared to the chemical

bond, and the range of nuclear coordinates and phase space involved, it is advanta-

geous to consider alternative methods of modeling the intermolecular potential other

than ab initio quantum chemical calculations. Our own approach to solving the long

range problem is described in detail in Chapter 2, with computational examples given

in Chapter 3.

∗However this theoretical accuracy is well above the experimental precision of 1 GHz or .03 cm−1

found in modern molecular experiments
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Chapter 2

Anisotropic Long Range Molecular
Interactions: Theory

A standard approach∗ to describing the long range interaction potential between

two molecules, in the limit that the wavefunction overlap between the molecules is

negligible, is to expand the interaction energy into three distinct components,

Eint = Eel + Eind + Edisp. (2.1)

Here Eel, Eind and Edisp are the permanent electrostatic, induction (permanent-

induced electrostatic) and dispersion energies. Each of these terms can be pertur-

batively expanded in an asymptotic van der Waals series,

ELR =
∑

n

CnR
−n. (2.2)

The coefficients Cn are in general angular dependent, and can be computed in several

ways. In this work, we expand the intermolecular electronic interaction operator in a

multipole expansion [71], and then use first- and second-order perturbation theory to

calculate the van der Waals coefficients. The the details are covered in the following

sections.

∗An excellent introductory text on the subject of long range interactions is the book by Stone
[70].
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2.1 Long range interactions of linear molecules∗

In the Born-Oppenheimer approximation, the interaction between two linear molecules

can be expanded in a complete angular basis as

Eint(r̂1, r̂2,R) =
∑

L1L2L

EL1L2L(R)AL1L2L(r̂1, r̂2, R̂), (2.3)

where EL1L2L(R) are the angular independent radial functions, r̂i = (θi, φi) are the

molecular orientations and R = (R, θ, φ) defines the vector between the molecular

centers. As shown by Mulder, van der Avoird, and Wormer [72], if we choose coor-

dinates so that R is oriented along the z axis, the angular functions may be written

as

AL1L2L(r̂1, r̂2, R̂) =

min(L1L2)
∑

M=0

ηML1L2L
PM
L1

(cos θ1)P
M
L2

(cos θ2) cosM(φ1 − φ2), (2.4)

where

ηML1L2L = (−1)M(2 − δM,0)(L1M ;L2 −M |L0)

[

(L1 −M)!(L2 −M)!

(L1 + M)!(L2 + M)!

]1/2

, (2.5)

(L1M ;L2 − M |L0) is a Clebsch-Gordon coefficient, and PM
L (cos θ) is an associated

Legendre polynomial. Because the interaction energy is rotationally invariant, it may

be expanded in terms of multipole operators,

Qℓm =
∑

i

zir
ℓ
iCℓm(r̂i), (2.6)

where the sum is over all charges, zi is the charge at each i’th center, rli is the distance

from each i’th charge to the center of mass and Clm(r̂i) is a Racah spherical harmonic

∗Text and figures reprinted with permission from [5]. Copywrite 2011 The American Institute
of Physics.
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[73]. Using first- and second-order perturbation theory, Mulder et al. [72, 74] express

the coefficients EL1L2L(R) in terms of the separated monomer transition moments.

When this is done, the interaction energy in Eq.(2.3) may be written as

Eint(R, θ1, φ1, θ2, φ2) =
∑

L1L2

min(L1,L2)
∑

M=0

V
(1)
L1L2M

(R) + V
(2)
L1L2M

(R)

× PM
L1

(cos θ1)P
M
L2

(cos θ2) cosM(φ1 − φ2). (2.7)

Here the first-order contribution

V
(1)
L1L2M

(R) =W
(1)
nL1L2M

R−nδL1+L2+1,n,

W
(1)
nL1L2M

=(−1)L1+M(2 − δM,0)
(L1 + L2)!

(L1 + M)!(L2 + M)!
〈01|QL10|01〉〈02|QL20|02〉

(2.8)

(2.9)

is due to the electrostatic interaction and the second-order terms

V
(2)
L1L2M

(R) = −
∑

ℓ1ℓ′1ℓ2ℓ
′

2

Cℓ1ℓ′1L1;ℓ2ℓ′2L2;M
n R−nδℓ1+ℓ′

1
+ℓ2+ℓ′

2
+2,n,

Cℓ1ℓ′1L1;ℓ2ℓ′2L2;M
n = ζ

ℓ1ℓ′1;ℓ2ℓ
′

2

L1L2M

′
∑

k1k2

T 01k1
ℓ1ℓ′1L1

T 02k2
ℓ2ℓ′2L2

ǫk1 − ǫ01 + ǫk2 − ǫ02
.

(2.10)

(2.11)

contain contributions from dispersion and induction. The
∑′ implies that k1+k2 6= 0

and ǫki is the energy of the ki’th state. The ζ
ℓ1ℓ′1;ℓ2ℓ

′

2

L1L2M
coefficient is a scalar coupling

term given by [75]

ζ
ℓ0ℓ′1;ℓ2ℓ

′

2

L1L2M
= (−1)ℓ2+ℓ′

2((2L1+1)!(2L2+1)!)1/2
[

(2ℓ1 + 2ℓ2 + 1)!(2ℓ′1 + 2ℓ′2 + 1)!

(2ℓ1)!(2ℓ
′
1)!(2ℓ2)!(2ℓ

′
2)!

]1/2

×
∑

L

ηML1L2L
(ℓ1 + ℓ20; ℓ′1 + ℓ′20|L0)























ℓ1 ℓ′1 L1

ℓ2 ℓ′2 L2

ℓ1 + ℓ2 ℓ′1 + ℓ′2 L























, (2.12)
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the symbol between curly brackets being a Wigner 9-j symbol [73], and the coupled

transition moment for each monomer is defined as

T 0iki
ℓiℓ′iLi

=
∑

m

〈0i|Qℓim|ki〉〈ki|Qℓ′
i
−m|0i〉(ℓim; ℓ′i −m|Li0) (2.13)

where the indices ki go over ground and excited states. These coupled transition

moments also transform the same way as the electrostatic moments 〈Qℓm〉. It should

be noted that from Eq.(2.11), contributions such as

T 0101
ℓ1ℓ′1L1

∑

k2 6=0

T 02k2
ℓ2ℓ′2L2

ǫk2 − ǫ02
+ (1 ⇋ 2) (2.14)

are associated with (µ1)
2α2 + (1 ⇋ 2) type induction terms. Contributions to

Eq.(2.11) such as

∑

k1 6=0
k2 6=0

T 01k1
ℓ1ℓ′1L1

T 02k2
ℓ2ℓ′2L2

ǫk1 − ǫ01 + ǫk2 − ǫ02
(2.15)

are associated with α1α2 type dispersion terms and can be related to a Casimir-Polder

integral over imaginary frequencies of coupled dynamic polarizabilities.

It is convenient in practice to collect all terms with the same R-dependence in

Eq.(2.10) into a single expression

V
(k)
L1L2M

(R) = −
∑

n

W
(k)
nL1L2M

Rn
. (2.16)

With the dispersion and induction contributions to Eq.(2.16) are calculated separately

as

W
(2)
nL1L2M

= W
(2,DIS)
nL1L2M

+ W
(2,IND)
nL1L2M

. (2.17)
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The long range interaction then can be characterized by a van der Waals series of the

form

Eint(R, θ1, φ1, θ2, φ2) =
∑

nL1L2M

(W
(1)
nL1L2M

−W
(2)
nL1L2M

)

Rn

× PM
L1

(cos(θ1))P
M
L2

(cos(θ2)) cos(M(φ1 − φ2)). (2.18)
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2.2 Extension to general molecules

In section 2.1, the general theory of long range interactions between linear molecules

was discussed. Given the generality of the expansion in Eq.(2.3) it is possible to ex-

tend the theory to the interactions between molecules with arbitrary symmetry. Given

two arbitrary molecules at any given configuration the orientation of each individual

molecule can be described by the Euler angles r̂i = ωi = (αi, βi, γi) with the relative

position between the molecular center of mass defined as R = (R, Ω̄) = (R, θ, φ).

Here θi is the projection angle of r̂i on R, φi is the projection angle of r̂i on the x axis

and (R, θ, φ) are the spherical vector components of R. The most general expansion

is then where the interaction energy is separated into a series of radial and angular

basis functions

Eint(r̂1, r̂2,R) =
∑

{Λ}
E{Λ}(R)A{Λ}(ω1, ω2, Ω̄) (2.19)

Here {Λ} = (L1, K1, L2, K2, L) are the set of angular indices, E{Λ}(R) are purely radial

functions for a rigid-rotor and A{Λ}(ω1, ω2, Ω̄) is an angular basis the choice of which

depends on the molecular symmetry (see Table 2.1 for an overview of the required

terms for various molecular symetries). For a molecule with arbitrary symmetry, the

most general angular basis is compactly written as [74]

A{Λ}(ω1, ω2, Ω̄) =
∑

M1,M2,M







L1 L2 L

M1 M2 M






DL1

M1K1
(ω1)

∗DL2

M2K2
(ω2)

∗CLM(Ω̄), (2.20)

where

DLi

MiKi
(ωi) = e−iMiαadLi

MiKi
(βi)e

−iLiγa (2.21)

is a Wigner rotation matrix [76] and Cℓm(r̂i) is a Racah spherical harmonic [73, 77].
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Molecular Symmetry Principle {Λ} Indices
Mon. 1 Mon. 2 Euler Angles
Atom Atom (0, 0, 0), (0, 0, 0), (θ, φ) L1 = 0 K1 = 0 L2 = 0 K2 = 0 L
Atom Linear (0, 0, 0), (α2, β2, 0), (θ, φ) L1 = 0 K1 = 0 L2 K2 = 0 L
Linear Linear (α1, β1, 0), (α2, β2, 0), (θ, φ) L1 K1 = 0 L2 K2 = 0 L
Atom General (0, 0, 0), (α2, β2, γ2), (θ, φ) L1 = 0 K1 = 0 L2 K2 L
Linear General (α1, β1, 0), (α2, β2, γ2), (θ, φ) L1 K1 = 0 L2 K2 L
General General (α1, β1, γ1), (α2, β2, γ2), (θ, φ) L1 K1 L2 K2 L

Table 2.1. Principle Euler angles, ωi = (αi, βi, γi), and angular basis indices,
{Λ} = (L1, K1, L2, K2, L), for the angular dependence of the long range interaction,
Eq.(2.19), involving various molecular symmetries.

The radial functions E{Λ}(R) can be evaluated using first- and second-order per-

turbation theory in the same way as shown in section 2.1 by expanding in terms of

Eq.(2.6). The first-order electrostatic contribution of order L then is straight for-

wardly generalized from Eq.(2.8) to be

E
(1)
{Λ}(R) =

∑

n

δL1+L2+1,n

W̃
(1)
n{Λ}
Rn

W̃
(1)
n{Λ} = (−1)L1δL1+L2,L

[

(2L1 + 2L2 + 1)!

(2L1)!(2L2)!

]1/2

〈01|QL1K1
|01〉〈02|QL2K2

|02〉

(2.22)

(2.23)

To generalize Eq.(2.13) and Eq.(2.10) a few intermediate definitions are required to

ensure a compact notation.

First we define the irreducible tensor product [73, 76, 77] between two sets of

spherical tensors Γℓm and Γℓ′m′ to be

[Γℓm ⊗ Γℓ′m′ ]LM =
∑

mm′

ΓℓmΓℓ′m′(ℓm; ℓ′m′|LM). (2.24)

The coupled transition moments in Eq.(2.13) can be then generalized by removing

the coupling constraint that m = m′ (or equivalently K = 0) to provide

T̃ 0iki
ℓiℓ′iLiKi

= [〈0i|Qℓimi
|ki〉 ⊗ 〈ki|Qℓ′

i
m′

i
|0i〉]Li

Ki
. (2.25)
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As the angular basis of Eq.(2.20) is in a L1L2L coupling scheme instead of the L1L2M

coupling scheme of the linear molecule basis of Eq.(2.4), a new scalar coupling coef-

ficient must be defined in the place of Eq.(2.12). This can be done by removing the

L coupling term η and adjusting the normalization coefficients, providing

ζ̃
ℓ0ℓ′1;ℓ2ℓ

′

2

L1L2L
= (−1)ℓ2+ℓ′

2((2L1 + 1)(2L2 + 1)(2L + 1))1/2(ℓ1 + ℓ20; ℓ′1 + ℓ′20|L0)

×
[

(2ℓ1 + 2ℓ2 + 1)!(2ℓ′1 + 2ℓ′2 + 1)!

(2ℓ1)!(2ℓ
′
1)!(2ℓ2)!(2ℓ

′
2)!

]1/2























ℓ1 ℓ′1 L1

ℓ2 ℓ′2 L2

ℓ1 + ℓ2 ℓ′1 + ℓ′2 L























. (2.26)

From these definitions the generalized form of Eq.(2.10) is compactly given as

E
(2)
{Λ} = −

∑

ℓ0ℓ′1ℓ2ℓ
′

2

R−ℓ0−ℓ′
1
−ℓ2−ℓ′

2
−2ζ̃

ℓ0ℓ′1;ℓ2ℓ
′

2

L1L2L

∑

k1k2
k1+k2 6=0

T̃ 01k1
ℓ1ℓ′1L1K1

T̃ 02k2
ℓ2ℓ′2L2K2

ǫk1 − ǫ01 + ǫk2 − ǫ02
. (2.27)

This can be simplified analogous to Eq.(2.14) and Eq.(2.15) as

E
(2)
{Λ} = −

∑

n

W̃
(2,DIS)
n{Λ} + W̃

(2,IND)
n{Λ}

Rn

W̃
(2,DIS)
n{Λ} =

∑

ℓ1ℓ′1ℓ2ℓ
′

2

δ∑{ℓ}+2,nζ̃
ℓ1ℓ′1;ℓ2ℓ

′

2

L1L2L

∑

k1 6=0
k2 6=0

T̃ 01k1
ℓ1ℓ′1L1K1

T̃ 02k2
ℓ2ℓ′2L2K2

ǫk1 − ǫ01 + ǫk2 − ǫ02

W̃
(2,IND)
n{Λ} =

∑

ℓ1ℓ′1ℓ2ℓ
′

2

δ∑{ℓ}+2,nζ̃
ℓ1ℓ′1;ℓ2ℓ

′

2

L1L2L

(

T̃ 0101
ℓ1ℓ′1L1K1

∑

k2 6=0

T̃ 02k2
ℓ2ℓ′2L2K2

ǫk2 − ǫ02
+ (1 ⇋ 2)

)

,

(2.28)

(2.29)

(2.30)

with {ℓ} = {ℓ1, ℓ′1, ℓ2, ℓ′2}. The long range interaction between two arbitrary molecules

can be written in terms of the now completely scalar W
(1,2)
n{Λ} coefficients as

Eint(r̂1, r̂2,R) =
∑

{Λ}

∑

n

R−n
(

W̃
(1)
n{Λ} − W̃

(2,DIS)
n{Λ} − W̃

(2,IND)
n{Λ}

)

A{Λ}(ω1, ω2, Ω̄).
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(2.31)

It is convenient, when discussing molecular properties, to work with the uncoupled

static multipole polarizability∗

αℓmℓ′m′ = 2
∑

k 6=0

〈0|Qℓm|k〉〈k|Qℓ′m′ |0〉
ǫk − ǫ0

. (2.32)

The related dynamic uncoupled polarizability is given by

αℓmℓ′m′(ω) = 2
∑

k 6=0

(ǫk − ǫ0)〈0i|Qℓm|ki〉〈ki|Qℓ′−m′ |0i〉
(ǫk − ǫ0)2 − ω2

. (2.33)

Additionally the S(0) metric (e.g. Thomas-Reiche-Kuhn sum rule [78, 79]) [80] is

defined in terms of the spherical transition moments as

Sk(0) =
2

3

k
∑

n 6=0

(ǫn − ǫ0)(|〈0|Q10|k〉|2 − 〈0|Q11|k〉〈0|Q1−1|k〉. (2.34)

2.2.1 Transformation of basis

The angular basis in Eq.(2.31) is called a L1L2L coupled basis. This leads to a

more natural and compact angular basis for later use in molecular potentials. The

linear case described in Section 2.1 and Eq.(2.18) is an expanded basis and is referred

to as a L1L2M coupled basis. Using this other basis has the advantage of being

∗It should be noted that the coupled multipole polarizability is easily expressed after comparison
to Eq.(2.24) as

αℓℓ′LK =
∑

mm′

αℓmℓ′m′(ℓm; ℓ′m′|LK)

12



more intuitive, as the coefficients decrease monotonically for increasing values of M .

All results for linear molecules presented in this work are in the L1L2M basis for

essentially historical reasons. As such it is convenient to give the basis projection

needed to take the coefficients of linear molecules from Eq.(2.31) to Eq.(2.18):

W
(1,2)
nL1L2M

=
∑

L

(2L + 1)−1/2ηML1L2L

[

W̃
(1,2)
n{Λ}

]

K1=0
K2=0

. (2.35)

Here ηML1L2L
is given by Eq.(2.5), and the linear molecule case is assumed (K1 =

0, K2 = 0).
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2.3 Rotational state dressing of long range interactions: gen-

eral theory∗

The orientation and alignment† (〈cos θ〉 and 〈cos2 θ〉 respectively as illustrated in

Fig. 2.1(a)) of polar molecules can be achieved through several mechanisms, the most

direct of which is the coupling of rotational states by a polarizing external DC electric

field, F. Increasing the strength, F , of the external electric field increases the number

of rotational states coupled, thus tightening the orientation of the molecule in a cone

of angle θ about the orientation of the field. To account for this rotational coupling

adiabatically, we expand the dressed state rotational wave function of the (case a)

molecule as a superposition of field-free symmetric top states

|J̃M̃Ω〉 =
∑

J,M

a{J}|JMΩ〉, (2.36)

where the symmetric top states are given in term of Wigner rotation matrices DJ
−M−Ω(ω)

as [73]

|JMΩ〉 = (−1)M−Ω

(

2J + 1

8π2

)

DJ
−M−Ω(α, β, γ), (2.37)

where (α, β, γ) are the Euler angles of the molecule, and J the total angular mo-

mentum quantum number with projections M in the laboratory frame (LF) and Ω

onto the molecular axis. The expansion coefficients a{J} = aJMΩ dictate the levels of

∗Text and figures partially reprinted with permission from [6]. Copywrite 2012 The American
Physical Society.

†The orientation and alignment of a dipole in an external field is given by the dipole-vector and
field-vector correlation distribution. Expanding the distribution in terms of Legendre polynomials,
the first odd term is cos θ corresponding to the orientation cosine and the first even term is cos2 θ
corresponding to the alignment cosine.
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mixing between the different rotational states, and can be solved for by diagonalizing

〈J̃ ′M̃ ′Ω′|H|J̃M̃Ω〉. Here H is the symmetric top and dipole-field Hamiltonian

H = B(J2 + J2
z ) −DF cos θ, (2.38)

where J is the angular momentum operator, Jz is the angular momentum projection

on the z axis, B is the molecular rotational constant, D is the dipole moment of the

molecule, and θ is the angle between the external electric field of magnitude F and

the molecular axis. The coefficients aJM(F ) then depend on the strength F of the

field. While theoretically simple, this process can become experimentally challenging

for molecules with small dipole moments or rotational constants, due to the large

external fields required for strong alignment.

An alternative to simply increasing the static field magnitude is to add a separate

polarizing laser field [81] that directly couples the rotational states of the molecule.

However, to achieve both alignment and orientation control, time-dependent nonadia-

batic effects are introduced into the dressed state wavefunction [66]. For the purposes

of this work the investigation and inclusion of these nonadiabatic effects are unimpor-

tant as only the final dressed state is of interest. As such we present our alignment in

terms of an applied external static field and, where practical, the number of strongly

coupled rotational states.

The adiabatic dressed state basis for two molecules at large separation is given in

terms of the product of each molecule dressed rotational wave functions

|φ〉 = |J̃1M̃1Ω1〉 ⊗ |J̃2M̃2Ω2〉. (2.39)

The dressed state (DS) van der Waals interaction EDS
int (R) is calculated from the

matrix elements of Eq.(2.19) in the dressed state basis,

15



Figure 2.1. (a) Schematic representation of an aligned diatomic molecule. Clas-
sically, the molecule precesses on a cone of angle θ about the electric field F, with
〈cos θ〉 describing the average orientation of the molecule: with the dipole moment
D pointing towards F for 〈cos θ〉 > 0, and in the opposite direction for 〈cos θ〉 > 0.
The alignment, 〈cos2 θ〉, describes the tightness of the rotational cone. (b) Lab-fixed
frame molecular interaction geometry in the presence of an external field, where θF
is the angle between the field and the vector R joining the two molecules.
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V DS
int (r̂1, r̂2,R) = 〈φ|Vint(r̂1, r̂2,R)|φ〉 =

∑

{Λ}
E{Λ}(R)〈φ|A{Λ}(ω1, ω2,Ω)|φ〉. (2.40)

This expectation value can be reduced directly to a summation over radial long range

coefficients and a LF angular function through the evaluation of a number of angular

momentum coupling terms.

Starting from the observation that the expectation value of a Wigner rotation

matrix with a symmetric top wave function has the simple value of

〈J ′M ′Ω′|DL
MLKL

(ω)|JMΩ〉 =
∫

d3r

√

2J ′ + 1

8π
DJ ′

M ′Ω′(ω)DL
MLKL

(ω)(−1)M−Ω

√

2J + 1

8π
DJ

−M−Ω(ω) =

(−1)M−Ω [(2J ′ + 1)(2J + 1)]
1/2







J ′ L J

M ′ ML M













J ′ L J

Ω′ KL Ω






. (2.41)

Expanding the angular expectation value of A{Λ}(ω1, ω2,Ω) as

〈φ|A{Λ}(ω1, ω2,Ω)|φ〉 =
∑

M1M2M

〈J̃1
′
M̃1

′
Ω′

1|DL1

M1K1
(ω1)|J̃1M̃1Ω1〉

× 〈J̃2
′
M̃2

′
Ω′

2|DL2

M2K2
(ω2)|J̃2M̃2Ω2〉CLM(Ω), (2.42)

we can immediately write down the solution of Eq.(2.40) by inserting Eq.(2.41) and

(2.36) into (2.42) to obtain
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V DS
int (r̂1, r̂2,R) =

∑

{Λ}
E{Λ}(R)

∑

ML1
ML2

ML

CLML
(Ω̄)

×
∑

J1M1Ω1

J ′

1
M ′

1
Ω′

1

∑

J2M2Ω2

J ′

2
M ′

2
Ω′

2

(−1)M1−Ω1(−1)M2−Ω2ρ{J1};{J ′

1
}ρ{J2};{J ′

2
}

× [(2J ′
1 + 1)(2J1 + 1)(2J ′

2 + 1)(2J2 + 1)]
1/2







L1 L L2

ML1
ML ML2







×







J ′
1 L1 J1

M ′
1 ML1

M1













J ′
2 L2 J2

M ′
2 ML2

M2













J ′
1 L1 J1

Ω′
1 KL1

Ω1













J ′
2 L2 J2

Ω′
2 KL2

Ω2







(2.43)

or, after some rearrangement for computational ease,

V DS
int (r̂1, r̂2,R) =

∑

LML

∑

n

CLML
(Ω̄)W̃nLML

Rn
(2.44)

with

W̃nLML
=

∑

L1ML1
K1

L2ML2
K2

∑

J1M1Ω1

J ′

1
M ′

1
Ω′

1

∑

J2M2Ω2

J ′

2
M ′

2
Ω′

2

[(2J ′
1 + 1)(2J1 + 1)(2J ′

2 + 1)(2J2 + 1)]
1/2

× (−1)M1−Ω1+M2−Ω2ρ{J1};{J ′

1
}ρ{J2};{J ′

2
}

(

W
(1)
n{Λ} −W

(2)
n{Λ}

)







L1 L L2

ML1
ML ML2







×







J ′
1 L1 J1

M ′
1 ML1

M1













J ′
2 L2 J2

M ′
2 ML2

M2













J ′
1 L1 J1

Ω′
1 KL1

Ω1













J ′
2 L2 J2

Ω′
2 KL2

Ω2







(2.45)

and where

ρ{Ji};{J ′

i
} = a{Ji}a{J ′

i
} (2.46)
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is the rotational state density for molecule i. In addition to the transformation of

the van der Waals interaction energy as given by Eq.(2.43), it is useful to have the

dressed static moment, 〈QDS
ℓm 〉, of a given molecule. For molecule i, this is readily

obtained to be

〈QDS
ℓm 〉 = 〈J̃ ′

iM̃
′
iΩ

′
i|〈Qℓm〉|J̃iM̃iΩi〉 =

∑

JiMiΩi

J ′

i
M ′

i
Ω′

i

δMi,M ′

i
(−1)Mi−Ωiρ{Ji};{J ′

i
}

× [(2Ji + 1)(2J ′
i + 1)]1/2







J ′
i ℓ Ji

M ′
i m −Mi













J ′
i ℓ Ji

Ωi m −Ωi






〈Qℓm〉. (2.47)
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2.4 Rotational state dressing of long range interactions: low

DC field solution∗

In the low DC field limit, coupling between rotational states can be limited to just

two states, allowing Eq.(2.38) to be solved analytically (note that Ω ≡ 0 and M = 0).

From this it is possible to obtain general expressions for the expectation value of the

static and alignment moments as a function of the applied field. Transforming to the

unitless field parameter ξ = ξ0F , with ξ0 = D/2B, we obtain for the two state density

ρJJ ′ =
1√

3(3 + 4ξ2 +
√

9 + 12ξ2)







1
2
√
3
(3 +

√

9 + 12ξ2)2 ξ(3 +
√

9 + 12ξ2)

ξ(3 +
√

9 + 12ξ2) 2
√

3ξ2






.

(2.48)

Defining the low-field limit as ξ ≤ 1, we can simplify† Eq.(2.48) by expanding each

numerator and denominator in a power series about small ξ to second order to obtain

ρJJ ′ ≃ 1

3
√

3(1 + ξ2)







√
3(3 + 2ξ2) ξ(3 + ξ2)

ξ(3 + ξ2)
√

3ξ2






+ O(ξ3), (2.49)

while still preserving

Tr(ρJJ ′) = 1. (2.50)

∗Text and figures partially reprinted with permission from [6]. Copywrite 2012 The American
Physical Society.

†The validity of this approximation rests with the fact that only in the low field does the two
state approximation hold. Higher fields necessarily couple higher J values and so break the two
state approximation immediately.
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With Eq.(2.49) the dressed state dipole and quadrupole moments are (computed from

Eq.(2.47))

〈QDS
10 〉(ξ) = 〈Q10〉

6ξ + 2ξ3

8(1 + ξ2)
, (2.51)

and

〈QDS
20 〉(ξ) = 〈Q20〉

2ξ2

15(1 + ξ2)
, (2.52)

respectively, while the octopole moment has no two state contribution by symmetry.

The orientation moment 〈cos θ〉 is given trivially by

〈cos θ〉(ξ) = 〈QDS
10 〉(ξ)/〈Q10〉, (2.53)

while alignment 〈cos2 θ〉 can be calculated by noting that cos2 θ = 1
3
(1 + 2C1,0(θ))

(where Cℓ,m(r̂i) is a Racah spherical harmonic), providing the expression

〈cos2 θ〉(ξ) =
15 + 19ξ2

45(1 + ξ2)
. (2.54)

So long as the number of coupled states is dominated by the first two states and

ξ ≤ 1, these approximate formula are accurate to a few percent. In Table 2.2 we

have evaluated ξ0 for all the heteronuclear alkali diatoms from the spectroscopic data

in Table 3.6. It is also possible to evaluate Eq.(2.43) and (2.46) using the two state

low-field approximation. Following the prescribed method discussed above, the low

field-dressed-state van der Waals potential can be written to leading order as

EDS
2st (R, ξ) ≃ W̃

(1)
320(θF , ξ)

R3
+

W̃
(1)
540(θF , ξ)

R5
− W

(2)
6000

R6
− W

(2)
8000

R8
. (2.55)
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23Na 39K 95Rb 133Cs
7Li 0.0114 0.116 0.159 0.246
23Na 0.253 0.413 0.684
39K 0.141 0.529
95Rb 0.635

Table 2.2. Tabulated values of the field strength coefficient ξ0 = D/2B for the
heteronuclear alkali diatoms using the spectroscopic and electrostatic constants from
Table 3.6. All units are in cm2/kV.

Here θF is the angle between the inter-molecular vector R and the field vector as

illustrated in Fig. 2.1(b). The dipole-dipole and quadrupole-quadrupole contributions

are (up to order ξ5)

W̃
(1)
320(θF , ξ) = 〈Q10〉2

3
√

3ξ + 6ξ2 + 4
√

3ξ3 + 4ξ4

27(1 + ξ2)2
(1 − 3 cos2 θF ),

and

W̃
(1)
540(θF , ξ) = 〈Q20〉2

ξ4

75(1 + ξ2)2
(3 − 30 cos2 θF + 35 cos4 θF ), (2.56)

respectively (note that there is no dipole-octopole contribution in the two state

approximation) while W
(2)
n000 is the isotropic dispersion+induction coefficient. The

anisotropic terms contribute less than a percent to the interaction energy and can be

safely neglected.
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Chapter 3

Anisotropic Long Range Molecular
Interactions: Computation

3.1 Electronic structure calculations of the alkali diatoms∗

Transition moment calculations for use in the evaluation of Eq.(2.13) were done

for the XX+XX and XY +XY combinations of alkali metal diatomic molecules with

atoms from Li to Cs in the X1Σ+
g ground state using a locally modified version of the

GAMESS[82, 83] quantum chemistry program package. All calculations have been

performed at the experimental equilibrium bond distances. The number of excited

states included in the sum in Eq.(2.11) is taken in this work to be the total number

of single excitations†. Tests were performed to ensure convergence of the calculated

TD-DFT transition moments with respect to the grid size. The grid employed in pro-

duction calculations uses 155 radial points for all atoms, and prunes from a Lebedev

grid whose largest size is 974, thus using about 71,000 grid points/atom (the JANS=2

grid in GAMESS).

To provide consistent results for all the alkali metals, the Karlsruhe def2-QZVPP

[84] basis sets were chosen for this work. The def2 basis sets are available for almost

the entire Periodic Table and are well-known for their robustness and their excellent

∗Text and figures reprinted with permission from [5]. Copywrite 2011 The American Institute
of Physics.

†This choice in excitation space is extremely versatile in cases where continuum contributions
are negligible or where double excitations remain in the bound manifold.
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α300 × 103 α331 × 103 α332 × 103 α333 × 103

Method 0-aug 1-aug 0-aug 1-aug 2-aug 0-aug 1-aug 2-aug 0-aug 1-aug 2-aug
CIS 347.8 362.5 106.7 251.1 321.5 63.0 190.4 248.1 6.7 56.1 146.9
TDHF 336.4 350.9 100.3 243.8 314.1 61.3 187.4 245.0 6.6 55.1 145.4
VWN 233.3 241.3 88.8 186.1 214.8 55.5 140.4 162.7 6.4 47.2 102.8
B3LYP 342.9 346.6 119.1 244.9 295.4 64.2 162.5 197.0 6.8 47.1 104.9
CB3LYP 277.8 281.4 99.4 206.1 245.0 57.0 145.8 172.9 6.3 44.8 100.6
B3PW91 324.1 337.1 124.0 242.8 283.6 69.5 162.9 194.3 7.1 52.7 105.5
PBE0 310.8 316.7 116.5 249.4 274.4 66.5 170.3 190.3 6.9 103.5 105.2
VFCI[2] 286.6 240.7 167.7 108.5

Table 3.1. Basis set convergence of the octopole static polarizability values for Na2

evaluated using several ab initio and DFT methods.

cost-to-performance ratio in large-scale Hartree-Fock and density functional theory

(DFT) calculations. The def2-QZVPP basis sets for the alkali metals contain spdf

basis functions with two polarization functions. For the row five and lower atoms, the

inner-core electrons are replaced by an effective core potential (ECP) to reduce the

number of electrons included in the correlation treatment and to account for scalar-

relativistic effects. The ECP-28 [85] and ECP-46 [85] Stuttgart pseudopotentials were

used for Rb and Cs respectively. These ECP definitions leave the sub-valence s and p

electrons free, which are known to contribute the most to the core-valence correlation

energy [86] in alkaline systems. In the transition moment calculations presented here,

core-valence correlation is accounted for implicitly within the DFT formalism.

When examining the effects of basis set convergence of the van der Waals coef-

ficients it is convenient to first look at the convergence of the uncoupled multipole

polarizability defined by Eq.(2.32), which for linear molecules reduces to αℓmℓ′m′ =

αℓ−mℓ′m′ ≡ αℓℓ′m. The octopole polarizability terms α300 are the most sensitive to the

effects of higher angular momentum functions in the basis set, and were therefore used

to asses the convergence of our results with respect to basis set size. Test calculations

including a sequence of g basis functions ranging from valence to diffuse indicated that

there was no need to add higher angular momentum functions to the def2 basis sets.
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System Method re (a.u.) α‖ (a.u.) α⊥ (a.u.)
Li2 B3PW91 5.051 268.4 170.0

PBE0 5.051 262.4 168.7
VFCI∗ 5.051 305.2 162.4
VFCI† 5.051 297.7 165.1

Na2 B3PW91 5.818 352.2 206.2
PBE0 5.818 338.7 203.7
VFCI∗ 5.818 378.5 162.4
VFCI† 5.818 370.1 201.6

K2 B3PW91 7.416 714.6 301.5
PBE0 7.416 676.2 395.4
VFCI∗ 7.416 708.2 359.6
VFCI† 7.379 677.8 363.1

Rb2 B3PW91 7.956 830.2 453.6
PBE0 7.956 785.8 448.3

CCSD(T)/PolMe‡ 8.1225 916.1 445.4
VFCI∗ 7.956 789.7 405.5

Cs2 B3PW91 8.78 1096.0 577.8
PBE0 8.78 1032.9 568.3
VFCI∗ 8.78 1012.2 509.0

Table 3.2. Static dipole polarizability values for the X1Σ+
g homonuclear alkali di-

atoms calculated at the experimental equilibrium bond length. Note that α‖ = α1010

and α⊥ = α111−1.

The effects of adding additional sets of diffuse even tempered spdf basis functions

can be seen in Table 3.1. It was found that two additional sets of diffuse functions

was necessary to achieve accurate results for our test case of Na2. For a subset of

the DFT functionals considered here, the addition of a third set of diffuse functions

was investigated and found to contribute little to the calculated polarizabilities. The

def2-QZVPP basis sets for K, Rb and Cs include an additional spdf diffuse function

by definition and so only required a single additional set of diffuse basis functions.

We note that the dipole polarizability, and hence the W6 van der Waals coefficients,

are essentially converged using the unmodified def2 basis set. A similar procedure

was recently used by Rappoport and Furche [87] to optimize the Karlsruhe def2 basis

sets for molecular property calculations.
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As noted above, the Karlsruhe def2 basis sets replace the inner shell electrons of

rubidium and cesium with an effective core potential. In order to assess the effect

of replacing the inner-core electrons in heavy atoms by a pseudopotential, we have

performed calculations of the K2 van der Waals coefficients using the Stuttgart ECP

and basis set [85], and made comparisons with our all-electron calculations using the

def2 basis set. The Stuttgart sp ECP basis set was uncontracted, and to ensure

that the basis set was fully saturated the most diffuse five p exponents were added

as d functions and the subsequent most diffuse four d exponents were added as f

functions. Using this basis and ECP, it was found that the difference between the

ECP and all-electron def2 results were negligible.
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System Method α110
a α111

∗ ᾱb α220 α221 α222 W
(2,DIS)
6000 W

(2,DIS)
8000

LiNa PBE0c 300.0 185.5 223.7 9418.9 7035.6 3356.2 3.279[3] 4.982[5]
VCId 347.6 181.8 237.0
CCSDTe 237.8 3.673[3]f

LiK PBE0‡ 455.1 261.8 326.3 24164.4 15899.8 5939.6 5.982[3] 1.378[6]
VCI§ 489.7 236.2 320.7
CCSDT¶ 324.9 6.269[3]‖

LiRb PBE0‡ 445.5 256.1 319.2 27815.3 18110.7 6359.2 6.193[3] 1.583[6]
VCI§ 524.3 246.5 339.1
CCSDT¶ 346.2 6.323[3]‖

LiCs PBE0‡ 525.2 289.1 367.8 38723.9 24996.3 7935.8 7.700[3] 2.297[6]
VCI§ 597.0 262.5 374.0
CCSDT¶ 386.7 7.712[3]‖

Table 3.3. Multipole static polarizabilities, αℓℓ′m, and isotropic van der Waals dispersion coefficients, W
(2,DIS)
n000 , up to

order n = 8 of all the ground state LiX alkali diatoms through cesium evaluated at the equilibrium bond lengths re listed
in Table 3.6. All values are presented in atomic units, and [n] denotes ×10n.

aNote that the parallel and perpendicular static dipole polarizabilities, α‖ and α⊥, correspond to ℓℓ′m = 110 and 111 respectively.

bᾱ = 1
3 (α‖ + 2α⊥) is the average static dipole polarizability.

cThis work.

dRef. [1].

eRef. [49].

fRef. [49] evaluated using CCSD and the Tang-Slater-Kirkwood formula [90].
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System Method α110
a α111

∗ ᾱb α220 α221 α222 W
(2,DIS)
6000 W

(2,DIS)
8000

NaK PBE0‡ 472.7 280.6 344.6 16572.0 13035.0 6739.5 6.818[3] 1.268[6]
VCI§ 529.2 262.3 351.3
CCSD(T)c 363.8 6.493[3]d

NaRb PBE0‡ 504.6 285.3 358.4 25217.0 17771.7 7547.5 7.688[3] 1.790[6]
VCI§ 572.0 280.3 377.5

NaCs PBE0‡ 587.3 323.2 411.2 37633.3 25245.7 9444.6 9.453[3] 2.641[6]
VCI§ 670.7 304.2 426.4

KRb PBE0‡ 729.6 420.9 523.8 36974.1 27588.8 13100.9 1.349[4] 3.385[6]
VCI§ 748.7 382.9 504.8

KCs PBE0‡ 836.7 468.6 591.3 56372.9 38791.7 16262.9 1.657[4] 5.038[6]
VCI§ 822.3 425.62 571.1

RbCs PBE0‡ 901.0 502.0 635.0 48325.3 36401.8 18619.8 1.884[4] 5.188[6]
VCI§ 904.0 492.3 602.8

Table 3.4. Multipole static polarizabilities, αℓℓ′m, and isotropic van der Waals dispersion coefficients, W
(2,DIS)
n000 , up to

order n = 8 of all the ground state XY alkali diatoms through cesium evaluated at the equilibrium bond lengths re listed
in Table 3.6. All values are presented in atomic units, and [n] denotes ×10n.

aNote that the parallel and perpendicular static dipole polarizabilities, α‖ and α⊥, correspond to ℓℓ′m = 110 and 111 respectively.

bᾱ = 1
3 (α‖ + 2α⊥) is the average static dipole polarizability.

cRef. [3].

dRef. [3] evaluated using the London formula.
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3.1.1 Choice of DFT functional

Using the double augmented basis set (d-aug-def2-QZVPP) described above two

ab initio methods were considered for our test case Na2, configuration interaction

singles [91, 92] (CIS) and time dependent Hartree-Fock [92, 93] (TD-HF) theory.

Additionally we used time dependent density functional theory (TD-DFT) [92, 93]

to evaluate excitation energies and multipole transition moments. The results of the

ab initio and TD-DFT calculations are compared to those of Spelsberg and Meyer

[2] in Table 3.8. Despite the success [72] in describing the van der Waals interaction

of H2, CIS significantly over estimates the dispersion and induction van der Waals

interaction. This is not unexpected as CIS is known not to obey the Thomas-Reiche-

Kuhn dipole sum rule [78, 79, 94], because it overestimates the transition moments.

An additional source of error in CIS is the overestimation of excitation energies that

results from the use of canonical Hartree-Fock virtual orbital energies. The overall

performance of TD-DFT compared to the results of Spelsberg and Meyer [2] appears

quite good. Upon examining the results of Table 3.8 we have chosen the B3PW91

and PBE0 functionals for use in the rest of this work due to their consistent accuracy

for both dispersion and induction interactions.

3.2 Numerical Results

3.2.1 Electrostatic Moments

The leading order term of the long range expansion Eq.(2.18), and thus the longest

ranged interaction in the series, involve products of the electrostatic moments of

each monomer, and for dipolar molecules, it is the dipole-dipole R−3 term. The

dipole-dipole scattering [95] and applications of dipole-dipole interactions [58] are well

studied in the literature, however higher order terms can be necessary for accurately

describing intermediate intermolecular distances [5], and are often neglected if only
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n L1 L2 M Li2 Na2 K2 Rb2 Cs2
Q20 10.74 10.52 15.68 16.06 27.85
5220 6.921(2) 6.640(2) 1.475(3) 1.548(3) 1.912(2)
5221 -1.538(2) -1.476(2) -3.278(2) -3.439(2) -4.248(2)
5222 9.612(0) 9.223(0) 2.049(1) 2.149(1) 2.655(1)

Table 3.5. Electrostatic van der Waals coefficients, W
(1)
nL1L2M

, for the ground state
alkali dimers Li2, Na2, K2, Rb2 and Cs2 calculated at the CCSD(T) level of theory
using the finite field method. All values are reported in atomic units and (n) denotes
×10n.

for a lack of available data. As such, we have calculated the ab initio electrostatic

dipole, quadrupole and octopole moments (higher order moments do not contribute

up to R−5 in the long range expansion. The electrostatic moments were calculated

using coupled cluster theory including all singles, doubles and perturbative triples

(CCSD(T)) [96, 97], using a two step finite field method (with field spacings of 10−6

a.u.). The inner valence s and p electrons were included in the correlation treatment

to account for core-core and core-valence contributions. For consistency the n-def2-

QZVPP basis sets defined above were used. Comparisons with the results of Harrison

and Lawson [98] for Li2, Na2 and K2 show that this choice of basis set provides reliable

results.

In Table 3.5 we show our calculated quadrupole moment and R−5 van der Waals

coefficients for the homonuclear alkali diatoms including new results for Rb2 and Cs2.

Table 3.6 shows our calculated static moments, the outer turning point Rq for each

system∗, as well as various dipole and quadrupole moments found in the literature for

the heteronuclear alkali diatoms. Our computed static dipole moments agree closely

∗

Eint(Rq, 0, 0, 0) = −〈Q10〉2
R3

q

+
3〈Q20〉2 − 4〈Q10〉〈Q30〉

R5
q

= 0. (3.1)
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with both the valence full configuration interaction results of Aymar et al. [99] and

González-Férez et al. [100] across all the molecules investigated, and the CCSDT

(CCSD with all triples) results of Quéméner et al. [49] for the highly polar LiX

(X=Na,K,Rb,Cs) species. Other than the CCSD(T) quadrupole moment of Zemke et

al. [3] (with which we compare well), little to no published quadrupole values exist

for the heteronuclear alkali diatoms. It has been demonstrated for the homonuclear

alkali diatoms that the finite field CCSD(T) higher order static moments compare

well with other methods [5, 98]; similar accuracy is anticipated for the heteronuclear

species.
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System Method re
∗ 〈Q10〉 〈Q20〉 〈Q30〉 Rq

LiNa CCSD(T)∗ 5.45 0.20 10.07 -47.33 95
VCI† 5.43 0.22
CCSDT‡ 5.45 0.21

LiK CCSD(T)† 6.27 1.39 6.07 -59.99 15
VCI‡ 6.21 1.39
CCSDT§ 6.27 1.38

LiRb CCSD(T)† 6.50 1.63 2.76 -62.41 13
VCI‡ 6.48 1.63
CCSDT§ 6.50 1.59

LiCs CCSD(T)† 6.93 2.15 -2.29 -49.88 10
VCI‡ 6.82 2.17
CCSDT§ 6.93 2.11

NaK CCSD(T)† 6.61 1.12 10.56 -26.54 19
CCSD(T)§ 6.592 1.156 10.60
VCI‡ 6.49 1.09

NaRb CCSD(T)† 6.88 1.35 6.94 -56.00 16
VCI‡ 6.84 1.30

NaCs CCSD(T)† 7.27 1.85 2.49 -60.45 12
VCI‡ 7.20 1.83

KRb CCSD(T)† 7.69 0.25 15.14 -69.09 109
VCI‡ 7.64 0.23
rel¶ 7.7 0.30

KCs CCSD(T)† 8.10 0.75 13.00 -105.70 38
VCI‡ 8.02 0.76

RbCs CCSD(T)† 8.37 0.49 15.88 -50.28 60
VCI‡ 8.30 0.40

Table 3.6. Center of mass multipole electrostatic moments, 〈Qℓ0〉 (ℓ = 1, 2, 3 corre-
sponds to dipole, quadrupole and octopole moments respectively), of all the ground
state heteronuclear alkali diatoms through cesium evaluated at the equilibrium bond
length re (re values are taken from experimental results where available, see Dei-
glmayr et al. [1] and references therein). The variable Rq denotes the distance where
the R−5 electrostatic term overcomes the dipole-dipole R−3 contribution. All values
are presented in atomic units.
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Figure 3.1. Diatom-diatom coordinate system.

3.2.2 Homonuclear alkali diatomics∗

Isotropic dispersion interactions between Na2 and K2 pairs have been previously

studied using the London formula [3] and time dependent density functional theory

(TD-DFT) [102, 103]. Spelsberg et al. [2] have calculated van der Waals coefficients

including anisotropic corrections using valence full configuration interaction (VFCI)

theory for Li2, Na2 and K2. Also recent work by Kotochigova [104] has calculated

the isotropic van der Waals interaction for KRb with leading order anisotropic cor-

rections. In this work we present results for the van der Waals interactions between

pairs of ground state homonuclear alkali metal diatoms, through order R−8, including

anisotropic corrections. Extensions to heteronuclear alkali diatomic van der Waals

interactions and to larger alkali clusters will be presented in Section 3.2.3

As the leading dispersion interaction term W6 is proportional to the product of the

dipole polarizabilities, and the higher-order terms are proportional to products of the

∗Text and figures reprinted with permission from [5]. Copywrite 2011 The American Institute
of Physics.
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quadrupole and higher polarizabilities, the multipole polarizabilities required at each

order must be accurately calculated. Using our n-aug-def2-QZVPP basis sets with

the B3PW91 and PBE0 DFT functionals we have calculated the dipole, quadrupole

and octopole polarizabilities for all the alkali diatoms considered in this work. In Ta-

ble 3.2 the dipole polarizabilities are presented with several other existing theoretical

results in comparison. The calculated higher order polarizabilities can be found in

the supplemental material [105]. Because the polarizability is very sensitive to the

diatomic bond distance near equilibrium [88], we have chosen to perform all calcu-

lations at the experimental equilibrium bond length, rather than at the optimized

geometry for each different level of theory. As a consequence, there will be small

deviations in the parallel components of the calculated polarizability at a particular

level of theory compared to what would be found at the optimized geometry. There-

fore, our calculated values for the perpendicular dipole polarizability (α111) agrees

better with the existing theoretical results than the parallel polarizability (α110). For

the higher order polarizabilities, the only available values come from Spelsberg et al.

[2]. The total polarizability RMS error for Li2, Na2 and K2 is 8.7%, 6.7% and 9.5%

and 7.5%, 5.1% and 6.9% for B3PW91 and PBE0 respectively.

As noted previously, the Karlsruhe def2 basis sets replace the inner core∗ electrons

of rubidium and cesium with an effective core potential. In order to assess the effect

of the ECP on the calculated dispersion coefficients, we have performed all-electron

calculations on Rb2 using the Urban and Sadlej optimized triple zeta PolMe basis

set [106] and the Douglas-Kroll-Hess Hamiltonian [107, 108]. Comparison with ECP

calculations using the valence functions from the PolMe basis show that the inner

∗In this work, inner core refers to the Ne core for Rb and the Ar core for Cs.
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Figure 3.2. comparison of the van der waals surface of collinear na2 with both the
london isotropic v6 approximation [3] and a fully ab initio curve.
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Li2 Na2 K2 Na4
B3PW91 2.649(3) 4.216(3) 1.242(4)
PBE0 2.593(3) 4.073(3) 1.185(4)

3.958(3)∗ 1.532(4)∗

SAOP 4.460(3)† 1.106(4)‡ 1.817(4)†

London§ 4.374(3) 1.186(4)
Valence FCI¶ 2.730(3) 4.181(3) 1.039(4)

Table 3.7. Comparison of theoretical isotropic W6 van der Waals coefficients. All
values are reported in atomic units and (n) denotes ×10n.

core contribution increases the calculated value of W6 by 6%. We expect a similar or

slightly greater effect for Cs2.

Often neglected, the leading order term in the van der Waals expansion for

homonuclear alkali diatoms is the electrostatic W5 quadrupole-quadrupole interac-

tion. This leads to a repulsive interaction potential for a significant portion of the

interaction phase space with a long range barrier; for the case of Na2 this barrier has

a maximum height of ∼ 13cm−1 for the co-linear orientation (θ1 = θ2 = 0, see Figure

3.1). There are however orientations of approaching pairs of molecules for which no

barriers are found. For example, this was seen for Na2 and K2 by Zemke et al. [3] as

well as for the related systems of K2+Rb2 [10] and Rb2+Cs2 [109] where the lowest

energy reaction path was calculated ab initio and indeed was found to be barrierless.

To illustrate the effect of including the W5 electrostatic term as well as the higher

order W8 terms, the results of the London approximation given by Zemke et al. [3]

are compared in Fig. 3.2 to the TD-DFT/PBE0 induction and dispersion coefficients

reported above for the co-linear orientation. As a comparison, the potential curve

was also calculated using the CCSD(T)-F12a (explicitly correlated CCSD(T)) level

of theory [110, 111]. As can be seen in Fig. 3.2, the inclusion of W5 greatly improves

the long range representation of the potential, while the higher order van der Waals

terms are necessary to describe the interaction as the molecule separation decreases.
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With the inclusion of the higher order terms reported in this work, the van der Waals

surface matches the barrier height and molecule separation to a few percent.

In a cold (J = 0) ensemble with no external field the rotationally averaged elec-

trostatic W5 van der Waals coefficient evaluates to zero. For this case the leading

order term in the van der Waals series is the isotropic W6 dispersion interaction (the

isotropic contribution is found by evaluating Eq.(2.7) for L1 = L2 = M = 0). We

compare our calculated W6 coefficients to existing theoretical results in Table 3.7.

For the case of Li2 it can be seen that B3PW91 performs well, which is also true

from Table 3.8 for the case of Na2. For the heavier K2 we find that PBE0 performs

marginally better for W6. In Table 3.9 all the calculated van der Waals coefficients

including all anisotropic contributions for Li2 and K2 are presented. To compare with

the results of Spelsberg et al. [2] it is necessary to recouple their interaction coeffi-

cients from the L1, L2, L coupling scheme to the L1, L2,M coupling scheme used here

by the following

WL1L2M =
∑

L

ηML1L2L
VL1L2L. (3.2)

After recoupling, we find our van der Waals coefficients to be in good agreement

with those of Spelsberg et al.. Also in Table 3.9 are our new results for Rb2 and

Cs2. Using the aug-def2-QZVPP basis set and ECP, our calculations for Rb2 and

Cs2 contain comparable numbers of electrons to the all-electron calculations for Na2,

and therefore we expect our van der Waals coefficients for these alkali diatoms to be

comparably accurate.
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n L1 L2 M CIS TD-HF VWN B3LYP CAMB3LYP B3PW91 PBE0
Dispersion
6 0 0 0 8.304(3) 4.679(3) 4.094(3) 3.697(3) 3.654(3) 4.216(3) 4.073(3)
6 2 0 0 1.192(3) 5.465(2) 4.985(2) 5.408(2) 5.092(2) 5.984(2) 5.487(2)
6 2 2 0 5.442(2) 2.128(2) 2.030(2) 2.633(2) 2.363(2) 2.842(2) 2.470(2)
6 2 2 1 -1.209(2) -4.728(1) -4.511(1) -5.851(1) -5.251(1) -6.315(1) -5.489(1)
6 2 2 2 1.512(1) 5.910(0) 5.639(0) 7.314(0) 6.564(0) 7.893(0) 6.861(0)
%RMS 44.6 5.8 2.8 5.5 6.1 1.4 2.3

Dispersion
8 0 0 0 9.397(5) 6.569(5) 5.020(5) 5.491(5) 4.923(5) 6.035(5) 5.777(5)
8 2 0 0 4.593(5) 2.789(5) 2.261(5) 3.183(5) 2.608(5) 3.324(5) 3.082(5)
8 2 2 0 1.242(5) 6.206(4) 5.249(4) 8.974(4) 6.941(4) 9.124(4) 8.025(4)
8 2 2 1 -1.687(4) -8.525(3) -7.200(3) -1.241(4) -9.553(3) -1.262(4) -1.109(4)
8 2 2 2 4.759(2) 3.091(2) 2.541(2) 5.072(2) 3.593(2) 5.198(2) 4.481(2)
8 4 0 0 2.388(4) 1.116(4) 9.514(3) 1.607(4) 1.340(4) 1.376(4) 1.253(4)
8 4 2 0 1.439(4) 5.778(3) 5.170(3) 1.029(4) 8.154(3) 8.760(3) 7.528(3)
8 4 2 1 -1.906(3) -7.647(2) -6.843(2) -1.362(3) -1.080(3) -1.157(3) -9.951(2)
8 4 2 2 9.713(1) 3.895(1) 3.484(1) 6.941(1) 5.507(1) 5.862(1) 5.047(1)

Induction
8 0 0 0 1.401(5) 1.086(5) 1.073(5) 4.984(4) 6.712(4) 7.579(4) 7.459(4)
8 2 0 0 9.006(4) 6.887(4) 6.834(4) 3.237(4) 4.335(4) 4.909(4) 4.802(4)
8 2 2 0 3.576(4) 2.425(4) 2.511(4) 1.390(4) 1.784(4) 2.067(4) 1.928(4)
8 2 2 1 -7.153(3) -4.849(3) -5.022(3) -2.779(3) -3.569(3) -4.134(3) -3.855(3)
8 2 2 2 1.788(3) 1.212(3) 1.256(3) 6.948(2) 8.922(2) 1.033(3) 9.639(2)
8 4 0 0 6.003(4) 4.656(4) 4.598(4) 2.136(4) 2.877(4) 3.248(4) 3.197(4)
8 4 2 0 4.721(4) 3.201(4) 3.315(4) 1.834(4) 2.355(4) 2.728(4) 2.545(4)
8 4 2 1 -6.438(3) -4.364(3) -4.520(3) -2.501(3) -3.212(3) -3.720(3) -3.470(3)
8 4 2 2 3.576(2) 2.425(2) 2.511(2) 1.390(2) 1.784(2) 2.067(2) 1.928(2)
%RMS 22.1 7.3 8.0 5.5 8.6 3.0 4.3

Table 3.8. Unique calculated dispersion and induction van der Waals coefficients, W
(2)
nL1L2M

, for ground state Na2 using
selected ab initio and DFT methods. The RMS deviations are relative to previous theoretical results [2]. All calculations
are performed at the experimental equilibrium bond length, values are reported in atomic units and (n) denotes ×10n.
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Li2 K2 Rb2 Cs2
n L1 L2 M B3PW91 PBE0 B3PW91 PBE0 B3PW91 PBE0 B3PW91 PBE0
Dispersion
6 0 0 0 2.649(3) 2.593(3) 1.242(4) 1.185(4) 1.600(4) 1.530(4) 2.457(4) 2.334(4)
6 2 0 0 2.996(2) 2.836(2) 1.939(3) 1.722(3) 2.652(3) 2.355(3) 4.428(3) 3.925(3)
6 2 2 0 1.187(2) 1.086(2) 9.994(2) 8.237(2) 1.442(3) 1.186(3) 2.583(3) 2.133(3)
6 2 2 1 -2.638(1) -2.414(1) -2.221(2) -1.830(2) -3.205(2) -2.636(2) -5.739(2) -4.740(2)
6 2 2 2 3.297(0) 3.017(0) 2.776(1) 2.288(1) 4.006(1) 3.295(1) 7.174(1) 5.925(1)
%RMS 2.7 3.4 8.8 6.4

Dispersion
8 0 0 0 3.170(5) 3.075(5) 2.714(6) 2.553(6) 3.928(6) 3.715(6) 7.249(6) 6.792(6)
8 2 0 0 1.302(5) 1.236(5) 1.714(6) 1.553(6) 2.615(6) 2.374(6) 5.288(6) 4.762(6)
8 2 2 0 2.963(4) 2.717(4) 5.140(5) 4.333(5) 8.191(5) 6.897(5) 1.788(6) 1.499(6)
8 2 2 1 -4.118(3) -3.771(3) -7.152(4) -6.032(4) -1.132(5) -9.527(4) -2.466(5) -2.068(5)
8 2 2 2 1.824(2) 1.629(2) 3.217(3) 2.735(3) 4.558(3) 3.811(3) 9.693(3) 8.080(3)
8 4 0 0 1.592(3) 1.698(3) 9.509(4) 8.304(4) 1.801(5) 1.629(5) 4.709(5) 4.216(5)
8 4 2 0 1.318(3) 1.284(3) 6.279(4) 5.068(4) 1.247(5) 1.045(5) 3.512(5) 2.933(5)
8 4 2 1 -1.721(2) -1.680(2) -8.307(3) -6.706(3) -1.653(4) -1.386(4) -4.665(4) -3.896(4)
8 4 2 2 8.383(0) 8.254(0) 4.225(2) 3.413(2) 8.456(2) 7.101(2) 2.402(3) 2.007(3)

Induction
8 0 0 0 6.032(4) 3.075(5) 3.447(5) 3.390(5) 4.223(5) 4.199(5) 6.083(5) 6.174(5)
8 2 0 0 3.837(4) 1.236(5) 2.254(5) 2.196(5) 2.779(5) 2.736(5) 4.036(5) 4.057(5)
8 2 2 0 1.393(4) 2.717(4) 1.016(5) 9.269(4) 1.308(5) 1.203(5) 2.000(5) 1.889(5)
8 2 2 1 -2.787(3) -3.771(3) -2.032(4) -1.854(4) -2.615(4) -2.407(4) -4.000(4) -3.778(4)
8 2 2 2 6.967(2) 1.629(2) 5.080(3) 4.634(3) 6.538(3) 6.016(3) 1.000(4) 9.445(3)
8 4 0 0 2.585(4) 1.698(3) 1.477(5) 1.453(5) 1.810(5) 1.800(5) 2.607(5) 2.646(5)
8 4 2 0 1.839(4) 1.284(3) 1.341(5) 1.224(5) 1.726(5) 1.588(5) 2.640(5) 2.494(5)
8 4 2 1 -2.508(3) -1.680(2) -1.829(4) -1.668(4) -2.354(4) -2.166(4) -3.600(4) -3.400(4)
8 4 2 2 1.393(2) 8.254(0) 1.016(3) 9.269(2) 1.308(3) 1.203(3) 2.000(3) 1.889(3)
%RMS 4.5 5.4 7.2 5.9

Table 3.9. Unique van der Waals coefficients, W
(2)
nL1L2M

, for the ground state alkali dimers Li2, K2 and new results for
Rb2 and Cs2 calculated at the TD-DFT level of theory using the B3PW91 and PBE0 functionals. The RMS deviations are
relative to previous theoretical results [2] where applicable. All calculations are performed at the experimental equilibrium
bond length, values are reported in atomic units and (n) denotes ×10n.
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3.2.3 Heteronuclear alkali diatomics∗

In this section we present our computational results on the heteronuclear alkali

diatoms from LiNa to RbCs. Several papers have discussed the isotropic R−6 inter-

actions of homonuclear alkali diatoms using both the London approximation [3] and

time dependent density functional theory (TD-DFT) [102, 103]. The isotropic and

anisotropic contributions have been investigated using configuration interaction [2]

and TD-DFT [5] to compute van der Waals coefficients through R−8. However, sys-

tematic research on the heteronuclear alkali diatoms is limited to the R−6 isotropic

van der Waals coefficients for the LiX (X=Na,K,Rb,Cs) species [49]. Prior to our

work, the only heteronuclear anisotropic van der Waals coefficients available in the

literature are for KRb and RbCs [104] and limited to R−6 dispersion forces. We per-

formed a systematic study of the isotropic and anisotropic van der Waals interactions

through order R−8 of the heteronuclear alkali [6] rigid-rotor diatoms in their absolute

ground state as a continuation of our work on the homonuclear species [5].

Dispersion and induction contributions to the van der Waals series are propor-

tional to different products of the dipole, quadrupole and octopole polarizabilities. As

such we have calculated and presented in Tables 3.3 and 3.4 the dipole and quadrupole

static polarizabilities with comparisons to some of the existing literature (octopole

static polarizabilities are not listed, but are available upon request). As discussed

previously [5], the n-aug-def2-QZVPP basis sets are well converged for computation

of static polarizabilities of homonuclear alkali diatoms up to octopole order, and we

find the same is true for the heteronuclear species. Density functional methods are

known to provide average static polarizabilities to within five to ten percent of experi-

mental or highly correlated results [112, 113]. Furthermore some variance is expected

∗Text and figures reprinted with permission from [6]. Copywrite 2012 The American Physical
Society.
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in the parallel (α110) polarizability as all computations are done at the experimental

(or theoretical where necessary) equilibrium bond length, and it is well known that

the polarizability is sensitive to the internuclear separation in the alkali diatoms [1].

It is expected that the perpendicular polarizability (α111) should agree much more

closely with other methods, which we find to be the case as illustrated in Tables 3.3

and 3.4.

Van der Waals dispersion and induction coefficients of the heteronuclear alkali

diatoms are sparsely given in the literature. Currently only a few values exist and

are restricted to isotropic contributions (corresponding to W 2,DIS
6000 ). The only sys-

tematic calculations are for the LiX species [49]. In Tables 3.3 and 3.4 we note

the reasonable agreement between our reported TD-DFT isotropic C6 = W 2,DIS
6000 dis-

persion coefficients and the Tang-Slater-Kirkwood [90] values from Quéméner et al.

[49] for the LiX species. Additionally Kotochigova [104] has calculated, using multi-

reference configuration interaction theory, the isotropic and anisotropic dispersion

coefficients of order R−6 for both KRb and RbCs. However, these values contain non-

Born-Oppenheimer contributions and so are not directly comparable to our numbers;

because of this we have not included these values in Tables 3.3 and 3.4. To determine

the accuracy of the van der Waals coefficients calculated here, we have computed ab

initio curves for LiNa+LiNa at two different molecular frame geometries using the

CCSD(T)-F12a/QZVPP (explicitly correlated CCSD(T)) level of theory [110, 111].

These ab initio curves are plotted in Fig. 3.3 along with the electrostatic plus isotropic

dispersion approximation and the the van der Waals curves of this work including all

anisotropic terms through R−8. As can be seen, the TD-DFT van der Waals curves

agree to a few cm−1 with the ab initio results , while the isotropic curves fail com-

pletely in the intermediate-range (it should be noted that for the collinear case of

LiNa+LiNa the isotropic curves do not turn over at all and predict an infinite repul-
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Figure 3.3. Plotted is a comparison of interaction curves at various orientations
for molecule-fixed-frame LiNa+LiNa (in the absence of an external electric field) at
different levels of theory. The black open circles is a fully ab initio curve computed
at the CCSD(T)-f12a/QZVPP level of theory (see text for computational details),
the solid red line is the evaluation of the van der Waals expansion of Eq.(2.18) using
TD-DFT to compute the dispersion coefficients (see Tables 3.10 and 3.11) and the
dashed red line is the usual isotropic approximation containing angular dependent
electrostatic terms where the dispersion contribution is truncated at the isotropic C6

coefficient.
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sive wall). In fact, even at the highly correlated level of theory used in computing the

ab initio curves in Fig. 3.3, there is a several cm−1 difference in barrier heights between

the CCSD(T)-F12a and CCSD(T)-F12b explicitly correlated methods demonstrating

the difficulty in obtaining reliable results for molecular interaction barriers at long

range. In Tables 3.10 and 3.11 we have listed the W
(1,2)
nL1L2M

coefficients for all of the

heteronuclear alkali diatoms, including all terms up through order R−8.
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n L1 L2 M LiNa LiK LiRb LiCs

Electrostatic: W
(1)
nL1L2M

3110 -7.076[0] -3.799[0] -5.170[0] -9.094[0]
3111 0.038[0] 1.900[0] 2.585[0] 4.547[0]
4210 -5.893[0] -2.547[1] -1.431[1] 1.324[1]
4211 1.965[0] 8.489[0] 4.771[0] -4.412[0]
5220 6.086[2] 2.276[2] 5.284[1] 2.568[1]
5221 -1.353[2] -5.058[1] -1.174[1] -5.707[0]
5222 8.453[0] 3.161[0] 0.734[0] 0.357[0]
5310 3.674[1] 3.306[2] 2.887[2] 3.942[2]
5311 -9.186[0] -8.266[1] -7.218[1] -9.855[1]

Dispersion+Induction: W
(2)
nL1L2M

6000 3.289[3] 7.243[3] 7.254[3] 1.062[4]
6200 4.036[2] 3.479[2] 4.874[2] 2.739[1]
6220 1.768[2] 1.180[3] 1.094[3] 2.567[3]
6221 -3.929[1] -2.621[2] -2.430[2] -5.705[2]
6222 4.911[0] 3.277[1] 3.038[1] 7.131[1]
7100 1.075[3] -4.898[2] -5.906[3] -3.740[4]
7210 1.460[2] -7.641[3] -8.641[3] -3.110[4]
7211 -2.433[1] 1.273[3] 1.440[3] 5.184[3]
7300 7.411[2] 4.567[3] 1.057[3] -9.020[3]
7320 4.259[2] -7.013[2] -2.682[3] -1.687[4]
7321 -7.099[1] 1.169[2] 4.470[2] 2.812[3]
7322 5.070[0] -8.349[0] -3.193[1] -2.008[2]
8000 5.586[5] 1.539[6] 1.715[6] 2.722[6]
8200 3.552[5] 1.270[6] 1.534[6] 2.793[6]
8220 9.460[4] 5.702[5] 6.695[5] 1.636[6]
8221 -1.406[4] -8.078[4] -9.379[4] -2.272[5]
8222 1.234[3] 4.607[3] 4.642[3] 9.978[3]
8400 3.896[4] 4.574[4] 6.320[4] 1.371[5]
8420 2.706[4] 7.284[4] 8.377[4] 2.485[5]
8421 -3.666[3] -9.822[3] -1.124[4] -3.320[4]
8422 2.001[2] 5.287[2] 5.965[2] 1.740[3]

Table 3.10. LiX (X=Na,K,Rb,Cs) calculated CCSD(T) electrostatic and TD-DFT dispersion+induction van der Waals

coefficients, W
(1,2)
nL1L2M

, for unique combinations of L1L2M . All values are presented in atomic units and calculated at the
equilibrium bond length re listed in Table 3.6, and [n] denotes ×10n.
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n L1 L2 M NaK NaRb NaCs KRb KCs RbCs

Electrostatic: W
(1)
nL1L2M

3110 -2.470[0] -3.651[0] -6.813[0] -0.125[0] -1.164[0] -0.432[0]
3111 1.235[0] 1.826[0] 3.406[0] 0.063[0] 0.582[0] 0.216[0]
4210 -3.528[1] -2.818[1] -1.377[1] -1.134[1] -2.960[1] -2.221[1]
4211 1.176[1] 9.393[0] 4.590[0] 3.785[0] 9.867[0] 7.403[0]
5220 6.717[2] 2.900[2] 3.710[1] 1.375[3] 1.004[3] 1.524[3]
5221 -1.493[2] -6.444[1] -8.245[0] -3.056[2] -2.231[2] -3.386[2]
5222 9.329[0] 4.028[0] 0.515[0] 1.910[1] 1.395[1] 2.116[1]
5310 1.175[2] 7.346[1] 5.962[1] 6.909[1] 1.955[2] 1.106[1]
5311 -2.937[1] -1.836[1] -1.490[1] -1.727[1] -4.887[1] -2.764[0]

Dispersion+Induction: W
(2)
nL1L2M

6000 7.777[3] 8.680[3] 1.233[4] 1.354[4] 1.726[4] 1.921[4]
6200 5.519[2] 7.837[2] 3.327[2] 2.001[3] 2.375[3] 2.909[3]
6220 9.762[2] 1.223[3] 2.694[3] 1.028[3] 1.826[3] 1.857[3]
6221 -2.169[2] -2.717[2] -5.986[2] -2.284[2] -4.059[2] -4.127[2]
6222 2.712[1] 3.397[1] 7.482[1] 2.855[1] 5.073[1] 5.159[1]
7100 1.157[4] 2.268[3] -2.114[4] 6.069[3] 1.457[4] 1.755[4]
7210 -1.657[1] -4.434[3] -2.312[4] 9.929[2] -8.871[2] 2.795[3]
7211 2.762[0] 7.391[2] 3.853[3] -1.655[2] 1.479[2] -4.658[2]
7300 9.136[3] 4.795[3] -1.280[3] 4.176[3] 1.234[4] 1.231[4]
7320 4.931[3] 1.142[3] -9.091[3] 2.772[3] 7.134[3] 8.669[3]
7321 -8.219[2] -1.903[2] 1.515[3] -4.621[2] -1.189[3] -1.445[3]
7322 5.870[1] 1.360[1] -1.082[2] 3.300[1] 8.492[1] 1.032[2]
8000 1.444[6] 1.928[6] 3.016[6] 3.734[6] 5.391[6] 5.667[6]
8200 8.920[5] 1.503[6] 2.766[6] 2.606[6] 4.295[6] 3.923[6]
8220 3.296[5] 6.003[5] 1.466[6] 7.941[5] 1.494[6] 1.296[6]
8221 -4.768[4] -8.470[4] -2.042[5] -1.162[5] -2.138[5] -1.878[5]
8222 3.368[3] 4.596[3] 9.349[3] 9.098[3] 1.356[4] 1.351[4]
8400 6.476[4] 6.275[4] 1.107[5] 2.931[5] 3.258[5] 4.238[5]
8420 5.979[4] 7.214[4] 1.962[5] 2.200[5] 2.678[5] 3.389[5]
8421 -8.081[3] -9.702[3] -2.625[4] -2.970[4] -3.612[4] -4.566[4]
8422 4.380[2] 5.183[2] 1.380[3] 1.603[3] 1.945[3] 2.453[3]

Table 3.11. XY (X,Y=Na,K,Rb,Cs) calculated CCSD(T) electrostatic and TD-DFT dispersion+induction van der Waals

coefficients, W
(1,2)
nL1L2M

, for unique combinations of L1L2M . All values are presented in atomic units and calculated at the
equilibrium bond length re listed in Table 3.6, and [n] denotes ×10n.
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Chapter 4

Molecular Rotational State Control

4.1 Controllable binding of polar molecules and meta-stability

of 1-D gases with attractive dipole forces∗

The recent achievements in the formation and manipulation of ultracold polar

molecules [38, 42] have opened the gate to exciting new studies in several fields of

physical sciences. Polar molecules could find uses in quantum information [56] and

precision measurements [44], while their long range and anisotropic interactions in

dense samples could provide a fertile ground for novel quantum gases [53]. In addition,

advances in controlling the alignment and orientation of polar molecules [65, 66] enable

the manipulation of these inter-molecular interactions, building a bridge between

atomic, molecular, and optical (AMO) physics, physical chemistry, and condensed

matter physics. Until now, stable dipolar gases were thought to require a repulsive

dipole-dipole interaction, such as provided by parallel dipoles perpendicular to a 2-

D plane. However, to observe interesting new correlations and phases, such as the

Luttinger liquid transition [54] attractive interactions are needed. In this work, a

system with such features is proposed and investigated, which combines available

techniques to produce ultracold polar molecules with the ability to precisely control

their orientation.

∗Text and figures reprinted with permission from [7]. Copywrite 2012 The American Physical
Society.
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In this section, we focus on KRb, which has been trapped in relatively large

amounts [38]. We first calculate the potential energy surface (PES) V (R, θ1, θ2, φ)

of two KRb molecules approaching each other for a wide range of geometries. We

assume that both molecules are in the ro-vibrational ground state of their electronic

X1Σ+ ground state, and rigid rotors, an approximation that is valid for R ∼ 20 a.u.

or larger. Fig. 4.1 shows the PES for three particular geometries when both molecular

axes are in the same plane (φ = 0): the top, middle and bottom panels depict V when

the molecules are aligned (θ1 = θ2 = 90o), in the T -orientation (θ1 = 0, θ2 = 90o), and

collinear (θ1 = θ2 = 0) respectively. Those curves illustrate the difference between

the stronger short-range region where the electronic wavefunction becomes perturbed

and the weaker long range region where the bond length of each KRb is not affected.

The short-range region is generally deep and strongly angular dependent, with wells

ranging from a few 100 K in Fig. 4.1 for co-planar geometries, to the tetramer K2Rb2

bound by ∼ 4300 K with respect to the KRb+KRb threshold [10, 11]. The KRb+KRb

PES was calculated at the CCSD(T) level of theory using MOLPRO 2009.1 [114, 115],

with the K and Rb core electrons replaced by the Stuttgart relativistic ECP18SDF

[116] and ECP36SDF [117] pseudopotentials, respectively. The core-valence correla-

tion energy was modeled using a core polarization potential [116]. Supplemental basis

functions were added to existing uncontracted basis sets for K [118] and Rb [99]. The

exponents were optimized to reproduce the experimental equilibrium bond length, re,

and dissociation energy, De [119].

Our analysis is concentrated on the coplanar geometries of Fig. 4.1, which depicts

a seemingly surprising result. While the top and middle panels depict the expected

behavior of a repulsive and slightly attractive dipole-dipole interaction, respectively,

the collinear geometry (bottom panel) reveals an unexpected barrier. The existence

of this barrier can be traced to a strong repulsive quadrupole interaction. We also
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Figure 4.1. KRb+KRb PES for coplanar geometries: aligned (top), T-oriented
(middle), and collinear (bottom). The inset sketches the geometry: R joins the
geometric center two KRb, θ1 and θ2 are the angles between their molecular axes and
R, and φ is the angle between the molecular planes.
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notice that it is higher (almost 7 K in height) than that of the aligned geometry

(about 4 K). To better understand these ab initio results, we examine the KRb+KRb

interaction in the long range region where the intermolecular wave function overlap is

negligible and the interaction can be expressed by the long range expansion Eq.(2.2).

The functions Wn, (as described formally by Eq.(2.18)) may contain electrostatic

(e.g. dipole D, quadrupole Q, octupole O, etc.) and/or dispersion and induction

contributions Cn,i [5, 72]. The first few terms are explicitly

W3 = D2 (2c1c2 − s1s2cφ) ,

W4 =
3DQ

2
(1 + 3c1c2 − 2s1s2cφ) (c1 − c2) ,

W5 = DO
{

3

2
s1s2cφ(2−5c21−5c22)−c1c2(6−5c21−5c22)

}

−Q2

{

3

2
(1−3c21)(1−3c22)−12c1c2s1s2cφ+

3

4
s21s

2
2c2φ

}

,

W6 = C6,0 + C6,1(3c
2
1+3c22−2) + C6,2(3c

2
1−1)(3c22−1)

+C6,3c1c2s1s2cφ + C6,4s
2
1s

2
2c2φ

where ci ≡ cos θi, si ≡ sin θi, ckφ ≡ cos kφ. In Table 4.1, we list the corresponding

parameters obtained by least squares fit of the PES up to n = 8. The fitted D,

Q, and O are also compared to ab initio values calculated at the all electron CCSD

level of theory with the Roos ANO basis set [120]. D and Q agree to better than

1%, attesting to the accuracy of the PES, while O is off by one order of magnitude,

reflecting the small contribution of DO in W5. Using Eq.(2.2), one can understand

the physical origin of the barriers. For parallel molecules, i.e. θ1 = θ2 ≡ θ and φ = 0,

the two leading terms in V are

V (R, θ) ≃ −W3

R3
− W5

R5
. (4.1)
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KRb fit AB re D Q O W6 Rsr RQ

D 0.234 KRb 7.69 0.234 16.99 -3.16 18,528 10.7 126
Q 17.06 LiNa 5.45 0.246 10.56 -1.80 4,265 6.34 74.4
O -23.71
C6,0 11679 RbCs 8.37 0.554 14.19 -5.39 26,599 21.6 44.6
C6,1 3182
C6,2 10441 LiRb 6.50 1.715 11.80 -1.61 8,528 9.95 12.0
C6,3 -2893 LiCs 6.93 2.335 11.00 -7.26 10,951 12.7 8.5
C6,4 158 NaK 6.61 1.199 12.91 3.83 9166 9.52 18.5

Table 4.1. Left: fit parameters (up to R−6). Right, ab initio values of the equi-
librium separation re, moments D, Q, and O (from the geometric center), W6 for
the collinear orientation, and the turning points Rsr, Eq.(4.3), and RQ, Eq.(4.5), for
various molecules AB in v = 0 of X1Σ+. All values are in atomic units.

For collinear KRb, θ = 0, with W3 = 2D2 and W5 = −6Q2 + 4DO ≃ −6Q2, and

because of the relatively weak D when compared to Q, the long range attractive R−3

dipole interaction is overcome by a shorter-range repulsive R−5 quadrupole interaction

(the attractive contribution of DO is much weaker than that of the repulsive Q2); at

shorter range still, the attractive R−6 and higher contributions dominate and bring

V down, hence the barrier. For aligned KRb, θ = 90o, with W3 = −D2 and W5 =

−(9/4)Q2 + 3DO ≃ −(9/4)Q2, and the leading repulsive W5 is about 3 times smaller

than for the collinear case, hence the smaller barrier shown in Fig. 4.1.

Using Eq.(2.2), we study the geometries leading to a long range barrier; Fig. 4.2

depicts its height Vtop as a function of θ1 and θ2 for a few twist angles φ. For φ = 0, a

substantial barrier exists along the diagonal θ ≡ θ1 = θ2, for small angles (θ ∼ 20o or

less), and for large angles (θ ∼ 70o or more). While the barrier remains present for

the small angle cone (∼ 20o) as φ increases, it quickly disappears for large θ. Roughly

speaking, there is a barrier for a cone of θ ∼ 20o for any φ, and for larger molecular

misalignment, the barrier vanishes. A significant barrier can thus be maintained by

aligning the molecules within a small angular cone, allowing ultracold KRb samples
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Figure 4.2. Vtop vs. θ1 and θ2. The main plot corresponds to a twist angle φ = 0,
while the two smaller plots to φ = 40o (top) and 80o (bottom). Vtop is set to zero if
there is no barrier.

to remain stable and even be evaporatively cooled in various trap geometries (1-D

when nearly collinear, and 1-D or 2-D when nearly aligned).

Polar molecules can be oriented by coupling rotational states along a polarizing

external electric field F. This can be achieved by using a DC electric field; however the

small dipole moment of KRb requires field strengths that are difficult to achieve in the

laboratory. An alternative is to add a separate polarizing laser field [81] that directly

couples the rotational states of the molecule. Although this utilizes a much smaller

DC field, non-adiabatic effects are prominent [66], and for the sake of simplicity we

calculate the rotational state coupling by increasing the DC external field. We start

with a superposition of field-free symmetric top states, Eq.(2.36), labeled by their total

angular momentum J with projection M along F. After transforming the molecule-

fixed frame potential V (R, θ1, θ2, φ) to the laboratory-fixed frame VLab(R, r̂1, r̂2) [121],

the field averaged potential is found by evaluating Eq.(2.44) In Fig. 4.3, we illustrate

the effect of F on a pair of KRb molecules in 1-D, with θF defined as the angle
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between F and R. For weak fields (F . 10 kV/cm), the molecules remain largely

in the first two (J = 0, 1) rotational states. Classically, they precess “wildly” on a

wide cone about F averaging over a large range of relative angles, with the dominant

contribution coming from the isotropic Cn,0 terms. This is depicted by the dashed lines

in Fig. 4.3(a) for two orientations. In both cases, the interaction becomes strongly

attractive at short distance, with the aligned geometry having a weak barrier (∼ 1

mK) and the collinear case showing no sign of a barrier. The solid lines show the

effect of a larger electric field where F strongly mixes more (∼ 7) J ’s and strong

barriers are present for both illustrated orientations. Fig. 4.3(b) shows the tightly

aligned interaction for a range of θF near the aligned and collinear orientations, where

we recover results similar to those in the molecular-frame. The barrier survives for

a cone of angle θF of about 20o for both orientations, and the same conclusions

about stability of 1-D and 2-D samples apply. For the aligned orientation, the barrier

appears rapidly even for low fields, while larger fields (F & 70 kV/cm) are necessary

for the collinear case (see Fig 4.3(c)). In both cases, the barrier grows rapidly to

hundreds of mK, a value much higher than the typical kinetic energy of the trapped

ultracold molecules (< 100 µK).

Fig. 4.3(b) hints at the existence of a long range well for the collinear geometry.

We analyze this well in the molecular-frame when the molecules are fully parallel

(θ ≡ θ1 = θ2 and φ = 0). We find a long range well with several bound levels due to

its breadth and the large mass of the KRb molecules. For θ = 0, there are 7 levels,

the deepest bound by ∼ 2.7 mK with classical turning points at 110 and 205 a.u..

As θ increases, the R−5 repulsion gets smaller and the well deepens, and the binding

energies increase accordingly until θ reaches θc ≃ 22o, at which point the barrier

disappears (see Fig. 4.4(a)). We note that for a small deviation from θ = 0, the
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Figure 4.3. (a) KRb+KRb interaction (1-D) for weak (5 kV/cm: dashed lines) and
strong electric fields (200 kV/cm: solid lines), for aligned (left) and collinear (right)
orientations. The red cylinder represents the 1-D trap, the arrow the orientation of the
field, and the sketch above the precessing molecules. (b) Intermolecular interaction
with F = 200 kV/cm for the aligned (top) and collinear (bottom) geometries as a
function of θF . (c) Height of the barrier for the aligned and collinear orientations as
a function of F .

binding energies are not significantly affected, and an additional level v = 7 appears

for 18o < θ < θc (inset in Fig. 4.4(a)).

The variation of bound levels with θ affects the scattering between molecules and

their effective interaction. Assuming θ (or θF ) as a fixed external parameter, we esti-

mate the s-wave scattering phase shift δ between two KRb molecules, which depends

on the interaction V and the wave number k; δ < 0 (> 0) corresponds to an effective

repulsive (attractive) interaction. Here, we choose k assuming ~
2k2 ∼ mkBT (m:

mass of KRb; kB: Boltzmann constant) for T ≃ 700 nK [38] and illustrate the effect

in Fig. 4.4(b) in the molecule-frame. For small angles (θ . 14.7o), the interaction
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is attractive (with δ > 0), while it becomes repulsive (δ < 0) for larger angles. In

an ideal 1-D trap, the repulsive barrier at R ∼ 100 a.u. would stabilize the sample

for an attractive effective interaction by preventing the molecules from reaching short

distances where inelastic processes could take place. Larger angles would also give

stable samples since the effective interaction is repulsive. By varying the orientation

of the electric field with respect to the trap axis, the behavior of the sample could

be controlled; an effective attractive interaction would lead to a dense self-trapped

system, i.e. a liquid-like sample, while an effective repulsive interaction would give a

dilute sample behaving like a gas. Such control could probe a quantum phase tran-

sition between a Luttinger liquid and an ultracold gas [54]. One could also create

a chain of KRb molecules weakly bound together (e.g. by using photoassociation);

these would be akin to ultracold polymer-like chains stabilized by an external electric

field and a 1-D trap. We note that the effective interaction can also be controlled by

varying the magnitude of F. In Fig. 4.4(c), we show δ for θF = 0 as a function of F

for two collision energies corresponding to 700 nK and 900 nK, and find that its sign

can be changed by varying F .

Obtaining 1-D traps is challenging; assuming a harmonic trap in the perpendicular

direction characterized by the frequency ω, the size of the ground state a ∼
√

~/mω

is of the order of a few 1000 a.u. for optical traps. Molecules at densities of 1012

cm−3 loaded in such traps would be separated by roughly d ∼ 1 µm, and for repulsive

effective interaction, the angle tan−1 a/d . 10o between their axes would remain

within the cone of stability. For an attractive effective interaction, the relevant angle

is tan−1 a/RQ, where RQ is the point where the barrier begins for two approaching

molecules, which requires a ∼ 0.4RQ = 50 a.u. for KRb. Here, the sample would

not be 1-D and inelastic processes allowed. Non-reactive species, such as RbCs, could

be considered to prevent inelastic processes, or much tighter magnetic traps could
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be employed; in which case molecules in a triplet electronic state with a magnetic

moment µ would be required. For KRb in its a3Σ+(v = 0) state, a ∼ 60 a.u. can

be achieved [122], and with RQ ∼ 150 a.u. ∗, tan−1 a/RQ would remain within the

stability cone.

The features discussed here for KRb can be generalized to other polar molecules.

The existence of a barrier for perfectly collinear molecules depends mostly on the first

two terms of Eq.(2.2) (see Eq.(4.1)). By setting V = 0 and neglecting DO, we find

RQ ≃
√

3Q2/D2, (4.2)

the point where the R−5 repulsion takes over the R−3 attraction. We can also define

a point Rsr where the shorter range R−6 attraction takes over the R−5 repulsion, by

neglecting the other contributions we obtain

Rsr = −W6/W5. (4.3)

If RQ is outside the region where bonds are strongly perturbed or higher Wn terms

do not contribute significantly (Rsr < RQ . 20 a.u.), then the barrier may exist. We

present the RQ and Rsr values for various polar molecules in Table 4.1. Due to its

large variance, D dictates the RQ behavior of the systems. Molecules with small D

(e.g., LiNa and KRb) have a sizable RQ, and thus the existence of a barrier is very

likely, unlike those with a large D (e.g., LiRb, LiCs and NaK). We also include RbCs,

for which the existence of a barrier is uncertain. This is interesting since RbCs is

known to not be reactive.

∗D = 0.017 a.u. and Q = 1.47 a.u. were computed consistently with the other methods in the
text.
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Figure 4.4. (a) Long-range well energy levels vs. θ; an additional level v = 7 appears
at 18o (inset). (b) scattering phase shift δ vs. θ for k corresponding to 900 nK for
infinite F . (c) δ as a function of the field strength F for θF = 0 at collision energies
corresponding to 700 and 900 nK.
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In conclusion, we find that the interaction between polar molecules exhibits a

strong barrier when they are oriented about two specific geometries: aligned and

collinear. We also show that the collinear setting gives meta-stable samples of ul-

tracold molecules in a tight 1-D trap. The long range R−3 dipolar attractive and

R−5 quadrupolar repulsive contributions in the collinear geometry lead to long range

wells between polar molecules sustaining several bound levels. Varying the orienta-

tion of the molecules using an external electric field allows for non-trivial effects, such

as changing the effective interaction from repulsive to attractive, and possibly the

phase of the sample from gas to liquid. Finally, we also predict the existence of the

collinear barrier for various bi-alkali polar molecules based on the relative strength

of the dipole and quadrupole moments. The combination of available techniques to

produce ultracold molecules [38, 42] and the ability to precisely control their spatial

orientation [65, 66] provide the tools to investigate such systems.

4.2 External field alignment

Inclusion of just the quadrupole-quadrupole interaction to a dipole-dipole model

can introduce significant changes in the form of potential energy barriers for collinear

geometries (θ1 = θ2 = φ = 0) at long range [7]. It is possible to estimate whether the

inclusion of higher order electrostatic terms could lead to a barrier by introducing

the outer zero energy turning point, Rq, which occurs when the R−5 repulsion over-

comes the attractive R−3 dipole-dipole force. Keeping only the two leading terms in

Eq.(2.18) and setting

Eint(Rq, 0, 0, 0) = −〈Q10〉2
R3

q

+
3〈Q20〉2 − 4〈Q10〉〈Q30〉

R5
q

= 0, (4.4)

we obtain
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Figure 4.5. Dressed state electrostatic moments, 〈QDS
L0 〉 (L = 1, 2, 3 corresponds to

dipole, quadrupole and octopole moments respectively), of LiX as a function of an
external DC electric field.
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Figure 4.6. Dressed state electrostatic moments, 〈QDS
L0 〉 (L = 1, 2, 3 corresponds

to dipole, quadrupole and octopole moments respectively), of NaX, KX and RbCs
(X=Na,K,Rb,Cs as appropriate) as a function of an external DC electric field.

Rq =

√

3〈Q20〉2 − 4〈Q10〉〈Q30〉
〈Q10〉

. (4.5)

When this outer turning point is sufficiently long range (Rq & 20 a.u.) the introduc-

tion of these higher order terms can be important and lead to long range barriers [7],

and thus should be examined in further detail ∗.

∗It should be reiterated that from an alignment point of view, obtaining field-dressed electrostatic
moments sizeable enough to produce long range barriers requires electric field strengths that are
experimentally intractable (F & 30 kV/cm). However from a molecule-fixed-frame collision point
of view the merits of including these electrostatic moments is then independent of the external field
strength and Eq.(4.5) should then be referenced.
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In evaluating the field coupling and alignment of the various alkali diatomic

molecules, the rotational wavefunction expansion is greatly simplified by making use

of the initial premise that the molecules are in the ro-vibrational ground state. As

such Ω ≡ 0 and M = 0 (the use of a DC external field will not mix different M

values), reducing both Eq.(2.43) and (2.47) significantly. In Fig. 4.5 and 4.6 we have

plotted the DC field dressed electrostatic moments as a function of the external field

strength. While the very high field strengths in Fig. 4.5 and 4.6 are generally experi-

mentally challenging, it is illustrative to show how difficult it is to obtain both strong

orientation (〈cos θ〉 > 0.85) and alignment (〈cos2 θ〉 > 0.85) in molecules with small

rotational constants, regardless of the strength of the dipole moment. It is also in-

structive to examine the low-field strengths of Fig. 4.5 and 4.6, where the linear trend

of each curve on the log-log scale shows the general scaling of the static moments as

a function of the external field as discussed in Sec. 2.4. In Fig.4.7 we have evaluated

Eq.(2.43) for KRb (KRb is chosen for its medium strength dipole moment and large

rotational constant) at various DC field strengths. This is done by numerically diago-

nalizing Eq.(2.38) for each field strength F to obtain Eq.(2.46). After which Eq.(2.43)

can evaluated for any inter-molecular distance R. In diagonalizing Eq.(2.38) a ques-

tion of the size of the rotational basis set expansion in Eq.(2.36) arises. Performing a

convergence test, it was determined that including between 15 to 30 rotational states

in the expansion is sufficient for all the molecules studied. Examining Fig.4.7, the

difference between the low and high field strengths is easily identified by the change

in behavior from most similar to the field free case (e.g. isotropic contributions dom-

inate the interaction potential) to the regime where the dressed state van der Waals

interaction energy more closely resembles the molecule-fixed frame van der Waals

potential (e.g. when electrostatic contributions become key). This high field strength

regime is more quantitatively defined when both 〈cos θ〉 and 〈cos2 θ〉 is greater than
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Figure 4.7. DC field coupled van der Waals curves (Eq.(2.43) with Mi = M ′
i = 0)

of 40K87Rb for both low and high fields as well as the approximate two-state van der
Waals curve (Eq.(2.55)). Here F ∼ 20 kV/cm is the intermediate field strength where
more than two rotational states begin to strongly couple.

0.9 (which corresponds to roughly seven strongly coupled rotational states). Also in

Fig.4.7 the approximate two-state model of Eq.(2.55) can be seen to agree very well

with the fully coupled equations in the low-field limit.

4.2.1 Optical pumping

The generality of Eq.(2.44) through the arbitrariness of the choice of rotational

state density adds flexibility to the applications studied beyond that of the external

field control of sections 2.4, 4.1 and 4.2. The idea comes from a simplification of
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∆J ∆M W̃nLML
ML

1 0 W̃32ML
, W̃54ML

{0}, {0}
1 1 W̃32ML

, W̃54ML
{−2, 0, 2}, {0}

2 0 W̃54ML
{0}

2 2 W̃54ML
{−4,−2, 0, 2, 4}

Table 4.2. Non-zero electrostatic long range coefficients from evaluating Eq.(2.44)

the schemes for alignemnt/orientation control put forward by Härtelt et al. [81],

Holmegaard et al. [65] and Nielsen et al. [66], where the static alignment field is

removed and only optical pumping of rotational states is performed. In doing so it

is possible to engineer rotational state densities (Eq.(2.46)) by choosing which states

are populated in the dressed state basis, Eq.(2.36). The motivation laying behind this

can be seen directly when the Three-J symbols in Eq.(2.45) are examined, where it is

observed that the nonzero contributions to W̃nLML
are restricted by the selection rules

for (J ′, Li, J). Thus the nonzero contributions to W̃nLML
can be controled by careful

choice of rotational states. The various two state combinations and their subsequent

effect on the long range contributions are listed in Table 4.2.
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Chapter 5

Alkali cluster thermochemistry

5.1 Potential energy surface of the 12A′ Li2+Li doublet ground

state∗

With the success of ultracold molecular formation among the alkali metals over

the past decade via photoassociation [20] and more recently with Feshbach resonances

[21], the dynamics of molecules in ultracold traps have become an important topic to

many physicists. Alkali dimers have been formed in many different homonuclear and

heteronuclear configurations, for both singlet and triplet ground electronic states.

Furthermore, recent experiments using KRb [34–36] have shown the possibility of

efficiently forming ultracold ground vibrational state diatoms. While both ground

and excited singlet and triplet states of alkali diatoms have been studied extensively

both experimentally and theoretically, alkali trimers have generally been ignored by

both theorists and experimentalists alike. In the last few years there has been an

increase of interest in few-body physics with continued success in the cooling and

trapping of atoms.

We describe in this section the calculations we have done on both the 12A′ and

12A′′ surfaces of the lithium trimer and future goals for the use of these surfaces.

In this work, all calculations have been done using the MOLPRO 2008.1 quantum

chemistry package [123] unless otherwise stated. To accurately describe dissociation

∗Text and figures reprinted with permission from [8]. Copywrite 2009 Wiley Periodicals, Inc.
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Orbital Type SBK LFK Scaled LFK
s 0.6177000 0.6177000 0.52504500

0.1434000 0.1434000 0.12189000
0.0504800 0.0504800 0.04290800
0.0192300 0.0192300 0.01634550

p 0.6177000 0.6177000 0.00690155
0.1434000 0.1434000 0.64858500
0.0504800 0.0504800 0.15057000
0.0192300 0.0192300 0.05300400

0.0065729 0.02019150
d 0.1346266 0.13799227

0.0546860 0.05605315
0.0180355 0.01848639
0.0076882 0.00788041

Table 5.1. Uncontracted basis set exponents for for the Stevens, Basch and Krauss
lithium pseudopotential basis used in this work. The s, p and d orbital exponents are
each scaled to give an optimal dissociation energy for Li2 as discussed in the text.

energies, equilibrium geometries and vibrational frequencies in alkali-metal clusters,

it is necessary to account for the electronic core-valence (CV) correlation energy [124].

For all electron calculations this is possible for the lighter alkali atoms (Li through

K) by using the explicitly correlated basis of Iron, Oren and Martin (IOM) [86]. This

approach has recently been done by Cvitaš et al. [125] for the spin aligned 14A′

Li3 surface using spin restricted coupled cluster calculations with single, double and

iterative triple excitations (RCCSD(T)). To account for CV correlation in heavier

atoms, where all electron calculations are prohibitively expensive, it is necessary to

use a core polarization potential (CPP). This is also necessary for valence electron full

configuration interaction (FCI) calculations where an ECP (a physically equivalent

representation to the frozen core approximation which has no CV correlation) is

substituted for the atomic electrons. This method has been used with great success

for calculating both lithium dimer potential curves [126] and trimer potential surfaces

of potassium [127].
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The theoretical description of the CPP is a straightforward addition to that of

the ECP model of atomic cores. In the Born-Oppenheimer approximation the non-

relativistic molecular Hamiltonian can be separated into kinetic and interaction op-

erators T and V respectively. Approximating the core of each nuclei with an l de-

pendent pseudopotential and including the polarization effects at the nuclei gives for

the interaction operator

V =
∑

k

(V k + V k
cpp) +

∑

j>i

1

rij
+ Vcc, (5.1)

where

V k =
∑

i

−Qk

rik
+
∑

il

Bk
ilexp(−βk

ilr
2
il)P

k
l (5.2)

is the core pseudopotential,

P k
l =

∑

m

|klml〉〈klml| (5.3)

is the projection operator onto the subspace of angular momentum l on core k and

Vcc is the core-core coulomb interaction. Here the polarization potential, V k
cpp for a

given core k, is expressed in terms of a static polarizability and external field at the

nuclei position by

V k
cpp = −1

2
αkFk · Fk. (5.4)

where the electric field Fk at core k arising from the coulomb interaction with the

electrons at rki and other cores at Rkj is

Fk =
∑

i

rki
r3ki

C(rki) −
∑

j

ZRki

R3
ki

. (5.5)
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Method/Basis re [Å] ωe [cm−1] D0 [cm−1] De [cm−1]
Expt.[129] 2.673 351.43 8434.58 8516.36[130]
Recommended 2.667 352.98 8340.12 8516.43
FCI/SBK scaled LFK 2.693 346.54 8198.85 8371.83
FCI/SBK+CPP LFK 2.663 353.89 8338.45 8515.10
FCI/SBK LFK 2.687 347.19 8197.18 8371.04
RCCSD(T)/CVQZ[86] 2.676 353.05 8294.15 8470.27
RCCSD(T)/CV5Z[86] 2.674 353.08 8311.70 8488.46

Table 5.2. Comparison of different spectroscopic constants of Li2 using benchmark
basis sets with both explicit inclusion of core-valence correlation in RCCSD(T) cal-
culations or through the empirical contribution through a core polarization potential
with valence electron full configuration interaction.

The value of the static polarizability for Li+ is αk = 0.1915a0 [116] and the cutoff

function C(rki) defined by Fuentealba et al. [116] is given as

C(rki) = (1 − e−(δkrki)), (5.6)

with the cutoff parameter chosen to be δk = 0.831a−2
0 [116]. This form of the cutoff

parameter was first presented by Müller et al. [128] and produces good agreement for

ground and low excited states, however it does show diminished results for Rydberg

states [128]. Our calculations using this core polarization potential to describe the core

valence correlation energy were done using the MOLPRO 2008.1 [123] implementation

of the Fuentealba et al. [116] CPP.

Atomic and molecular polarizabilities are important factors for long range inter-

atomic and molecular interactions. In ultracold systems this is a dominant contribu-

tion to the scattering length in addition to the location of the inner wall. To accurately

describe both of these quantities in the lithium trimer, we require that the basis set

be flexible enough to describe atomic polarization at long range while accurately rep-

resenting the inner wall. Very accurate polarizability calculations require an accurate

description of electron correlation and a large basis set containing diffuse functions
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such as the Sadlej basis sets [131, 132], but this is computationally impractical to

implement for large all electron systems. Accurate polarizability calculations can be

achieved using an ECP with a small but well chosen basis set as demonstrated by

Labello, Ferreira and Kurtz (LFK) [133, 134]. Their basis set augments the Stevens,

Basch and Krauss (SBK) ECP basis [135], with an additional p function and four

extra d functions optimized following the Sadlej [131, 132] method.

Using the SBK pseudopotential, we further optimized the uncontracted LFK basis

(see Table 5.1 for the exponents) with and without the CPP for the Li2 X
1Σ+

g ground

state. This was done using three scale factors βλ(λ = s, p, d) optimized at the FCI

level to give the best calculated value of the dissociation energy. As a benchmark, the

CVQZ and CV5Z IOM basis [86] at the CCSD(T) level correlating all electrons (no

frozen core) gives an error in the calculated dissociation energy of 46.087 cm−1 and

27.902 cm−1 respectively, while at the valence FCI level the unscaled LFK basis the

error is 1.25 cm−1. Optimizing the βλ coefficients to give the best dissociation energy,

we obtain a difference of 0.077 cm−1 using the scaled exponents listed in Table 5.1,

corresponding to the scale factors βs = 0.85, βp = 1.05 and βd = 1.025. In Figure

5.1 and Table 5.2 the results from the different basis functions and methods can be

seen compared to the Rydberg-Klein-Rees (RKR) curve adjusted to reproduce the

ultracold scattering results. We chose to use this scaled, uncontracted LFK basis with

the SBK ECP and Fuentealba CPP in calculating the potential energy surface of the

lithium trimer at the FCI level of theory.

Calculations of ab initio points at the FCI level are very computationally inten-

sive, even for three electrons with the compact basis just described, so to accurately

describe an entire potential energy surface with a low density of ab initio points we

implemented the global IMLS fitting method [136]. In this method the potential en-

ergy at an arbitrary point Z in the (x, y) plane is approximated by the use of a linearly
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Figure 5.1. Benchmark singlet Li2 potential energy curves using both the core-
valence correlation consistent basis sets of Iron, Oren and Martin and core polarization
potential Stevens, Basch and Krauss pseudopotential with an extended and scaled
ECP basis set calculated at the RCCSD(T) and full configuration interaction level
of theory respectively. The scattering RKR curve is the inner wall shifted version
of Côté et al. such that the potential predicts the correct scattering lengths and
Feschbach resonances.
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Figure 5.2. Molecule frame Jacobi coordinates are used to describe the lithium
trimer geometry. Within this coordinate system the potential energy surface is calcu-
lated assuming that the lithium dimer bond re is adiabatically relaxed as the colliding
lithium atom approaches.

independent basis bj(Z)(j = 1, . . . , n) and expansion coefficients aj(Z)(j = 1, . . . , n)

so that the interpolated energy is given by

Vint(Z) =

n
∑

j

aj(Z)bj(Z). (5.7)

The expansion coefficients a(Z) are found by minimizing the error function

E(Vint) =

Nd
∑

j=1

wj(Z)

(

n
∑

i=1

ai(Z)bi(Z) − fj(ℓj)

)2

(5.8)

of the interpolated energy Vint and the ab initio energy fi(ℓi)(i = 1, . . . , Nd) at coor-

dinates ℓi where Nd is the number of ab initio data points.

Expressing the solution to the normal equations ∂E(Vint)/∂aj = 0 in matrix form

we obtain the linear equation for the expansion coefficients [136]

BW (Z)BTa(Z) = BW (Z)f , (5.9)
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where W (Z) is the diagonal matrix of weights wi(Z) and B is the matrix

B =



















b1(ℓ1) b1(ℓ2) · · · b1(ℓNd
)

b2(ℓ1)
. . . b2(ℓNd

)

...
. . .

...

bn(ℓ1) bn(ℓ2) · · · bn(ℓNd
)



















. (5.10)

The linear system in Eq. 5.9 is routinely ill conditioned and so is solved by singular

value decomposition.

The weights wi(Z) dictate the effective range at which a given ab initio point will

contribute to the global fit and the effective contribution to the fit. We use Guo et

al.’s [137] form of the weight function, which introduces a cutoff function S(χ) to the

unnormalized weight function vi(‖Z − ℓi‖) so as to smoothly go to zero at a given

cutoff radius Rcut. The cutoff function is given [137] by

S(χ) =















(1 − χm)4 if 0 ≤ χ ≤ 1,

0 if χ > 1,

(5.11)

with m = 10 and the unnormalized weight function is

vi(Z) =
exp[−‖Z − ℓi‖2/ζ2]
(‖Z − ℓi‖/ζ)4 + ǫ

(5.12)

where ǫ = 10−10 removes the singularity at ℓi. Then the normalized weight function

is

wi(Z) =
S(‖Z − ℓi‖2/Rcut)vi(Z)

∑Nd

j S(‖Z − ℓi‖2/Rcut)vj(Z)
, (5.13)
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where Rcut is to be determined as to give the best fit. Finally the basis functions are

chosen to be bivariate polynomials of order n = 6 such that

b(Z) = 1, Z1, Z2, Z
2
1 , Z

2
2 , Z1Z2, . . . , Z

n−1
1 Z2, Z1Z

n−1
2 , (5.14)

where the inverse coordinates Zi = 1/xi are used in this work. With the choice of

coordinates used here there is a coordinate singularity in C2v symmetry. To avoid

this all coordinates xi are shifted by the same positive, arbitrary additive factor for

the fit then transformed back upon completion. The scaling parameter ζ was chosen

to be the average distance between the interpolant point Z the ab initio points. With

this definition the cutoff radius was defined in terms of ζ as Rcut = 50.0 ∗ ζ . This

interpolant method is used for the lithium trimer 12A′ PES to obtain a global fit

using a low number of ab initio points as references.

The 12A′ surface of Li3 was calculated at the full configuration interaction level

using the scaled LFK basis set, the SBK pseudopotential [135] and core polariza-

tion potential described above, with the three valence electrons included in the FCI

calculation. At the FCI level, there are 410670 configurations of A′ symmetry and

383292 configurations of A′′ symmetry. All FCI calculations were performed with

the Knowles-Handy determinant FCI program [138, 139] using the MOLPRO 2008.1

package [123]. The geometry was chosen so to best describe the diatomic-atomic

collision process. As such we used the molecular frame Jacobi coordinates for a

homonuclear system where we define a vector re along the diatomic inter-nuclear axis

and another vector RC from the diatomic center of mass to the colliding atom where

the collision angle A is defined from the C∞v axis (see Figure 5.2). With this coordi-

nate system the most efficient grid of ab initio points is an evenly spaced angular grid

with the radial grid chosen to have the highest density of points at the minima. We

calculated 26 points with the collision angle varying between 90◦ and 45◦ on the 12A′
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Figure 5.3. Near equilibrium geometry potential energy surface for the Li3 12A′ electronic state calculated using valence
elctron full configuration interaction theory. Equilibrium is found to be at bond lengths of re = 3.218Å and RC = 2.238Å for
C2v geometry configuration.
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Figure 5.4. First four Li3 doublet states in C2v symmetry near the 12A1 state
equilibrium. A conical interesction is observed at RC = 2.51Å between the 12A1 and
12B2 states with a further Li3 minimum seen near RC = 2.25Å for the 12B2 state.

Li3 surface by choosing A and RC then optimizing the dimer bond length to give the

lowest energy configuration. The 12A′ state is found to have a triangular equilibrium

geometry on the 12A1 surface with re = 3.218Å and RC = 2.238Å for the Jacobi

bond lengths with a dissotiation energy of 4979.42 cm−1. The interpolated surface

near the equilibrium geometry is show in Figure 5.3.

We have investigated the lowest states of 2A1,
2B1 and 2B2 symmetry and the first

excited 2A1 state in point group C2v using the complete active shell (CAS) method

in conjunction with FCI. The same SBK and CPP representation of the core as in

the FCI calculation of the 12A′ surface was used here with an active space of 12
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orbitals (5a12b24b21a2) for the energies of the 12A1, 12B1, 12B2 and 22A1 states as

seen in Figure 5.4. Here RC is fixed and re is optimized at the CAS level with

tight convergence. This is followed by a FCI calculation to obtain the energy at this

geometry, with typical errors in the CAS geometry optimization compared to that of

the FCI geometries on the order of a mÅ. A conical intersection between the 12A1 and

12B2 surfaces is observed at RC = 2.51Å which is the result of Jahn-Teller splitting

of the 12E ′ D3h surface [140].

Preliminary calculations of the Li3 12A′′ surface have been carried out using

second order spin restricted open-shell Møller-Plesset perturbation (ROMP2) theory

as implemented in Gaussian 03 [141]. Here the IOM CVTZ basis set [86] was used

for calculation size convenience, with a benchmark diatomic bond length error of

0.075Å at ROMP2 and 0.008Å at RCCSD(T). The analytic potential energy surface

was interpolated using cubic splines with 256 ab initio data points and is shown

in Figure 5.5. This 12A′′ state has a dissociation energy of 14156.5 cm−1 at the

equilibrium triangular geometry of RC = 2.40Å and re = 2.77Å in C2v.

The electronic 12A′ ground state surface of the lithium trimer has been calculated

using valence electron FCI theory with the lithium cores represented using the SBK

pseudopotential [135]. It was found to be necessary to systematically include core-

valence correlation in the calculation for precise calculations of diatomic spectroscopic

values. The basis set chosen is a p and d function augmentation of the SBK basis

set [135] as given by Labello, Ferreria, and Kuntz [133] with the s, p and d functions

optimized with the inclusion of a core polarization potential to predict the correct

diatomic dissociation energy. With the recommended basis set of this work, the use of

the core polarization potential to include core-valence effects lead to an improvement

of 26.4 mÅ in the bond length, 6.44 cm−1 of the vibrational frequency and 144.605

cm−1 dissociation energy of Li2.
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Figure 5.5. The Li3 12A′′ potential energy surface calculated at the second order spin restricted open-shell Møller-Plesset
perturbation theory for collision angles 90◦ (C2v) to 45◦. The dissociation energy is 14156.5cm−1 with RC = 2.40Å and
re = 2.77Å in the C2v symmetry.
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To interpolate between sparse ab initio data points, the full interpolant moving

least squares method was implemented using a scaled exponential weighting function

with a smooth cutoff function as a constraint on the number of included data points.

The surface was expanded using the inverse spatial coordinates with a 6 order bivari-

ate polynomial. With this interpolation method the 12A′ surface was calculated for

collision angles 45◦ to 90◦ near the equilibrium Jacobi bond lengths of re = 3.218Å and

RC = 2.238Å. A conical intersection is found between the 12A1 and 12B2 states in C2v

symmetry near the equilibrium geometry of the 12A′ surface∗. Because of the location

of this intersection it is necessary to account for its existence in both chemical and

ultracold physics. A preliminary surface for the excited state 12A′′ is also presented at

the ROMP2 level of theory. It is the authors intention to continue to study the long

range interactions of the lithium trimer on the ground 12A′ surface and to investigate

both elastic collisions and photoassociation of the lithium diatom-atom pair for the

formation of ultracold trimers.

∗It should be noted that the global minimum of the 12A′ surface correlates to the 12B2 state,
and not the expected 12A1 curve.
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Figure 5.6. Schematic geometries of the D2h and Cs stable tetramer structures.

5.2 Structure and thermochemistry of K2Rb, KRb2 and K2Rb2
∗

Theoretical work on electronic structure of few-body alkali systems has been lim-

ited to lighter homonuclear trimers, in particular doublet [8] and quartet [125] Li3,

doublet K3 [127] and quartet Na3 [142]. The recent work of Żuchowski and Hutson

[67] has characterized the atomization energy of the alkali homo- and heteronuclear

triatomic species formed from Li, Na, K, Rb, and Cs. These homonuclear trimers

have 2A′ ground electronic states in Cs symmetry that correlate to B2 symmetry in

C2v. Previous mixed alkali tetramer studies have been limited to structure studies of

LinXm (X=Na and K) [143, 144] and that of RbCs+RbCs [109]. To date only the

calculations of Byrd et al. [10, 11] have been reported for the heteronuclear KnRbm

tetramer molecules.

∗Text and figures reprinted with permission from [10]. Copywrite 2010 The American Physical
Society.
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re
K2 3.956
Rb2 4.233
KRb 4.160

rK−Rb r′K−Rb θ

K2Rb C2v 4.279 4.279 70.68
K2Rb Cs 4.361 5.234 48.81
KRb2 C2v 4.271 4.271 82.13
KRb2 Cs 4.193 5.179 57.07

rRb−Rb rK−K rK−Rb θK−Rb−Rb θK−K−Rb

K2Rb2 D2h 8.224 4.0307 4.579
K2Rb2 Cs 4.761 4.408 4.189 53.34 55.476

Table 5.3. Calculated CCSD(T)/QZVPP molecular geometries (in Angstroms and
degrees).

Electronic structure calculations were performed on K2, Rb2, KRb, K2Rb, KRb2,

and K2Rb2 at the CCSD(T) [96, 145] level of theory. As core-valence effects can

be important in alkali metals, we correlate the inner valence electrons in potassium,

keeping only 1s22s22p2 in the core. Rubidium is heavy enough that relativistic effects

are significant, so we replace its inner shell electrons by the Stuttgart small-core

relativistic ECP (ECP28MDF) [146]. Basis sets are taken from the Karlsruhe def2-

TZVPP [147] and def2-QZVPP [84] orbital and fitting sets as discussed in Chapter

3.

Optimized geometries for K2, Rb2, KRb, K2Rb, KRb2, and K2Rb2 were found at

the CCSD(T)/def2-TZVPP level of theory. Calculation of the harmonic vibrational

frequencies was done to verify that the calculated structures were minima on the

potential energy surface, and the calculated frequencies were used to obtain vibra-

tional zero point energy (ZPE) corrections. These structures were further optimized

at the CCSD(T)/def2-QZVPP level of theory, leading to a 0.07 Å correction in the

bond lengths and 60 cm−1 in final atomization energies. The CCSD(T)/def2-QZVPP

geometries are tabulated in Table 5.3.
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ZPE TZVPP De TZVPP De QZVPP D0 CBS
CCSD(T) CCSD(T) CCSD(T)-F12b CCSD(T) CCSD(T)-F12b CCSD(T) CCSD(T)-F12b

K2
a 46.0 4098.8 4276.9 4460.0 4369.7 4677.6 4391.5

Rb2
b 26.8 3494.3 3723.3 3842.7 3885.4 4070.2 3976.8

KRbc 35.4 3829.4 4015.6 4135.6 4128.7 4323.6 4175.7
K2Rb C2v 69.8 5588.2 5805.5 6067.7 5995.7 6574.2 6009.4
K2Rb Cs 72.4 5606.3 5843.7 6179.1 6015.9 6524.7 6069.1
KRb2 C2v 62.8 5394.5 5635.1 5911.0 5842.2 6043.5 5788.3
KRb2 Cs 59.0 5215.9 5475.4 5728.5 5690.4 6225.1 5930.5
K2Rb2 D2h 129.5 10210.8 10669.4 11275.3 11011.1 11922.7 11131.0
K2Rb2 Cs 126.2 10198.3 10629.9 11211.4 10993.7 11824.6 11133.0

Table 5.4. Dissociation and zero point energies calculated using CCSD(T) and CCSD(T)-F12b correlation methods with
successive basis sets and CBS extrapolated values (in cm−1).

aExperimental value 4405.389 cm−1[148].

bExperimental value 3965.8 cm−1[149].

cExperimental value 4180.417 cm−1[35].
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Evaluation of the contribution of scalar relativistic corrections to K2 indicate a

small 0.005 Å and < 8 cm−1 contribution in all electron correlation calculations

[86], while for Rb2 it has been shown [150] that the small core Stuttgart pseudopo-

tential gives an accurate representation of relativistic effects on the bond length and

dissociation energy.

Single point energy calculations were then done using the CCSD(T)-F12b [110,

111] (explicitly correlated CCSD(T)) level of theory. The use of explicitly corre-

lated methods accelerate the slow convergence of the one-particle basis set by includ-

ing terms containing the inter-electron coordinates into the wavefunction [151], thus

yielding very accurate results using triple and quadruple zeta basis sets. In addition,

we estimate the complete basis set (CBS) limit using the two-point extrapolation

formula of Helgaker et al [152]

ECBS =
n3En − (n− 1)3En−1

n3 − (n− 1)3
. (5.15)

In Table 5.4 the CCSD(T) and CCSD(T)-F12b dissociation energies for the def2-

TZVPP and def2-QZVPP basis sets are tabulated as well as the zero point energy

(ZPE) corrected atomization energies. After extrapolation, the diatomic CCSD(T)-

F12b ZPE corrected dissociation energies agree very well with the experimental di-

atomic dissociation energies, as shown in Table 5.4. The ab initio calculations were

done using the Gaussian 09 [153] and MOLPRO [115, 123, 154] packages.

We have found that both K2Rb and KRb2 have two energetically close local min-

ima on the ground state surface, one of C2v symmetry and another less symmetric Cs

structure (geometries given in Table 5.3). While dependent on the level of theory used

to evaluate the atomization energy, we conclude that the symmetric C2v geometry is

the global minima for each trimer. The atomization energies calculated are found to

be in good agreement with those recently published by Żuchowski and Hutson [67].
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The K2Rb2 tetramer is found to have two nearly degenerate minima on the po-

tential energy surface. One is a rhombic structure of D2h symmetry, and another

planar (Cs) structure that corresponds to an interchange of K and Rb atoms. These

structures are bound by ∼ 3000 cm−1 with respect to K2+Rb2 or KRb+KRb. The

electronic structure of these two isomers is very similar, and their stability is likely

due to three-center bonds of the sort proposed for LinNa4−n clusters [143, 144]. The

rhombic K2Rb2 structure has a short (∼ 4Å) distance and a long (∼ 8Å) Rb-Rb

distance.

To determine if there is any barrier to the KRb+KRb→K2Rb2 →Rb2+K2 reac-

tion, we calculate a minimum energy path for the KRb+KRb→K2Rb2 and

Rb2+K2→K2Rb2 reactions. We start by locating the minimum energy geometric

configuration at long range. This is done by calculating ab initio the dipole and

quadrupole electrostatic moments of K2, Rb2 and KRb and then minimizing the long

range electrostatic interaction energy [70] with respect to the angular configuration

of the molecules. This minimization resulted in a T type geometry for both K2+Rb2

and KRb+KRb. We have recently shown that long range expansions of this type

accurately reproduce diatom-diatom interaction energies [3]. From these initial ge-

ometries, the reaction path was followed by freezing the diatom-diatom distance and

optimizing the diatomic bond lengths and angular orientations at the frozen core

CCSD(T)/def2-TZVPP level of theory. Single point energies were evaluated along

this path using the CCSD(T)-F12b level of theory including the core-valence corre-

lation energy and extrapolated to the CBS limit as discussed above. This procedure,

in which a high level energy profile is evaluated along a reaction path calculated at a

lower level of theory, is known to be a good approximation to the energy profile along

the reaction path calculated at the high level of theory [155].
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We find that the KRb+KRb dissociation limit connects to the D2h minima while

the K2+Rb2 dissociation limit connects to the Cs minima, with no barrier found to

either reaction. A similar conclusion was obtained for the RbCs+RbCs→Rb2+Cs2

reaction by Tscherbul et al [109]. To finish characterizing the reaction path going

from one dissociation limit to the other, we locate the transition state and calculate

the intrinsic reaction coordinate (IRC) [156] reaction path connecting the Cs and

D2h minima structures at the same level of theory as describe above. Optimizing

the transition state geometry at the inner valence CCSD(T)/def2-TZVPP discussed

previously and evaluating an accurate atomization energy using our CCSD(T)-F12b

prescription we find that the transition state is 1167.3 cm−1 above the D2h dissociation

energy. The calculated reaction path is plotted in Figure 5.7 using the approximate

reaction coordinate

∆R =
1

2
(RK−K + RRb−Rb) − 1

2
(RK−Rb + R′

K−Rb) (5.16)

where RA−B is the distance between atoms A and B.

The formation and trapping of rovibrational ground state KRb diatoms with a

high phase space density [35] offers the opportunity to study chemical reactions in the

ultra-cold regime [157]. As seen in Figure 5.8, the three-body reaction KRb+Rb→

Rb2+K is energetically forbidden at ultra-cold temperatures, leaving the endothermic

four-body reaction KRb+KRb→Rb2+K2 as the only pathway to forming Rb2 within

the trap. Measurements of the population of Rb2 within the trap will then allow

direct probing of the exchange reaction rate of KRb+KRb. Inherent in this exchange

reaction is the possibility of studying the role of fermionic/bosonic spin statistics in

ultra-cold chemical reactions [158–164]. In this temperature regime, s-wave scattering

of fermionic 40KRb is suppressed which should greatly diminish the reaction rate of

40KRb+40KRb, thus leaving the trap stable to four-body losses. If instead the trap
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Figure 5.7. Minimum energy path connecting the KRb+KRb and K2+Rb2 dissoci-
ation limits. Included are schematic geometric at points of interest, where open and
closed circles represent rubidium and potassium atoms respectively.
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Figure 5.8. Schematic energy level diagram for fragment and structure energies
involving KRb with KRb and separated atoms. Inset figure shows the small difference
between the KRb+KRb and K2+Rb2 asymptotes.
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was formed with bosonic 39KRb or 41KRb molecules, no such collisional suppression

is expected, where we then expect comparably large reaction rates to occur. It is also

possible to explore recent theoretical predictions [164] which show that if a bosonic

dimer is composed of two fermions of very different masses the resulting exchange

reaction should still be suppressed despite the overall bosonic nature. This could be

accomplished by using fermionic 40K and a long lived 84Rb or 86Rb. The comparison

between reaction rates in the above described interactions can then be used to directly

study the effects of fermion/boson spin statistics to that of chemical reactions.
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5.3 Structure, energetics, and reactions of alkali tetramers∗

The successful trapping of both homonuclear and heteronuclear molecules in their

ground rovibrational states reduces the probability of inelastic collisions but does not

preclude the possibility of reactive collisions or association reactions. The thermo-

chemistry of all homonuclear and heteronuclear diatomic alkali structures is now well

documented [67]. In contrast, with the exception of Li3, the structure and binding

energies of higher alkali clusters are not well understood. Züchowski and Hutson [67]

have explored the possibility of fragmentation reactions, such as Na2+Na2 →Na3+Na,

and found that these (2 + 2 → 3 + 1) reactions are all endothermic and that trimer

formation in ultracold traps is very unlikely. Byrd et al. [10] have recently carried out

a detailed study of the structure of K2Rb, KRb2 and K2Rb2. They find that trimer

formation is strongly endothermic for both K2+Rb2 and KRb+KRb reactions, in

agreement with the findings of Züchowski and Hutson [67]. The association reac-

tions, K2+Rb2 →K2Rb2 (Cs) and KRb+KRb→K2Rb2 (D2h), however, are found to

be strongly exothermic with stable minima that are energetically very similar for both

D2h and Cs symmetries. The transition state connecting these two minima is found

to be 1167 cm−1 above the (D2h) dissociation energy, indicating that both symmetries

will be sampled for either association reaction.

The existence of higher clusters of alkali atoms has been reported in the adiabatic

expansion of alkali vapors as early as the 1960s [165]. At room or elevated tem-

peratures, alkali vapors are now known to contain small concentrations of molecular

clusters ranging from double molecules, such as Na4, to higher clusters containing as

many as 100 atoms [166, 167]. Foster et al. [168] produced small clusters in Li, Na, K

and Cs vapors and measured ionization potentials of both homopolar and heteropolar

∗Text and figures reprinted with permission from [11]. Copywrite 2012 The American Institute
of Physics.
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clusters ranging from Li4 to Cs4. Similar clusters formed in alkali vapors have been

suggested by Ewing et al. [169] to explain experimental PVT data. Robbins, et al.

[170], in adiabatic beam expansion studies of Na vapor, give ionization potentials of

Na clusters containing up to eight atoms. Multiphoton dissociation, excitation, and

ionization processes in NamKn clusters are reported by Bartelt, et al. [171].

The ground states of homogeneous alkali clusters have been studied using a vari-

ety of quantum computational models [172–176]. In contrast, very few studies of the

geometry and electronic structure of heterogeneous alkali clusters have been reported.

Dahlseid et al. [143] have calculated the ground state properties and excitation en-

ergies of LixNa4−x clusters. They report HF/6-31G(d) geometries and energies, and

single energy MP2 results at optimized HF geometries. One stable planar (Cs) struc-

ture and two stable rhombic (D2h) structures were found for the tetramer Li2Na2.

Jiang et al. [144] investigated Li2Na2 and Li2K2 structures as part of a more general

study of neutral and ionic LinNam and LinKm clusters. Their geometry optimizations

were performed at the B3LYP/6-31G(d) level and refined at the B3LYP/6-311G(d)

level. They find one stable rhombic (D2h) structure for Li2Na2 and Li2K2 but do not

find a second D2h structure or the planar (Cs) structures reported by Dahlseid et al.

[143]. Their structure for Li2K2 actually corresponds to the higher energy D2h state

with the K atoms located on the long diagonal. Bonac̆ić-Koutecký et al. [177] have

carried out the most complete study of Li2Na2 to date. They performed complete ac-

tive space self-consistent field (CASSCF-CI) calculations with the (13s3p1d/6s3p1d)

basis set for Li and the (12s8p1d/7s4p1d) basis set for Na, based on geometry op-

timization at the CASSCF level with the 3-21G basis set. Correlation effects were

examined at the full CI (valence electrons), MRSD-CI, and MRD-CI methods in order

to check whether there was an effect on the energy ordering of the several conform-

ers of Li2Na2. They report two stable D2h conformers, a stable Cs structure, and
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Tetramer R11 R22 R12 Erel (cm−1)
Li2(1)Li2(2) I 2.689 5.446 3.037 0.
Li2(1)Li2(2) TS 4.171 4.171 2.960 4721.8
Li2(1)Na2(2) I 2.720 5.923 3.259 0.0
Li2(1)Na2(2) II 5.852 3.143 3.321 1738.7
Li2(1)Na2(2) TS 4.381 4.748 3.230 5218.5
Li2(1)K2(2) I 6.336 4.096 3.772 0.0
Li2(1)K2(2) II 2.734 7.067 3.789 1348.5
Li2(1)K2(2) TS 3.857 6.413 3.742 4146.8
Li2(1)Rb2(2) I 6.479 4.453 3.931 0.0
Li2(1)Rb2(2) II 2.733 7.427 3.957 1285.3
Li2(1)Rb2(2) TS 3.735 6.882 3.915 3713.9
Li2(1)Cs2(2) I 6.559 4.912 4.098 0.0
Li2(1)Cs2(2) II 2.727 7.959 4.207 2786.6∗

Na2(1)Na2(2) I 6.259 3.156 3.505 0.0
Na2(1)Na2(2) TS 4.774 4.774 3.375 4576.0
Na2(1)K2(2) I 6.745 4.105 3.948 0.0
Na2(1)K2(2) II 3.164 7.442 4.043 2643.8∗

Na2(1)Rb2(2) I 6.920 4.454 4.115 0.0
Na2(1)Rb2(2) II 3.162 7.834 4.224 2501.2∗

Na2(1)Cs2(2) I 6.997 4.923 4.277 0.0
Na2(1)Cs2(2) II 3.148 8.372 4.472 3698.1∗

K2(1)K2(2) I 7.994 4.116 4.496 0.0
K2(1)K2(2) TS 6.148 6.148 4.347 3471.8
K2(1)Rb2(2) I 4.116 8.388 4.672 0.0
K2(1)Rb2(2) II 8.209 4.462 4.672 29.3
K2(1)Rb2(2) TS 6.866 5.972 4.550 2115.4
K2(1)Cs2(2) I 8.304 4.945 4.832 0.0
K2(1)Cs2(2)II 4.086 8.939 4.914 1088.6∗

Rb2(1)Rb2(2) I 8.613 4.458 4.849 0.0
Rb2(1)Rb2(2) TS 6.625 6.625 4.685 3225.9
Rb2(1)Cs2(2) I 8.726 4.947 5.016 0.0
Rb2(1)Cs2(2) II 4.426 9.178 5.095 1009.5∗

Cs2(1)Cs2(2) I 9.397 4.899 5.299 0.0
Cs2(1)Cs2(2) TS 7.257 7.257 5.132 2920.9

Table 5.5. Calculated CCSD(T)/def2-TZVPP tetramer geometries with D2h sym-
metry (units are in ang.).
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Tetramer R12 R23 R34 R14 φ123 φ234

Li1Li2Na3Na4 3.031 3.341 3.466 3.291 54.82 118.36
Li1Li2K3K4 3.007 3.867 4.422 3.815 58.10 104.76
Li1Li2Rb3Rb4 2.988 4.075 4.742 3.994 58.34 100.70
Li1Li2Cs3Cs4 3.007 4.226 5.252 4.165 60.16 95.56
Na1Na2K3K4 3.571 3.873 4.655 3.991 58.41 111.18
Na1Na2Rb3Rb4 3.455 4.228 4.819 4.180 57.73 107.46
Na1Na2Cs3Cs4 3.492 4.338 5.408 4.305 60.12 101.26
K1K2Rb3Rb4 4.503 4.673 4.861 4.653 55.61 120.98
K1K2Cs3Cs4 4.569 4.789 5.486 4.751 57.26 114.73
Rb1Rb2Cs3Cs4 4.985 4.915 5.579 4.874 56.40 118.47

Table 5.6. Calculated CCSD(T)/def2-TZVPP tetramer geometries with Cs sym-
metry (Units are in ang. and degrees).

the transition state coupling the two D2h states. Antoine et al. [178] studied the

static dipole polarizability of several small lithium-sodium clusters using both DFT

and CISD methods. They report one stable D2h structure for Li2Na2. Byrd et al.

[10] report one stable D2h structure, a stable Cs structure, and the transition state

between these two structures for the tetramer K2Rb2.

In this section we report calculated energetics for all possible alkali association

reactions of the type X2+X2 →X2X2, X2+Y2 →X2Y2 and XY+XY→X2Y2. We show

that stable tetramers are found in both D2h and Cs symmetries for reaction pairs

from Li2 to Cs2. For Li2Na2, Li2K2, Li2Rb2 and K2Rb2, in addition to a stable

Cs structure, we find two stable D2h structures corresponding to both the light

atoms and heavy atoms located on the short diagonal of the rhombus. The transition

state (TS) connecting the two stable D2h conformers has also been found.

Electronic structure calculations were performed for tetramers formed from all

homopolar dimers ranging from Li2 to Cs2 and all heteropolar dimers ranging from

LiNa to RbCs. Optimized geometries were found at the CCSD(T) level of theory [96,

97] with the Karlsruhe def2-TZVPP basis set [147]. The stability of these tetramers is

mainly due to three-center bonds, as first described by Dahlseid et al. [143], and not
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primarily by correlation effects since these tetramer structures exhibit stability at the

HF level of theory. Calculations carried out using DFT methods also indicate stability

but with less accurate geometry and thermochemistry since double excitations are

important. The CCSD(T) level of correlation was chosen based on previous studies

by our group on alkali molecules. Harmonic vibrational frequencies were calculated

to insure that we had located stable geometric minima. For Li, we chose to correlate

all electrons; for Na and K, we correlated the valence and next inner shell electrons.

For the systems containing Rb or Cs, we replaced the inner valence electrons of

these atoms with the Stuttgart small-core relativistic effective core potentials [146].

Calculations optimized at the CCSD(T) level of theory with the Karlsruhe def2-

QZVPP basis set [84] are reported by Byrd et al. [10] for the K2Rb2 tetramer. These

larger basis set calculations show only small corrections in the optimized bond lengths

and tetramer formation energies from the results reported here. However, they show

that improved thermochemistry is found from single point energy calculations using

the CCSD(T)-F12b [110, 111] explicitly correlated level of theory. All calculations

were performed with the GAUSSIAN 09 [153], MOLPRO 2010.1 [123] and CFOUR

[179] electronic structure packages.

Stable tetramer structures were found for both 1A′ (Cs) and 1Ag (D2h) electronic

states for all molecular tetramers from Li4 to Cs4. We find that stable structures with

D2h symmetry can form from X2+X2 or XY+XY reactant pairs. Stable structures

with Cs symmetry can form from either X2+Y2 or XY + XY reactant pairs. A

large barrier, which arises from the high rearrangement energy required to form a

heteronuclear bond, exists between X2+Y2 reactants and the formation of a stable

tetramer with D2h symmetry. However, the energetically allowed reaction path with

Cs symmetry for X2+Y2 reactant pairs results in a tetramer that is energetically

similar to a D2h structure. Byrd et al. [10] have shown that there is a weak barrier
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Reaction kcal/mol cm−1

LiNa+LiNa→Li2Na2 I 16.41 5740.0
LiNa+LiNa→ Li2Na2 II 11.44 4001.3

LiK+LiK→Li2K2 I 14.56 5090.8
LiK+LiK→Li2K2 II 10.70 3742.3

LiRb+LiRb→Li2Rb2 I 13.17 4605.6
LiRb+LiRb→Li2Rb2 II 9.68 3386.2
LiCs+LiCs→Li2Cs2 15.24 5328.6
NaK+NaK→Na2K2 12.58 4399.0

NaRb+NaRb→Na2Rb2 11.11 3887.1
NaCs+NaCs→Na2Cs2 12.98 4540.8
KRb+KRb→K2Rb2 I 7.44 2602.5
KRb+KRb→K2Rb2 II 7.36 2573.2
KCs+KCs→K2Cs2 8.61 3010.0

RbCs+RbCs→Rb2Cs2 7.55 2640.6
Li2+Li2→Li2Li2 17.96 6282.5

Na2+Na2→Na2Na2 9.78 3420.0
K2+K2→K2K2 8.53 2984.4

Rb2+Rb2→Rb2Rb2 6.50 2274.6
Cs2+Cs2→Cs2Cs2 5.68 1985.2

Table 5.7. Reaction Energies for Alkali Tetramer Formation with D2h symmetry.
See Table 5.5 for the difference between I and II geometries.

between the K2Rb2 tetramers with Cs or D2h symmetry. Thus both symmetries will

most likely be sampled for either association reaction.

The significant question, for ultralow temperature collisions of these reactant pairs,

is whether a long range barrier exists that would prevent reactants from forming

stable tetramer structures. A model for describing long range interactions in alkali

diatom pairs was recently reported [3]. This model included dipole-dipole (C3) terms,

quadrupole-quadrupole (C5) terms and both dispersion and dipole induction energy

(C6) terms. Stone [70] has shown that the C3 and C5 terms can exhibit either attrac-

tive or repulsive long range behavior, depending on the orientation of the colliding

pairs. This suggests that a barrier-less path should exist for randomly oriented col-

lisions. Byrd et al. [10] have examined this possibility by carrying out calculations

for K2+Rb2 and KRb+KRb, at large diatom separations, as a function of reactant

orientations. They find a reaction path that is barrier-less for the formation of a
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Reaction kcal/mol cm−1

Li2+Na2 → Li2Na2 13.23 4627.0
LiNa+LiNa→ Li2Na2 14.01 4901.2
Li2+K2 → Li2K2 11.83 4136.5
LiK+LiK→ Li2K2 12.95 4530.1
Li2+Rb2 → Li2Rb2 10.45 3653.9

LiRb+LiRb→ Li2Rb2 11.94 4175.0
Li2+Cs2 → Li2Cs2 11.23 3928.8
LiCs+LiCs→ Li2Cs2 11.48 4016.9
Na2+K2 → Na2K2 9.25 3236.2
NaK+NaK→ Na2K2 8.90 3112.9
Na2+Rb2 → Na2Rb2 7.92 2770.0

NaRb+NaRb→ Na2Rb2 7.81 2731.6
Na2+Cs2 → Na2Cs2 8.62 3013.9

NaCs+NaCs→ Na2Cs2 7.75 2710.2
K2+Rb2 → K2Rb2 7.54 2637.4
KRb+KRb→ K2Rb2 7.42 2593.5
K2+Cs2 → K2Cs2 7.82 2735.2
KCs+KCs→ K2Cs2 6.92 2421.6
Rb2+Cs2 → Rb2Cs2 6.91 2416.4

Table 5.8. Reaction Energies for Alkali Tetramer Formation with Cs symmetry.

tetramer with either reactant pair. Similar findings were reported by Tscherbul [109]

for the RbCs+RbCs reactant pairs and by de Miranda et al. [38] for KRb+KRb

reactant pairs.

The CCSD(T)/def2-TZVPP geometries are tabulated in Table 5.5 for the stable

D2h structures and in Table 5.6 for the Cs structures. In general, the surfaces with

D2h symmetry are very flat. We find two stable D2h structures for the tetramers

Li2Na2, Li2K2, Li2Rb2 and K2Rb2 that are close in energy. For these four tetramers,

a stable D2h structure is found for both the case where the heavy atoms exhibit a

short separation and the case where the light atoms exhibit a short separation. The

relative energies of these two conformers are given in Table 5.5. For the tetramers,

Li2K2 and Li2Rb2, the more stable structure exhibits short heavy atom separation.

For the tetramers, Li2Na2 and K2Rb2, the more stable structure exhibits long heavy

atom separation. The transition state structure for these four tetramers requires a
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multi-reference treatment of the valence electrons since different orbital occupancies

are found for the two possible D2h structures. There are two degenerate D2h struc-

tures for the tetramers Li2Li2, Na2Na2, K2K2, Rb2Rb2 and Cs2Cs2. These could be

differentiated by isotope substitution on one diatom.

Our results for Li2Na2 are in agreement with the MP2/RHF calculations reported

by Dahlseid et al. [143] who found both of the stable D2h structures and a stable

Cs structure. Their optimum geometries are somewhat extended compared with the

results in this work since their optimization was carried out at the SCF level. A

second complete study of Li2Na2 is reported by Bonac̆ić-Koutecký et al. [176] who

also located the transition state connecting the two stable D2h structures. They

report energies obtained from a full CI treatment for the valence electrons that are

in good agreement with the CCSD(T) results reported here.

Reaction energies for the tetramer association reactions are given in Table 5.7 for

structures with D2h symmetry and in Table 5.8 for reactions resulting in tetramers

with Cs symmetry. Reaction energies are defined as the total electronic energy for

the tetramer minus the total electronic energies of the reacting dimer structures.

Zero-point energy corrections are not included since they are small for these alkali

structures and partially cancel in the calculated reaction energies. In general, the

tetramers formed from the lighter alkalis exhibit larger association energies than

those formed from the heavier alkalis. Comparing reaction energies for tetramers

with Cs symmetry, reactions of the type X2+Y2 →X2Y2 are more exothermic than

reactions of the type XY+XY→X2Y2, with the exception of tetramers formed from

diatoms that contain Li. For the tetramers, Li2Na2, Li2K2, Li2Rb2 and K2Rb2, the

Cs structure formed from heteropolar reactants lies energetically between the two

stable D2h structures. Of particular interest is formation of the K2Rb2 tetramer,

where all reaction paths appear to be energetically similar. At low temperatures,
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direct formation of tetramers is unlikely, owing to the large exothermicity associated

with these association reactions, but atom exchange reactions (X2+Y2 →XY+XY)

are possible for species where the reaction energy is similar in either direction.

Other groups of alkali tetramers, based on the X2+XY→X3Y diatom reaction

pair and the X2Y+X→X3Y atom-radical reactions, are possible. This first group of

reactions has been previously reported for the formation of Li3Na [143, 144, 178],

for the formation of LiNa3 [143, 144, 177, 178], and for the formation of Li3K and

LiK3 [144]. In general, this group of tetramers exhibits Cv symmetry with two stable

structures corresponding to both acute and obtuse X3 angles. Calculated reaction

energies are similar to those reported here for diatom-diatom association reactions.

Reactions of the free radical type, X2Y+X→X3Y, would be more energetic but are

difficult to study experimentally.
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5.4 Rubidium hydroxide associative detachment

Advances in the formation of cold molecules have opened up avenues into many

branches of the physical sciences [14, 180]. For chemical physics, applications range

from precision spectroscopy [46], to the study [26, 38] and control [50] of cold chemical

reactions. Other areas of physics benefit greatly from the study of cold molecules,

such as condensed matter physics [51], and the search for novel quantum gases [53]

and phases [54]. Molecular ions have the further advantage of being easily trapped

and cooled using radio frequency traps and sympathetic cooling [181]. The recent

experimental work of Deiglmayr et al. [4] has co-trapped cold rubidium with hydrox-

ide and investigated the associated reactive collisional processes. Their measured ion

loss rate of 2×10−10 cm3s−1 was found to be significantly smaller than the estimated

Langevin ion capture rate of 4.3 × 10−9 cm3s−1, but much larger than any expected

quenching rate. The goal of this study is to identify the associative detachment

process(es) that lead to the unexpectedly low measured reaction rate.

Electronic structure calculations were performed on RbH, RbO, OH, RbOH and

associated anions using a combination of perturbation and coupled cluster theory [97].

Second order Møller-Plesset (MP2) perturbation theory and coupled cluster theory

with all singles, doubles, and perturbative triples (CCSD(T)) energy and gradient cal-

culations in this work were carried out using the CFOUR [179] and MOLPRO 2010.1

[182] quantum chemistry packages. Higher order calculations involving CCSDT and

CCSDT(Q) (all triples and perturbative quadruples respectively [183]) were done us-

ing the MRCC program of M. Kállay [184]. For open shell systems, the spin restricted

variants of these theories were used. Due to the size of rubidium, there are a number

of correlation space choices available for consideration. We have adopted the same

notation as Sullivan et al. [185] where valence only calculations (H:1s; O:2s2p; Rb:5s)

are referred to as relaxed valence (rv). Increasing the correlation space size to in-
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r(M-H) r(M-O) ZPE∗[186] EA AE
OH 0.9698 8.53 162.91
Exp. 0.9696[187] 8.51[186] 161.53[188]
OH− 0.9643 8.55 1.8405 176.51
Exp. 0.9643[189] 8.51[189] 1.8277[190] 175.65[191]
RbO 2.3548 0.79 102.21
Exp. 2.2541[192] 0.84[192]
RbO− 2.2564 0.65 0.1002 58.90
RbH 2.3919 1.12 61.39
Exp. 2.37[193] 1.34[193]
RbH− 2.5415 1.66 0.3604 47.11
RbOH 0.9551 2.3408 11.72 291.26
Theory 0.959[194] 2.472[194] 11.36[194]
RbOH− 0.9567 2.4166 11.27 0.2912 247.98

Table 5.9. Computed bond lengths, harmonic zero point energies, electron affinities
(EA) and atomization energies (AE) for RbOH, its constitutes and their anions (Units
are in angstroms, electron volts and 10−3 a.u. as appropriate).

volve the first set of sub-valence orbitals (H:1s; O:1s2s2p; Rb:4s4p5s) results in the

relaxed inner-valence (riv), while spaces including yet deeper orbitals (H:1s; O:1s2s2p;

Rb:3s3p3d4s4p5s) are called riiv and so forth. Valence (rv) only calculations involv-

ing rubidium and oxygen require extra care, as the usual method of energy sorting

orbitals in selecting the frozen core will fail since the energy of 2s orbital of oxygen

is below the 4p orbital of rubidium. Failing to properly choose the core orbitals for

valence calculations will lead to significant errors.

While there are many basis sets available for the first row elements, the basis set

selection for rubidium is sparse. This is further complicated by the need for diffuse

functions to accurately describe electron affinities [195]. Previous calculations [10, 11]

involving rubidium using the Karlshruhe def2-nZVPP basis sets [84, 147] (n=T,Q

zeta quality basis sets with two extra spdf correlation polarization functions) have

shown good experimental agreement for both dissociation energies and bond lengths

of the Rb2 diatom. For rubidium these basis sets use the small-core ECP28MWB [85]

Stuttgart pseudopotential, which removes the argon core electrons from the calcula-
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tion while leaving the 4s4p5s electrons free for use in further correlation calculations.

The addition of even tempered spdf diffuse functions to these basis sets was done

to better describe the anion, while the addition of these diffuse functions has also

shown to improve molecular properties [5, 87] as well. This aug-Def2-nZVPP basis

set was used for rubidium in all electronic structure calculations in this work. To best

describe the OH bond, the optimized aug-cc-pVnZ valence [195] and aug-cc-wCVnZ

weighted core-valence [196] correlation basis sets were used for hydrogen and oxygen

respectively.

Molecular structures were optimized using the CCSD(T)/riv level of theory us-

ing the quadruple zeta (QZ) quality basis sets ∗. Frequency calculations at the riv

CCSD(T) level of theory using the QZ basis sets were performed for each optimized

structure to identify whether the structure was a transition state or a local minimum

of the potential energy surface. The final ground state structure of the RbOH− ion is

found to be linear, consistent with the ground state structure of the neutral molecule

[194, 197]. Additionally the conformers OHRb− and ORbH− were also investigated

and found to be transition states. Vibrational harmonic zero-point energy (ZPE) cor-

rections were computed for the final structures at the CCSD(T)/riv level of theory

using the QZ basis set. Computed bond lengths and ZPE corrections are listed in

Table 5.9.

Calculations involving the riiv electrons of rubidium require special care, as rel-

ativistic and core correlation effects are strong. The Roos atomic natural orbital

(ANO) basis set [198] was chosen for its availability for all atoms present and its

noted consistency. Before use the basis set was completely uncontracted so as to be

as flexible as possible in subsequent correlation calculations. Scalar relativistic effects

∗It should be noted that bond lengths computed using MP2 theory differ only by a few mÅ from
CCSD(T) calculations using the same basis set, at a much cheaper computational cost
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method space Rb+OH− Rb+OH
CCSD(T)/TZ riv 75.40 129.25
CCSD(T)/QZ riv 74.63 130.47
CCSD(T)/Extrap. riv 74.07 131.36
∆CCSD(T)/ANO riiv 0.25 0.21
Total Energy - 74.20 131.54

Table 5.10. Breakdown of the contributions of various levels of theory to the Rb-O
bond energy (in 10−3 a.u.) for both neutral and charged RbOH.

were accounted for by adding in the one-electron second-order Douglas-Kroll-Hess

[107, 108] contribution. For rv and riv calculations, which use the Def2 basis sets

for rubidium, the small core MWB and MDF family of pseudopotentials have been

shown [85, 146] to accurately account for the relativistic contributions to the bond

length and dissociation energy.

The complete basis set limit (CBS) of the various contributions to the total energy

was estimated using the two point linear extrapolation formula of Helgaker et al. [152],

ECBS(method) =
n3En − (n− 1)3En−1

n3 − (n− 1)3
. (5.17)

This extrapolation scheme was chosen over other more optimized schemes due to the

spread of basis sets and correlation spaces used here. The final interaction energy is

computed from the various contributions by the following formula

Eint = ECBS(CCSD(T)/riv) + E(∆CCSD(T)/riiv), (5.18)

where E(CCSD(T)/riv) is the total CCSD(T)/riv energy and

E(∆CCSD(T)/riiv) =

E(CCSD(T)/ANO/riiv) − E(CCSD(T)/ANO/riv) (5.19)
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Figure 5.9. Dissociation limits of rubidium hydroxyl (left) and its anion (right)
up to the atomization limit. Energies are computed at the CCSD(T)/CBS level of
theory.

is the riiv contribution. Higher order triples contributions beyond the CCSD(T) level

of theory were estimated by performing CCSDT/rv calculations using QZ quality

basis sets. Effects of connected quadruple excitations, known [191] to be important

for OH−, were estimated using CCSDT(Q)/rb with the TZ quality basis sets. It was

found that the contribution of these higher order terms to the final EA are small

(< .05 × 10−3 a.u.) due to cancellation. While the riiv correlation contribution is

similarly small for the EA of RbOH at the equilibrium geometry, it becomes more

significant for much shorter Rb-O bond lengths (further discussed below). In Ta-
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ble 5.10, the contributions of each of these corrections to the Rb-O bond energy

are listed. Molecular bond lengths, electron affinities (EA) and atomization energies

(AE) (including the harmonic ZPE correction) are reported in Table 5.9. The excel-

lent agreement with available experimental bond lengths, harmonic frequencies and

electron affinities leads us to expect comparable accuracy for the RbOH complex.

The EA and similar geometric structure of rubidium hydroxyl and its anion, along

with the large difference in neutral and anion dissociation limits illustrated in Fig.

5.9, does not suggest immediately a charge loss pathway. In fact, at 300 Kelvin no

other dissociation channels are energetically accessible. This is clearly illustrated in

Fig. 5.10 where the minimum energy dissociation path of Rb for both RbOH and

its anion are computed at the fixed OH bond CCSD(T)/riv/CBS level of theory. It

can be seen that the neutral and anion curves do not cross at any point along the

incoming path. However it should be noticed that the inner wall of these curves

become nearly degenerate at this level of theory. We examine the inner wall more

closely, by relaxing the OH bond at each Rb-O distance using MP2 gradients (as

noted previously, MP2 bond lengths are very close to CCSD(T) bond lengths), and

find that indeed the neutral and anion curves cross at r(Rb-O)∼ 1.81Å with a

barrier height of Vc(0) ∼ 30.0 10−3 a.u. above the Rb+OH− dissociation limit, as

illustrated in Fig. 5.11. This crossing energy Vc(θ) also includes the CCSD(T)/riiv

correction which provides ∼ 0.4 10−3 a.u. to the final barrier height. This crossing

is energetically accessible if the internal rotational and vibrational energy of OH−

is taken into account. In fact, it is well known that producing rotationally and

vibrationally cool OH− is difficult experimentally [189].

The height of Vc(θ) for geometries other than the linearly minimum energy ap-

proach was also investigated. It was found that for small angle approaches, relative to

the equilibrium geometry, the crossing remains relatively flat, while for angles greater
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than 40 degrees the barrier rapidly increases in height until it is completely energeti-

cally inaccessible (see Fig. 5.11). We estimate then the effective angular phase space

where the curve crossing is accessible to be

ρc(ET , θ) =
1

4π
Θ(ET − Vc(θ) + Γ(v, J)) (5.20)

where Θ(· · · ) is a Heaviside step function representing the height of the crossing as

a function of the collisional angle, Γ(v, J) accounts for any internal motion of the
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complex and ET is the collision energy. The total ion capture cross-section can then

be computed by combining the accessible angular space ρc(ET , θ) and the Langevin

ion capture cross-section [199]

σL(ET ) = π

(

2α

ET

)1/2

(5.21)

as

σtotal(ET ) = 2πσL(ET )ρc(ET , θ) (5.22)

where we have integrated over the azimuthal angular dependence. Here α is the

polarizability of the neutral monomer, kb is the Boltzmann constant and it is assumed

that the reaction probability at the curve crossing is 1.

The thermal rate constant kL is given in terms of the total cross-section as

kL =

(

8

πµβ

)1/2 ∫ ∞

0

d (βET ) (βET ) exp (−βET ) σtotal(ET ) (5.23)

where β = 1/kbT and T is the translational temperature. Inserting Eq.(5.22, substi-

tuting b = βET and integrating over the remaining angular dependence we obtain

kL(v, J) =

(

2

πµβ

)1/2 ∫ ∞

0

d(b)(b) exp(−b)σL(βb)

×
∫ π

0

dθΘ((βb − Vc(θ) + Γ(v, J))/β) sin θ (5.24)

where then Γ(v, J) = T (v, J) is the internal rotation-vibration energy the OH− frag-

ment T (v, J) = G(v) +Fv(J), of the v’th vibrational and J ’th rotational state, which

we take to follow a Dunham series [200]. The distribution of rotational states is as-

sumed to be thermal, but with a temperature Trot (e.g. the rotational energy is not
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Figure 5.11. Inner wall potential energy curve of Rb+OH and its anion computed
for various collisional angles at the CCSD(T)/CBS level of theory with the OH bond
length relaxed at each point of the curve.

thermalized against the translational energy), which gives the vibrational state rate

constant

kL(v) =
1

Qrot

Jmax
∑

J

kL(v, J) exp (−βrotFv(J)) , (5.25)

with the rotational partition function given by

Qrot =

Jmax
∑

J

exp (−βrotFv(J)) . (5.26)
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Here Jmax is the maximum rotational state taken in the series. To evaluate Eq.(5.25)

we use the spectroscopic constants of Rosenbaum et al. [189] in T (v, J) and choose

Jmax such that the thermodynamic contribution of that rotational state is negligible.

A value of Jmax = 15 was found to be more than adequate to converge the sums in

Eqs.(5.25-5.26) even for very high rotational temperatures. The integral in Eq.(5.25)

was evaluated numerically for the first three vibrational levels of OH− as a function

of the rotational temperature, the results of which are plotted in Fig. 5.12. The rate

for v = 0 and v = 1 is found to be much lower than the experimental value, which

is expected considering the energetics of the collision. However this is not the case

for v = 2 where the computed rate is in excellent agreement with the experimental

results. It should be noted that for v = 2 and higher, the incoming collisional energy

is above the curve crossing threshold, and so is a nearly constant as expected.

From these results we expect a predominance of vibrationally excited OH− molecules

within the current experimental apparatus, thus leading to the observed loss rate to

be larger than expected. With additional vibrational quenching this loss rate can

be reduced significantly. This can be done by a longer exposure to the initial neon

buffer gas or by a different choice in buffer gas such as helium (which provides a

better reduced mass ratio). In reducing the reaction rate it should then be possible

to much more efficiently sympathetically cool the trapped hyroxide. Also, due to the

strong vibrational and orientational dependence of the reaction, it should be possible

to probe the reaction process through vibrational state selection or by alignment of

the OH− molecule.
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Chapter 6

Summary and Outlook

In this work we have presented our formulation of the long range interaction

between two arbitrary molecules in Section 2.2, with the special case of the interaction

of two linear molecules worked out specifically in Section 2.1. With this formalism

we have computed the long range interaction (electrostatic + induction + dispersion)

coefficients for the X2+X2 and XY+XY alkali diatomic molecules from lithium to

cesium, including all electrostatic moments and static polarizabilities through ℓ = 3,

using density functional and coupled cluster theory. In presenting the long range

interaction between two general molecules, we have also derived in Section 2.3 the

closed form expression for the long range interaction between rotationally dressed

molecules as well as the analytic solution for rotational states generated by a low DC

electric field (Section 2.4).

In Section 4.1 we apply the rotational state dressing formalism to the case of

confined and aligned KRb molecules. We explore one-dimensional samples of ultracold

polar molecules with attractive dipole-dipole interactions and show the existence of a

repulsive barrier caused by a strong quadrupole interaction between molecules. This

barrier can stabilize a gas of ultracold KRb molecules and even lead to long range

wells supporting bound states between the molecules. The properties of these wells

can be controlled by external electric fields, allowing the formation of long polymer

like chains of KRb and studies of quantum phase transitions, by varying the effective

interaction between molecules. In Section 4.2 we extend our evaluation of DC field
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alignment from KRb to all other alkali heteorouclear molecules through Cs. From our

results it is possible to estimate the ocurrance of a long range quadrupolar barrier

through the evaluation of the long range parameter Rq (Eq.(4.5)).

In our study of alkali tetramer reaxtionst the lowest doublet electronic state for the

lithium trimer (12A′) is calculated for use in three-body scattering calculations using

the valence electron FCI method with atomic cores represented using an effective core

potential. It is shown in Section 5.1 that an accurate description of core-valence cor-

relation is necessary for accurate calculations of molecular bond lengths, frequencies

and dissociation energies. Interpolation between 12A′ ab initio surface data points in

a sparse grid is done using the global interpolant moving least squares method with a

smooth radial data cutoff function included in the fitting weights and bivariate poly-

nomials as a basis set. The Jahn-Teller splitting of the 12E ′ surface into the 12A1 and

12B2 states is investigated using a combination of both CASSCF and FCI levels of

theory. Additionally, preliminary calculations of the 12A′′ surface are also presented

using second order spin restricted open-shell Møller-Plesset perturbation theory.

To understand possible reaction paths and molecular combinations requires ac-

curate studies of the fragment and product energetics. To this end We have cal-

culated in Section 5.2 and 5.3 accurate gradient optimized ground-state structures

and zero-point corrected atomization energies for the trimers and tetramers formed

by the reaction formed from X2+X2 →X2X2, X2+Y2 →X2Y2, and XY+XY→X2Y2

alkali dimer association reactions. Vibrationally stable rhombic (D2h) and planar

(Cs) structures are found for all possible tetramers formed from the alkali metals, Li

to Cs. All tetramer formation reactions (from ground state singlet homonuclear or

heteronuclear dimers) are found to be exothermic with binding energies ranging from

6282 cm−1 for Li2Li2 to 1985 cm−1 for Cs2Cs2. Extensive calculations, carried out at

long range for several reactant pairs, indicate that there are barrier-less pathways for
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the formation of tetramers from dimer association reactions. At low temperatures,

direct formation of tetramers is unlikely, owing to the large exothermicity associated

with these association reactions, but atom exchange reactions (X2+Y2 →XY+XY)

are possible for some species.

Finally, in Section 5.4 we present the recent work on understanding recent exper-

imental ion loss rate results. Electronic structure calculations have been performed

to compute the optimized structure, harmonic vibrational frequencies and dissocia-

tion energies of RbOH and its anion. The electron affinity of RbOH was computed

to be 0.2890 eV, with an Rb+OH− bond energy half that of the neutral bond. To

determine other possible charge loss pathways, the Rb+OH and Rb+OH− dissocia-

tion curves were computed using couple cluster methods along all possible collisional

angles. An adiabatic curve crossing between the neutral and charged molecule was

found at the inner wall of the molecular potential curve for linear geometries. Asso-

ciative detachment rates were estimated using the Langevin ion capture cross-section.

The inclusion of vibrationally excited vibrational states were found to be necessary

to obtain agreement with current experimental reaction rates.
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Appendix A

Anisotropic Long Range Molecular
Interactions: Implementation

The purpose of this chapter is to provide an overview of the van der Waals program

implementing the evaluation of Eq.(2.31) and associated molecular properties. It is

expected that the reader will have the actual source code on hand, though it is not

completely necessary. Also in section A.13 is the programmers file that is included

with the source code. This file contains a summary of the internal routines, as well

as the project makefile with associated comments.

A.1 Derived data types

The main van der Waals program is written using Fortran 90/2003, and the derived

data typing available in the new Fortran was extensively used. A thorough discussion

of derived data types in Fortran is well beyond the scope here, however the unfamiliar

reader should keep in mind that Fortran derived data types are in the same family

as object classes in C++.

In the smsab program there are three data classes used:

• monomer,

• clf,

• vdw.
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The monomer data type contains the memory pointers for transition moment data,

uncoupled tensor products, electrostatic moments (cartesian and spherical) and polar-

izabilities (cartesian and spherical). Each monomer’s rotation expansion coefficients

are stored in the clf derived data type (see Section 2.3 for the mathematical details).

Lastly, the vdw data type holds the program logical variables, skeleton index matrix

and van der Waals coefficient arrays.
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A.2 Driver flow

This section discusses the overall program flow as runtime progresses through the

driver routine, driver.f90//program driver. The structure of smsab is a branching

system where all initiation commands come from the driver program. Input logic and

file control is also initiated in the driver program. In this section each important code

block of the driving routing will be briefly described.

The driver program initially declares the derived data types used in smsab , fol-

lowing generic includes and variable declarations. Here we see a monomer data type

for molecule A and B (monomer and clf), with a sequence of vdw data types for

each order n.

type (monomer ) : : A,B
type (vdw) : : vv , vv3 , vv4 , vv5 , vv6 , vv7 , vv8 , v v l f
type ( c l f ) : : l fA , l fB

This section handles initial input argument logic using the select case syntax.

Each case sets the appropriate logical variables and calls the memory initialization

routines (further discussed in Sec. A.4).

se lect case ( tr im ( bu f f r ) )
case ( ’−h ’ )
write ( iw , ∗ ) ” README contents : ”
cal l system ( ” cat README”)
stop

case ( ’−alpha ’ )
case ( ’− l ’ )
case default

end select

Following the initial input control, extra logic is used to detect field coupling. All

A-B calculations involve either two or three initial calling arguments, the logic at the

top of the following code decides where to look.

! e x t ra input ?
tone = vv%i s l i n r . and . cmndnum>3
ttwo = . not . vv%i s l i n r . and . vv%vdwsms . and . cmndnum>2

i f ( tone . or . ttwo ) then

select case ( tr im ( bu f f r ) )
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case ( ’−r e s t a r t ’ )
case ( ’−r c ’ )
end select

end i f

Clebsch-Gordan values are computed and stored in an array at run time. This pro-

vides noticeable speedups. At the time of this writing, the Clebsch-Gordan routines

are computed twice (once for each monomer) for ease of programmer time.

cal l gene ra te c l ebg (A)
cal l gene ra te c l ebg (B)

Initialization of van der Waals coefficient arrays, order by order, are done here.

The data type flag ”vv3%skelindtype” is an integer flag used to decide memory allo-

cation and skeleton matrix computation logic.

! s k e l i n d t y p e = 13 => c3
! s k e l i n d t y p e = 14 => c4
! s k e l i n d t y p e = 15 => c5
! s k e l i n d t y p e = 2 => c6
! s k e l i n d t y p e = 3 => c7
! s k e l i n d t y p e = 4 => c8
vv3%i s l i n r = vv%i s l i n r
vv3%ske l indtype = 13
vv3%skelname=’C3 ’
cal l i nd s k e l ( vv3 )
i f ( vv%verbose ) cal l p r i n t s k e l ( vv3 )

.

.

.

vv8%i s l i n r = vv%i s l i n r
vv8%ske l indtype = 4
vv8%skelname=’C8 ’
cal l i nd s k e l ( vv8 )

The polarizability properties of each monomer are computed at every run time.

Then the logic and calls for a restart calculation are processed. This logic decides

between reading in saved van der Waals coefficients or computing them using the

vdw.f90//electrostatic, vdw.f90//induction and vdw.f90//dispersion routines.

cal l p o l a r i z a b i l i t y (A, vv )
cal l p o l a r i z a b i l i t y (B, vv )
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!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i f ( vv%vdwread ) then

write ( iw , 1 0 )
cal l openfo ( vv%ioo , vv%oname )
cal l readvdw (vv , vv3 , vv4 , vv5 , vv6 , vv7 , vv8 )
vv%fprnt = . f a l s e .
else

ca l l e l e c t r o s t a t i c (A,B, vv , vv3 , vv4 , vv5 )
cal l i nduc t i on (A,B, vv , vv6 , vv7 , vv8 )
cal l d i s p e r s i o n (A,B, vv , vv6 , vv8 )
vv%fprnt = . true .
end i f

Print coefficients, possibly to disk in addition to STDOUT, using

sms.f90//vdwcoefprint.

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f ( vv%fprnt ) then

cal l openfn ( vv%ioo , vv%oname )
end i f

ca l l vdwcoe fpr int (A,B, vv , vv3 , vv4 , vv5 , vv6 , vv7 , vv8 )

If we only want to compute the dynamic polarizability of a monomer, then all van

der Wals coefficient calculations (see above) are skipped and the polarizability code

is called again, with an additional logical variable calling additional response code.

i f (A%alphad ) then

cal l p o l a r i z a b i l i t y (A, vv )
end i f

Following all coefficient computation, a rotational coupling calculation can be

performed. This is done via vdw.f90//rcouple, with a separate printing routine

sms.f90//printrc. Using a preprocessor flag it is possible to turn on and print out

the
√

(4π) normalization between (2.43) and the corresponding equation in Byrd et

al. [6]

i f ( vv%c o up l e l f ) then

v v l f%ske l i ndtype = 500
cal l createvdwind ( v v l f )
cal l r coup l e (A,B, vv , vv3 , vv4 , vv5 , vv6 , vv7 , vv8 , vv l f , l fA , l fB )
cal l p r i n t r c ( lfA , lfB , v v l f )
#i f d e f iLLF
! s q r t (4∗ p i ) s c a l i n g to compare aga in s t o l d r e s u l t s .
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write ( iw , ∗ ) ”−−”
write ( iw , ∗ ) ” s q r t (4∗ pi ) l e ga cy s c a l i n g f a c t o r ”
v v l f%c l f c 3 = vv l f%c l f c 3 ∗ dsqr t ( 4 . d0∗ pi )
v v l f%c l f c 4 = vv l f%c l f c 4 ∗ dsqr t ( 4 . d0∗ pi )
v v l f%c l f c 5 = vv l f%c l f c 5 ∗ dsqr t ( 4 . d0∗ pi )
v v l f%c l f c 6 = vv l f%c l f c 6 ∗ dsqr t ( 4 . d0∗ pi )
v v l f%c l f c 7 = vv l f%c l f c 7 ∗ dsqr t ( 4 . d0∗ pi )
v v l f%c l f c 8 = vv l f%c l f c 8 ∗ dsqr t ( 4 . d0∗ pi )
cal l p r i n t r c ( lfA , lfB , v v l f )
#endif

end i f

The program ends with clearing all memory allocations.

cal l destroyvdwind ( vv3 )
.
.
cal l destroym (A)
.
.
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A.3 Input of ab initio data

Monomer transition moment data files are to be structured as follows:

$GENVDW | ba s i c check f o r non−l e ga cy input
I10 | n <number o f e x c i t e d s ta t e s>
3E24 .14 | dmx dmy dmz <d ipo l e vector>
9E24 .14 | qmxx qmxy qmxz qmxy qmyy qmyz qmxz qmyz qmzz &

<symmetric quadrupole moment tensor>
10E24 . 1 4 | omxxx omxxy omxxz omxxy omyyy omyyz omxzz omyzz omzzz omxyz &

<symmetric octupo le moment tensor>
20E24 . 1 4 | EIGEV TX TY TZ TXX TXY TXZ TYY TYZ TZZ &

TXXX TYYY TZZZ TXXY TXXZ TXYY TYYZ TXZZ TYZZ TXYZ &
<e x c i t a t i o n energy , t r a n s i t i o n moments continued n times> ’ )
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A.4 Initialization and Memory control

Calls to sms.f90//initiate(A) will open the monomer A transition moment data

file, allocate the memory for monomer A and populate the coupled transition moment

tensors.

subroutine i n i t i a t e (A)
implicit none

include ” i o . h”
type (monomer ) : : A

! open the f i l e
cal l openfo (A%io ,A%fname )

! read moments f i l e and i n t e r n a l l y produce s p h e r i c a l moments
cal l readtm (A)
return

Memory allocation (deallocation) is handled in the following routines:

• sms.f90//createm (sms.f90//destroym),

• sms.f90//createvdwind (sms.f90//destroyvdwind),

• sms.f90//createlf (sms.f90//destroylf).

The first allocates memory for the monomer data type, the second allocates memory

for the vdw data type. As we do the coefficient computation order by order, there is a

subsequent logic for allocating only the order requested within sms.f90//createvdwind,

the integer flag controlling this being ”%skelindtype.” Finally the third routine han-

dles the rotational coupling expantion arrays. Within each memory allocation routine

the arrays are initialized to 0.
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A.5 Construction of initial tensors

Transition moments, from dipole to octupole, are computed ab initio in cartesians.

So a conversion to spherical moments is required at some point within the code.

Previous versions performed the conversion in the ab initio code, while the original

program hard coded the spherical coefficients in terms of cartesians. For the most

flexibility in ab initio program choice and within the van der Waals code itself, we

read in the moments in cartesians and convert to spherical at the same time. The

coupled transition moment tensor given by Eq.(2.25) is needed for computation of

the van der Waals coefficients. To construct Eq.(2.25), we first compute the spherical

transformation of each cartesian moment by a look up table (see Edmonds [73] for a

printed table) and store in a temporary two index array (Tℓm) as illustrated here.

! d i po l e t r an s i t i o n t en sor
Tt(1 ,−1)=(TDx−a i ∗TDy)/ dsqr t ( 2 . d0 )
Tt (1 ,0)=TDz
Tt(1 ,1)=−(TDx+a i ∗TDy)/ dsqr t ( 2 . d0 )
! quadrupo le t r an s i t i o n t en sor
Tt(2 ,−2)=dsqr t ( 3 . d0 /2 . d0 )∗ (TQxx−2.d0∗ a i ∗TQxy−TQyy)/ 2 . d0
.
Tt(2 ,0)=(−TQxx−TQyy+2.d0∗TQzz )/ 2 . d0
.
.
! oc tupo l e t r an s i t i o n t en sor
Tt(3 ,−3)=dsqr t ( 5 . d0 )∗ (TOXXX−3.d0∗ a i ∗TOXXY−3.d0∗TOXYY+a i ∗TOYYY)/4 . d0
.
.
Tt (3 ,0)=(−3.d0∗TOXXZ−3.d0∗TOYYZ+2.d0∗TOZZZ)/2 . d0
.
.

As it is the product between transition moments that is needed, we store the uncou-

pled tensor product of each transition moment as a three index array (Tkmm′ , k is the

index over excited states)in the monomer data class.

A%tensMN(i, ia, ib) = T t(ℓ,m) × T t(ℓ′, m′). (A.1)
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Where M,N = D,Q,O for ℓ, ℓ′ = 1, 2, 3 respectively. This means we store a separate

array for each tensor product, order by order (DD,DQ,DO,QQ,QO,OO).

The analogous process is performed for the electrostatic moments in mlib.f90//Qtlookup,

the difference being the obvious lack of a k index over excited states. The naming

convention and other related aspects remain consistent with the transition moment

routines/arrays.
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A.6 Construction of skeleton indices

At the time of this writing, the skeleton index ({Λ} from section 2.2) is computed

via a hard coded set of routines in mlib.f90//indskel. In this routine the {Λ} indices

are iterated over and stored in five arrays, where each element is iterated over the

total space order (O(R−n)) by order∗. The basic structure of the code is written in an

extremely vectorizable way (in a compiler sense), meaning that loops are extracted

and flattened out in blocks over L. This has the advantage of allowing explicit control

over each block, with the downside being difficulty in including higher symmetry in

a natural way. As the code is intended for the general no symmetry case, this is not

seen as a serious downside.

The desired order is requested in mlib.f90//indskel by the integer flag ”skelind-

type” as:

• skelindtype = 13 → C3

• skelindtype = 14 → C4

• skelindtype = 15 → C5

• skelindtype = 2 → C6

• skelindtype = 3 → C7

• skelindtype = 4 → C8

∗As a special case the linear molecule is also hard coded and can be selected via input flags.
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A.7 Monomer properties: polarizability

The computation of the uncoupled∗ polarizability given by Eq.(2.32) is done in

vdw.f90//cartAw and vdw.f90//spherAw for each given monomer, the results of

which are store in the monomer data class. As the transition moment tensors

of Eq.(A.1) are formed from tensor products but not coupled, Eq.(2.32) is trivially

evaluated by the obvious summation over excited states and loops over m indices. If

requested, the dynamic uncoupled polarizability of Eq.(2.33) is also computed on a

Gauss-Chebyshev grid and printed to STDOUT†.

Additionally the Sk(0) metric Eq.(2.34) is evaluated for each monomer as a func-

tion of excited state, k, and printed to disk.

∗and cartesian for the dipole polarizability.

†Note that the dynamic polarizability is printed in cartesians only
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A.8 Comment on restarts

On standard runs, the final van der Waals coefficients are printed to disk in the

sms.f90//vdwcoefprint routine. The legend for the output file is

’N ’ ’L1 ’ ’K1 ’ ’L2 ’ ’K2 ’ ’L ’ ’ r e a l part ’ ’ complex part ’

using the format below.

FORMAT(2X, I1 , 2X, I1 , 1X, I2 , 2X, I1 , 1X, I2 , 2X, I1 , 3X, 2 E24 . 1 4 )

It is then possible to run restart jobs, in the sense that you can read in previously

computed coefficients and a) print them out again to STDOUT with all the associated

information and b) run further computation such as field coupling (see section 2.3).

The restart itself is done via the io.f90//readvdw routine and is a sequence of loops

working through the various vdw data type pointers.

121



A.9 Evaluation of W
(1)
n{Λ}

Having computed the electrostatic moments on read in (see section A.5), the

construction of the electrostatic interaction coefficients W
(1)
n{Λ} given by 2.22 is a simple

set of loops over the {Λ} skeleton indices. This is done in the vdw.f90//electrostatic

routine. A sample loop is given below.

! c3 terms
do i i =1,vv3%i nd s i z e

i f ( ( vv3%iL1 ( i i )+vv3%iL2 ( i i ) ) == vv3%iL ( i i ) ) then

c o e f = dsqr t ( dble ( f t (2∗vv3%iL1 ( i i )+2∗vv3%iL2 ( i i )+1))/ &
dble ( f t (2∗vv3%iL1 ( i i ) )∗ f t (2∗vv3%iL2 ( i i ) ) ) )∗ (−1)∗∗vv3%iL1 ( i i )

vv3%vdwc3 ( i i ) = co e f ∗ A%Qt( vv3%iL1 ( i i ) , vv3%ik1 ( i i ) )∗ &
B%Qt( vv3%iL2 ( i i ) , vv3%ik2 ( i i ) )

end i f

end do
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A.10 Tensor contraction/coupling

The tensor contraction/coupling of the transition moments given in Eq.(2.25) has

to be computed for all {Λ} indices. As the transition moment tensors are stored in

named arrays as described in Eq.(A.1), the contraction routines are also individually

named for each order (example: mlib.f90//tcont11 for the DD term). The idea here

is effort of the part of the programmer will lead to longer but simpler code for the

compiler to use. The loops themselves are simple after logic switches through the

stored Clebsch-Gordan arrays. As many transition moments are small, thresholding

is performed for a modest speedup in runtime. It should be pointed out that the

computation of the Clebsch-Gordan routines on the fly in this routine more than

doubles the runtime of the program. This should be an unsurprising result as many

of these Clebsch-Gordan coefficients are called more than once for the same set of

indices.

function tcont11 (A,L ,M, i s t a t e ) result ( tprod )
use sms
implicit none

include ” ctcont . h”
include ” i o . h”
include ” thresh . h”
integer , parameter : : l 1 =1, l 2=1
tprod = ( 0 . d0 , 0 . d0 )
i f (L==0.and .M==0) then

do m1 = −l1 , l 1
do m2 = −l2 , l 2

i f ( abs (A%tensDD ( i s t a t e ,m1,m2))< thresh ) cycle

i f (m1+m2==m) tprod = tprod + &
A%tensDD ( i s t a t e ,m1,m2)∗A%clebg110 (m1,m2,M)

end do !m2
end do !m1

else i f (L==2) then

.

.
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A.11 Evaluation of W
(2,IND)
n{Λ}

The induction terms W
(2,IND)
n{Λ} given in Eq.(2.28) are computed order by order in

vdw.f90//induction. The loop structures in this routine are quite simple, with only

book keeping of the various terms adding any complication.
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A.12 Evaluation of W
(2,DIS)
n{Λ}

The evaluation of the dispersion terms W
(2,DIS)
n{Λ} given in Eq.(2.28) provide a par-

ticular set of programming problems to address. Namely the double sum over excited

states and the large index space in {Λ} gives a scaling of NkANkBN{Λ} with Ni being

the length of that index. To give a sense of scale, a typical calculation involving H2

with a large basis set can produce a Fock space of NKA
> 1000, resulting in over

5 × 108 individual elements to the nested sums. In fact larger molecule calculations

have resulting in computation sizes on the order of 109. With this in mind, any

programming optimization can result in significant speedups.

Firstly, the precomputation of ζ̃
ℓ0ℓ′1;ℓ2ℓ

′

2

L1L2L
(Eq.(2.26)) nets nearly a factor of two

speedup due to the computational cost of evaluating factorials. Secondly the use

of OpenMP threading reduces the computational cost significantly. The way the

threading was implemented is to thread the loop over {Λ} while serializing the outer

summations over ki. Below is the overview of the n = 6 loops, the OpenMP calls are

prefaced by !$OMP, with a preprocessor ifcheck for implementation ease.

! do c6 f i r s t , t h i s breaks out the l oops f o r ea s i e r acces s
do na = 1 ,A%ns ta te

do nb = 1 ,B%ns ta te
dd = A%e ig ev ( na ) + B%e ig ev (nb )

#i f d e f iOPENMP
!$OMP PARALLEL PRIVATE( t11A , t11B ) SHARED( t6 )
!$OMP DO
#endif

do i i = 1 , vv6%i nd s i z e
t11A = tcont11 (A, vv6%iL1 ( i i ) , vv6%ik1 ( i i ) , na )
t11B = tcont11 (B, vv6%iL2 ( i i ) , vv6%ik2 ( i i ) , nb )
t6 ( i i ) = t11A∗t11B

end do ! i i
#i f d e f iOPENMP
!$OMP END DO
!$OMP END PARALLEL
#endif

! compi ler w i l l v e c t o r i z e t h i s
vv6%vdwc6 = vv6%vdwc6 + t6/dd

end do ! nb
end do ! na
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A.13 PROG

quick f i l e summary

Cont ro l l i ng rout ine : d r i v e r . f90
f i l e io , r ead ing e tc : i o . f90
math r ou t i n e s : mlib . f90
memory cont r o l , data s t r u c tu r e d e f i n i t i o n s , p r in tout : sms . f90
van der waals r o u t i n e s : vdw . f90

tenso r cont r a c to r include : c tcont . h
f un c t i o n s include : function . h
i o d e f i n i t i o n include : i o . h
parameter and th r e s ho l d i ng include : thresh . h

subrout ine s :
d r i v e r . f90 : subroutine help
d r i v e r . f90 : subroutine t e s t (A,B, vv )
i o . f90 : subroutine getcmnd (cmndnum, cmndnn , bu f f r , i e r r )
i o . f90 : subroutine openfo ( recrd , fname )
i o . f90 : subroutine openfn ( recrd , fname )
i o . f90 : subroutine readtm (A)
i o . f90 : subroutine readvdw (vv , vv3 , vv4 , vv5 , vv6 , vv7 , vv8 )
i o . f90 : subroutine readrho ( l f )
i o . f90 : ! s u brou t ine legacyreadtm (A)
mlib . f90 : subroutine Qtlookup (A)
mlib . f90 : subroutine Ttlookup ( i , tm ,A)
mlib . f90 : subroutine gene ra te c l ebg (A)
mlib . f90 : subroutine i nd s k e l ( vv )
mlib . f90 : ! s u brou t ine l e g acy t l oo kup (A)
sms . f90 : subroutine i n i t i a t e (A)
sms . f90 : subroutine createm (A)
sms . f90 : subroutine destroym (A)
sms . f90 : subroutine createvdwind ( vv )
sms . f90 : subroutine destroyvdwind ( vv )
sms . f90 : subroutine makelf ( l f )
sms . f90 : subroutine c r e a t e l f ( l f )
sms . f90 : subroutine d e s t r o y l f ( l f )
sms . f90 : subroutine p r i n t s k e l ( vv )
sms . f90 : subroutine p r i n t r c ( lfA , lfB , v v l f )
sms . f90 : subroutine vdwcoe fpr int (A,B, vv , vv3 , vv4 , vv5 , vv6 , vv7 , vv8 )
vdw . f90 : subroutine p o l a r i z a b i l i t y (A, vv )
vdw . f90 : subroutine e l e c t r o s t a t i c (A,B, vv , vv3 , vv4 , vv5 )
vdw . f90 : subroutine i nduc t i on (A,B, vv , vv6 , vv7 , vv8 )
vdw . f90 : subroutine d i s p e r s i o n (A,B, vv , vv6 , vv8 )
vdw . f90 : subroutine r coup l e (A,B, vv , vv3 , vv4 , vv5 , vv6 , vv7 , vv8 , vv l f , l fA , l fB )

f un c t i o n s :
mlib . f90 : recursive function f t ( k ) result ( f a c t o r i a l )
mlib . f90 : function zeta ( l1 , l1p , l2 , l2p , lambda1 , lambda2 , lambda )
mlib . f90 : function eta (L1 , L2 , L ,M)
mlib . f90 : function tcont (A, l1 , l2 ,L ,M, i s t a t e ) result ( tprod )
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mlib . f90 : function tcont11 (A,L ,M, i s t a t e ) result ( tprod )
mlib . f90 : function tcont12 (A,L ,M, i s t a t e ) result ( tprod )
mlib . f90 : function tcont13 (A,L ,M, i s t a t e ) result ( tprod )
mlib . f90 : function tcont22 (A,L ,M, i s t a t e ) result ( tprod )
mlib . f90 : function Atcont11 (A,L ,M) result ( tprod )
mlib . f90 : function Atcont12 (A,L ,M) result ( tprod )
mlib . f90 : function Atcont13 (A,L ,M) result ( tprod )
mlib . f90 : function Atcont22 (A,L ,M) result ( tprod )
mlib . f90 : function Qtcont11 (A,L ,M) result ( tprod )
mlib . f90 : function Qtcont12 (A,L ,M) result ( tprod )
mlib . f90 : function Qtcont13 (A,L ,M) result ( tprod )
mlib . f90 : function Qtcont22 (A,L ,M) result ( tprod )

Make f i l e :
EXEC=smsab

mSRC=sms . f90
SRC=dr i v e r . f90 i o . f90 mlib . f90 vdw . f90

OBJ=$ (mSRC: . f90=.o ) $ (SRC : . f90=.o )

CERNPATH=.
CERN MLIB=−lmath l ib
CERNFLG=−L$(CERNPATH)/ $ (CERN MLIB) − l g f o r t r a n

IPATH=/opt/ i n t e l / composerxe

OMP INC=$(IPATH)/ include

#opt f l a g s
FFopt=−g −O3 −f un r o l l−l o ops −vec−r epo r t0
#omp f l a g s
FFomp=−openmp
PPomp=−DiOPENMP
#debug f l a g s , do not use with FFopt
FFdbg=−g −check
PPdbg=−Didbg
#verbose preproc
PPverb=−Diverb
#legacy f i e l d couple preproc
PP l l f=−DiLLF

LDFLAG=$(CERNFLG)
INC=−I$ (OMP INC)

PREPROC=−fpp $ (PPomp) $ ( PP l l f )
FC=i f o r t $ (INC) $ (FFopt ) $ (FFomp) $ (PREPROC)
#PREPROC=−fpp $ (PPdbg) $ (PPverb) $ ( PP l l f )
#FC=i f o r t $ (INC) $ (FFdbg) $ (FFverb ) $ (PREPROC)
F77=f o r t $ (FCopt )
CC=i c c
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default : $ (EXEC)

smsab : $ (OBJ) ctcont . h function . h thresh . h
$ (FC) −o smsab $ (OBJ) $ (LDFLAG)

vdwsms . o : vdwsms . f
$ (F77 ) −c $<

%.o : %. f90
$ (FC) −c $<

c l ean :
/ bin/rm −vf $ (EXEC) $ (OBJ) sms .mod

t idy :
/ bin/rm −v $ (OBJ)
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Appendix B

Def2 additional diffuse basis functions

B.1 Lithium

Li
S 1

1 0.010570024365 1.0000000
S 1

1 0.005285012182 1.0000000
P 1

1 0.010244979620 1.0000000
P 1

1 0.005122489810 1.0000000
D 1

1 0.03785000 1.0000000
D 1

1 0.01892500 1.0000000
F 1

1 0.06750000 1.0000000
F 1

1 0.03375000 1.0000000

B.2 Sodium

Na
S 1

1 0.00775453 1.0000000
S 1

1 0.00387726 1.0000000
P 1

1 0.00775453 1.0000000
P 1

1 0.00387726 1.0000000
D 1

1 0.03785000 1.0000000
D 1

1 0.01892500 1.0000000
F 1
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1 0.06750000 1.0000000
F 1

1 0.03375000 1.0000000

B.3 Potassium

K
S 1

1 0.00852788 1.0000000
P 1

1 0.00765000 1.0000000
D 1

1 0.02700000 1.0000000
F 1

1 0.04500000 1.0000000

B.4 Rubidium

Rb
S 1

1 0.00652570 1.0000000
P 1

1 0.00642350 1.0000000
D 1

1 0.00476768 1.0000000
F 1

1 0.03829000 1.0000000

B.5 Cesium

Cs
S 1

1 0.00549805 1.0000000
P 1

1 0.00542271 1.0000000
D 1

1 0.00570469 1.0000000
F 1

1 0.03500000 1.0000000
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Appendix C

Sample van der Waals program

program t e s t
implicit real ∗8(a−h , o−z )
character t i t l e ∗80
dimension na (100 ) , l 1 a (100 ) , l 2 a (100 ) , ma(100 ) , w(100)

c
c energy conve r s i on f a c t o r s ( from Molpro manual )
e

data tok /3.157733d5/ , tocm/219474.63067d0/
data tohz /6.5796838999d15 / , tok j /2625.500d0/
data tokca l /627.5096d0/
data pi /3 .14159265359D+00/

c
c eva lua te long range i n t e r a c t i o n p o t e n t i a l
c us ing Eq . 20 o f vdW MS.
c

read (5 , ’ ( a ) ’ ) t i t l e
write (6 , ’ ( a ) ’ ) t i t l e
read (5 ,∗ ) nt
do i =1,nt

read (5 ,∗ ) na ( i ) , l 1 a ( i ) , l 2 a ( i ) , ma( i ) , w( i )
enddo

c
write (6 , 100 )
f a c t = pi /180 . d0
do k=1 ,10000

read (5 ,∗ ,end=999) r , th1 , ph1 , th2 , ph2
vt = 0 . d0
do i =1,nt

cs1 = cos ( f a c t ∗ th1 )
cs2 = cos ( f a c t ∗ th2 )
cs3 = cos (ma( i )∗ f a c t ∗(ph1−ph2 ) )
tmp = w( i )∗plm( l1a ( i ) ,ma( i ) , c s1 )

$ ∗plm( l2a ( i ) ,ma( i ) , c s2 )∗ cs3 / r ∗∗na ( i )
i f ( l 1 a ( i ) . ne . l 2 a ( i ) ) tmp = 2 . d0∗tmp
i f ( na ( i ) . gt . 5 ) tmp = −tmp
vt = vt + tmp

c
enddo

write (6 , 101 ) r , th1 , ph1 , th2 , ph2 , vt , vt∗tocm , vt∗ tok
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enddo

999 continue

c
100 format ( ’ r theta1 phi1 theta2 phi2 e ( au ) ’ ,

$ ’ e (cm−1) e (K) ’ )
101 format (5 f8 . 3 , f14 . 8 , 2 f10 . 4 )

end

∗deck plm
real ∗8 function plm( l ,m, x )
implicit real ∗8(a−h , o−z )

c
c dumb rout ine to c a l c u l a t e f i r s t few
c a s s o c i a t ed l eg endr e po lynomia l s ( from tab l e )
c

s = sq r t ( ( 1 . d0 − x ) ∗ ( 1 . d0 + x ) )
i f ( l . eq . 0 ) then

plm = 1 . d0
else i f ( l . eq . 1 ) then

i f (m. eq . 0 ) plm = x
i f (m. eq . 1 ) plm = −s

else i f ( l . eq . 2 ) then

i f (m. eq . 0 ) plm = (3 . d0∗x∗x − 1 . d0 ) / 2 . d0
i f (m. eq . 1 ) plm = −3.d0∗x∗ s
i f (m. eq . 2 ) plm = 3 . d0∗ s∗ s

else i f ( l . eq . 3 ) then

i f (m. eq . 0 ) plm = (5 . d0∗x∗x∗x − 3 . d0∗x )/ 2 . d0
i f (m. eq . 1 ) plm = −1.5d0 ∗ ( 5 . d0∗x∗x − 1 . d0 )∗ s
i f (m. eq . 2 ) plm = 15 . d0∗x∗ s ∗ s
i f (m. eq . 3 ) plm = −15.d0∗ s∗ s ∗ s

else i f ( l . eq . 4 ) then

i f (m. eq . 0 ) plm = (35 . d0∗x∗x∗x∗x − 30 . d0∗x∗x + 3 . d0 ) / 8 . d0
i f (m. eq . 1 ) plm = −2.5d0 ∗ ( 7 . d0∗x∗x∗x − 3 . d0∗x )∗ s
i f (m. eq . 2 ) plm = 7 .5 d0 ∗ ( 7 . d0∗x∗x − 1 . d0 )∗ s ∗ s
i f (m. eq . 3 ) plm = −105.d0∗x∗ s∗ s∗ s
i f (m. eq . 4 ) plm = 105 . d0∗ s∗ s ∗ s∗ s

else

write (6 ,∗ ) ’ bad arguments ’ , l , m
cal l exit

endif

return

end
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C.1 Sample Input

Na2 − Na2 PBE0 ( s e e Fig . 2)
26
5 2 2 0 664 .
5 2 2 1 −147.6
5 2 2 2 9 .223
6 0 0 0 4 .073d3
6 2 0 0 5 .487d2
6 2 2 0 2 .470d2
6 2 2 1 −5.489d1
6 2 2 2 6 .861d0
8 0 0 0 5 .777d5
8 2 0 0 3 .082d5
8 2 2 0 8 .025d4
8 2 2 1 −1.109d4
8 2 2 2 4 .481d2
8 4 0 0 1 .253d4
8 4 2 0 7 .528d3
8 4 2 1 −9.951d2
8 4 2 2 5 .047d1
8 0 0 0 7 .459d4
8 2 0 0 4 .802d4
8 2 2 0 1 .928d4
8 2 2 1 −3.855d3
8 2 2 2 9 .639d2
8 4 0 0 3 .197d4
8 4 2 0 2 .545d4
8 4 2 1 −3.470d3
8 4 2 2 1 .928d2
20 0 . 0 . 0 . 0 .
30 0 . 0 . 0 . 0 .
40 0 . 0 . 0 . 0 .
50 0 . 0 . 0 . 0 .
60 0 . 0 . 0 . 0 .
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C.2 Sample Output

Na2 − Na2 PBE0 ( s e e Fig . 2)
r theta1 phi1 theta2 phi2 e ( au ) e (cm−1) e (K)

20 .000 0 .000 0 .000 0 .000 0 .000 0.00005960 13 .0812 18 .8209
30 .000 0 .000 0 .000 0 .000 0 .000 0.00001743 3 .8245 5 .5026
40 .000 0 .000 0 .000 0 .000 0 .000 0.00000491 1 .0787 1 .5519
50 .000 0 .000 0 .000 0 .000 0 .000 0.00000174 0 .3811 0 .5484
60 .000 0 .000 0 .000 0 .000 0 .000 0.00000073 0 .1598 0 .2299
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[63] B. D. Esry, C. H. Greene, and J. P. Burke, Jr. , Phys. Rev. Lett. 83, 1751

(1999).

[64] T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D.

Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl, and R. Grimm, Nature 440, 315
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[85] T. Leininger, A. Nicklass, W. Küchle, H. Stoll, M. Dolg, and A. Bergner, Chem.

Phys. Lett. 255, 274 (1996).

[86] M. A. Iron, M. Oren, and J. M. L. Martin, Mol. Phys. 101, 1345 (2003).

143



[87] D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010).

[88] J. Deiglmayr, M. Aymar, R. Wester, M. Weidemüller, and O. Dulieu, J. Chem.

Phys. 129, 064309 (2008).

[89] M. Urban and A. J. Sadlej, J. Chem. Phys. 103, 9692 (1995).

[90] K. Tang, Phys. Rev. 177, 108 (1969).

[91] J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem.

96, 135 (1992).

[92] A. Dreuw and M. Head-Gordon, Chem. Rev. 105, 4009 (2005).

[93] Y. Tawada, T. Tsuneda, S. Yanagisawa, Y. Yanai, and K. Hirao, J. Chem. Phys.

120, 8425 (2004).

[94] W. Thomas, Naturwissenschaften 13, 627 (1925).

[95] P. Julienne, T. Hanna, and Z. Idziaszek, Phys. Chem. Chem. Phys. 13, 19114

(2011).

[96] G. D. Purvis III and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).

[97] K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem.

Phys. Lett. 157, 479 (1989).

[98] J. Harrison and D. Lawson, Int. J. Quantum Chem. 102, 1087 (2005).

[99] M. Aymar and O. Dulieu, J. Chem. Phys. 122, 204302 (2005).
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