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Electronic structure calculations and properties of
alkaline–earth molecular ions

Sandipan Banerjee, Ph.D.

University of Connecticut, 2013

Recent years have seen many advances in the study of ultracold molecular ions

[1, 2, 3]. Studies involving atom-ion scattering [4, 5], resonant charge transfer [6]

and charge mobility [7] at ultracold temperatures, are a few of the many emerging

fields of interest where an in-depth understanding of the underlying physics govern-

ing the interaction between atoms and ions is crucial. Alkaline-earth dimers are now

being used as new grounds for testing fundamental physics laws, precision measure-

ments [8] and quantum computation [9]. As a starting point for conducting such

studies, one needs a very good knowledge of the electronic structure, energetics and

long-range behavior of these molecular ions. In this thesis, we provide accurate ab

initio calculations for the ground and low-lying excited states of Be+
2 , Mg+

2 , Ca+
2 and

Sr+
2 molecular ions. We have also calculated the spectroscopic constants, electronic

transition dipole moments, polarizabilities and long-range dispersion coefficients for

the various alkaline-earth ionic dimers. We have extended our calculations to study

heteronuclear species of alkaline-earth molecular ions, like BeCa+, and mixed alkali

alkaline-earth species like NaCa+. We calculated photoassociation (PA) pathways

for the formation of cold molecular ions, and also studied corrections to the Born-

Oppenheimer Hamiltonian — non-adiabatic couplings and hyperfine structure due to

nuclear spins and electric quadrupoles. We believe this work will lay foundation for

new experiments in ultracold physics and chemistry.
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Chapter 1

Introduction

1.1 Motivations

The field of atomic, molecular and optical (AMO) physics, has been ever grow-

ing, owing to development of both experimental and theoretical methods. Recent

Nobel prizes [10, 11] in physics (2012), once again illustrates the importance of using

quantum mechanics to study atoms and molecules. In this thesis, we study the elec-

tronic structure and properties alkaline-earth molecular ions. An alkaline-earth ionic

dimer has three electrons in the valence shell, examples of the homonuclear species

that we studied being Be+
2 , Mg+

2 , Ca+
2 and Sr+

2 . Recent experiments [12] have been

successful at cooling and controlling molecular ions. One of the major advantages of

using alkaline earth ionic dimers is that the ion and the neutral atom can be imaged

separately. This opens up a wide range of new possibilities both for experiments

and theory to study processes like resonant charge transfer [6] and quantum informa-

tion storage, owing to the large number of internal states which can be used as qubits.

A major interest in the AMO community lies in understanding the behavior of an

atom/ion in the presence of other atom/ion(s). The quantum mechanical treatment

of scattering theory, although being developed a long time back, has found new test-

ing grounds with the advent of ultracold physics. Atom-ion scattering, at ultracold

(∼ µK) temperatures [4, 5] is a topic of growing interest. As a staring point for such
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collisional studies one needs an accurate knowledge of the energetics of the partici-

pating atom/ions. A quantitative description for such a problem is often obtained

from a numerical solution of the time-independent Schrödinger equation, which gives

rise to potential energy surfaces (PES) describing the ground and excited states of

the system.

The experimental realization of Bose-Einstein condensation (BEC) makes numer-

ous applications involving charged atomic and molecular species possible. The cooling

and trapping [13] of such charged gases at sub-kelvin temperatures is a topic of grow-

ing interest. Other emerging fields include ultracold plasmas [14], ultracold Rydberg

gases [15], and systems involving ions in a BEC [16, 17]. Alkaline-earth dimers are

now been used as new grounds for testing fundamental physics laws, precision mea-

surements [8], and quantum computation [9].

In this thesis, we provide accurate ab initio calculations for the ground and low-

lying excited states of alkaline-earth molecular ions. The reliability of such calcula-

tions for potential energy curves and properties depend on accurate and expensive

quantum chemistry methods, like full configuration interaction (CI), and extended ba-

sis sets. We explore many different methods with appropriate basis sets to precisely

describe electron-electron correlations for these molecular ions. We have also extended

our calculations to study heteronuclear species of alkaline-earth molecular ions like

BeCa+, and mixed alkali alkaline-earth species like NaCa+. We also show prelimi-

nary results for corrections to the Born-Oppenheimer Hamiltonian — non-adiabatic

couplings and hyperfine structure due to nuclear spins and electric quadrupoles.
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1.2 Overview of ab initio methodology

As the complexity of atoms and molecules increases, one has to rely on accurate

quantum mechanical description to account for electron correlation. The primary

task at hand is to find solutions to the time-independent Schrödinger equation,

Hψ = Eψ . (1.1)

Very rarely can one find a simple enough system which can be exactly solved

analytically. Most of the times, we rely on numerical solutions to the Schrödinger

equation. If solutions are generated without reference to experimental data, the meth-

ods are usually called ab initio (latin: “from the beginning”), in contrast to other

semi-empirical approaches. Electronic structure calculations — numerical solutions

of Schrödinger’s equation for a specific system — are distinct from other forms of

modeling because they are first-principles in nature. That is the calculations contain

no external parameters other than a most basic description of the system.

However, the numerical solution of the Schrödinger equation remains a difficult

task. Exact solutions of the equation are only solvable in times scaling exponentially

with system size. This scaling precludes exact calculations for all but the smallest and

simplest of systems. Approximations may be introduced to reduce the equations to a

form that can be solved in polynomial time, but at the penalty of losing some degree

of accuracy and predictive power. The treatment of electron-electron interactions is

the principle source of difficulty, the physical and chemical properties of a system

depend principally on the interaction of the electrons with each other and with the

atomic cores. These interactions cannot easily be separated out or treated without

approximation.
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1.2.1 Born-Oppenheimer approximation

The typical form of the Hamiltonian operator in Eq. (1.1) takes into account

contributions from the kinetic energies of the electrons and nuclei, the attraction of

the electrons to the nuclei, and the inter-electronic and internuclear repulsions. In

more complicated situations, such as the presence of an external electric or magnetic

field, significant spin-orbit coupling in heavy elements, large relativistic effects etc.,

other terms are required in the Hamiltonian. We will consider some of these at later

chapters in this thesis, but for now we omit them to simplify the discussion.

The Hamiltonian H in Eq. (1.1) can be written as,

H = −
∑
i

~2

2me

∇2
i −

∑
k

~2

2mk

∇2
k −

∑
i

∑
k

e2Zk
rik

+
∑
i<j

e2

rij
+
∑
k<l

e2ZkZl
rkl

(1.2)

where i, j run over electrons, k and l run over nuclei, me is the mass of the electron,

mk is the mass of nucleus k, ∇2 is the Laplacian operator, e is the charge on the

electron, Z is an atomic number, and rij is the distance between particles i and j. As

is evident from Eq. (1.2), the Hamiltonian contains pairwise interactions, implying

that motion is correlated.

In order to simply the Hamiltonian, the most common and reasonable approxima-

tion is to decouple the motion of nuclei and electrons, by realizing that the protons and

neutrons are ∼ 1800 times as massive as electrons. This separation of the electronic

and nuclear degrees of freedom is known as the Born-Oppenheimer approximation.

Under this approximation, we can compute electronic energies for fixed nuclear posi-

tions. Thus, the electronic Schrödinger equation becomes

(Hel + VN(R))ψel(R) = Eelψel(R) , (1.3)
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where ψel(R) refers to the purely electronic wavefunction in the Born-Oppenheimer

approximation. The eigenvalue of the electronic Schrödinger equation is called the

“electronic energy”. Note that VN(R) is constant for a given set of fixed nuclear

coordinates.

The solution of Eq. (1.3) over all possible nuclear coordinates is defined as the

potential energy surface (PES) for a given system. Fig. 1.1 illustrates a typical PES

for a dimer as a function of internuclear separation R. Note that without the Born-

Oppenheimer approximation, we would have lacked the entire concept of PES and

derived properties like equilibrium and transition state geometries. So although this

seems to be a simple approximation, the consequences are profound in the fields of

physics and chemistry.
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1.2.2 Commonly used methods – Configuration Interaction and Coupled

Cluster

The simplest and most basic solution to Schrödinger equation is provided by the

Hartree theory, which states that the many-body wavefunction can be simply written

as a direct product of one-electron wavefunctions,

ΨH = ψ1ψ2.........ψN . (1.4)

Of course, such a drastic approximation does not necessarily obey Pauli exclusion

principle, and is hence modified by anti-symmetrizing the wavefunction and express-

ing it as a Slater determinant. This is the Hartree-Fock (HF) theory. Unfortunately,

even in the HF regime, there lacks an accurate account for electron correlation. The

Hartree-Fock theory assumes each electron moves in the static electric field created

by all of the other electrons, and then optimizes the orbitals for all of the electrons

in a self-consistent fashion subject to a variational constraint.

So, the task remains to modify the HF wavefunction to obtain a lower electronic

energy when we operate on that modified wavefunction with the many-body Hamil-

tonian. By the variational principle, such a construction would be a more accurate

wavefunction for the given system. One of the obvious choices is to construct a wave-

function as a linear combination of multiple Slater determinants; instead of the HF

single Slater determinant.

So the basic idea is to diagonalize the N-electron Hamiltonian in a basis of N Slater

determinants. If the basis set is complete, we get the exact energies of ground and all

excited states of the system. Such an approach is called “Configuration Interaction

(CI)”. The wavefunction can now be represented as
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| Φ0〉 = C0 | Ψ0〉+ CS | S〉+ CD | D〉+ ... , (1.5)

where, Ψ0 represents the HF wavefunction, |S〉 represents all terms arising from sin-

gle excitations from the HF reference wavefunction, |D〉 represents double excitations,

and so on so forth. A full CI includes all possible excited configurations from the HF

reference wavefunction. Although computationally expensive, a full CI together with

an infinite basis set is the exact solution of non-relativistic Born-Oppenheimer time-

independent Schrödinger equation.

In reality the size of the basis set is always restricted. However full CI always

gives a very good description of the electron correlation. Many approximate methods

are also developed using similar methodology as CI. In situations where a single HF

wavefunction is not a good reference, one uses a multi-configuration self consistent

field (MCSCF) wavefunction as a reference. The CI from such a reference is called

multi-reference configuration interaction (MRCI).

Yet another method to estimate electron correlation is the “coupled cluster (CC)”

method. The theory relies on the central equation that the full CI wavefunction can

be written as

ψ = eTψHF , (1.6)

where the cluster operator T is defined as

T = T1 + T2 + ...+ Tn , (1.7)

where n is the total number of electrons and the various Ti operators generate all

possible determinants having i excitations from the reference. If one truncates the
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series in Eq.(1.6) to include only double excitations, a Taylor expansion gives

ψ =
(

1 + T2 +
T 2

2

2!
+ ...

)
ψHF , (1.8)

which is different from the CI method, because there are terms involving T 2
2 giving

quadruple excitations and T 3
2 giving hextuple excitations etc. These higher order

excitations which are missing in the CI theory makes it non-size consistent.

The inclusion of single(S) and double(D) excitations define the CCSD method.

Inclusion of triples (T3) is usually computationally very expensive, so most often per-

turbative methods are used to estimate the contribution of connected triples. This

very popular method is called CCSD(T), and is often referred to as the “gold stan-

dard” for single-reference calculations.

There is however no unique method that one can choose to be accurate for the

description of any physical system. So we discuss more about these various quantum

mechanical methods in the context of a particular system in the chapters to follow.

1.2.3 Basis sets

The basis set is the set of mathematical functions from which the wave function

is constructed. Even in the simplest theory – Hartree Fock (HF) – wavefunctions are

constructed from a linear combination of basis functions, the coefficients for which

are determined from the iterative solution of the self-consistent field equations. The

choice of a basis set is extremely crucial for the accurate description of a given sys-

tem. The larger basis set entails more basis functions which becomes computationally

expensive, although it provides a more accurate description of the system. Finally, it
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is of utmost importance that the basis functions must be chosen to have a form that

is useful in a physical sense. That is, the functions should have large amplitudes in

regions of space where the electron probability density (|ψ|2) is also large, and small

amplitudes where the probability density is small.

It has been now customary to use Gaussian-type orbitals (GTO) as basis functions,

whose general form can be written as [18]

φ(x, y, z, α, i, j, k) =
(2α

π

)3/4[(8α)i+j+ki!j!k!

(2i)!(2j)!(2k)!

]1/2

xiyjzke−α(x2+y2+z2) , (1.9)

where i, j and k are integers that dictate the nature of the orbital in a Cartesian

sense; for example when all three of these indices are zero, the GTO has spherical

symmetry, and is called an s-type GTO and so forth. Modern basis functions use a

linear combination of such GTOs, as shown in Eq. (1.9), which are referred to as

contracted GTOs. Of course, the development of the basis set does not end there.

Polarization functions and diffuse functions are also added to such GTOs to make

them more flexible. It must be noted that the choice of a basis set is extremely im-

portant for the accurate quantum mechanical description of a particular system. We

shall postpone further discussion of development of basis set and implementation to

the later chapters, and describe them in context of specific systems.
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1.3 Outline of the Thesis

The division of this thesis is based on the physical system which is studied. Chap-

ters 2 and 3 focus on the electronic structure calculations of the ground and excited

states of the Be+
2 molecular ion. We have also developed a photoassociation (PA)

scheme to form ultracold Be+
2 molecular ions. Chapter 4 is subdivided into sec-

tions, which discuss in detail electronic structure calculations in similar homonuclear

alkaline-earth molecular ions — Mg+
2 , Ca+

2 and Sr+
2 . We provide a comparative study

of the potential energy curves in these systems and show preliminary results for non-

adiabatic corrections in these molecular ions.

Chapters 5 and 6 focus on studies involving heteronuclear species of molecular

ions: alkaline-earth and mixed alkali alkaline-earth systems. In Chapter 6, we discuss

in detail the hyperfine spectrum of the ground singlet and triplet states of NaCa+,

arising from nuclear spins and electric quadrupoles.

Last but not the least, we discuss in Chapter 7 the application of quantum chem-

istry to the study of polyatomic molecular ions. Due to their many applications in

physics, chemistry and materials science, we choose gold nano-clusters as our spec-

imen to perform hybrid quantum mechanics (QM) and molecular mechanics (MM)

calculations to study the electronic structure and properties of these complicated sys-

tems.
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Chapter 2

The prototype example of Be+
2

2.1 Ground X 2Σ+
u and B 2Σ+

g states

The first system in the family of homonuclear alkaline-earth molecular ions is Be+
2 .

We calculate and analyze the ground X 2Σ+
u and B 2Σ+

g states in this chapter. In order

to obtain potential energy curves for such a system, one must identify a suitable basis

set and method to describe the problem. We begin by describing the methods used

in our calculations followed by a discussion of the results which include the potential

curves, spectroscopic constants, electronic transition dipole moments, lifetimes of the

bound vibrational levels and the analysis of long-range behavior and determination

of the Van der Waals coefficients.

As we have discussed in the previous chapter, the ideal goal from the quantum

chemistry viewpoint is to solve the Born-Oppenheimer Schrödinger equation, with an

infinite basis set at the full configuration interaction (FCI) level of theory. Realisti-

cally, however, the computational cost forces a limit on the size of the basis set and

method used for any calculation of potential energy surfaces.

The Be+
2 dimer is schematically shown in the diagram Fig. 2.1, comprising of the

neutral Be atom and positively charged Be+ ion separated by a distance R. The Be+
2

dimer has seven electrons, four of which are in the atomic core orbitals. This implies

12



Figure 2.1. Schematic diagram of Be+
2 dimer.

that the three valence electrons form an open shell doublet for the ground state of the

system. Historically, Be2 dimer has been a difficult problem for quantum chemistry,

due to the 2s− 2p near degeneracy in the beryllium atom [19]. At large separations,

the behavior of the molecule is dominated by the behavior of the constituent atom/

ions. Thus the near-degeneracy problem in Be atom also exists in the Be+
2 dimer.

As a consequence of the nearly degenerate 2s and 2p orbital energies, the B 2Σ+
g

state displays a multi-reference character. We show below the dominant molecular

orbital (MO) configurations for both X 2Σ+
u and B 2Σ+

g states of the Be+
2 dimer.
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Figure 2.2. Dominant molecular orbital configurations in the B 2Σ+
g state. The

curves in black shows the SCF curve crossings due to the change of the occupied
molecular orbitals, whereas the curve in red shows the calculated FCI potential curve
for the B 2Σ+

g state.

X 2Σ+
u state

MO configuration: 1σ2
g1σ

2
u2σ

2
g2σu

B 2Σ+
g state

MO configuration 1: 1σ2
g1σ

2
u2σ

2
g3σg

MO configuration 2: 1σ2
g1σ

2
u2σ

2
u2σg

The multi-reference character of the B 2Σ+
g state was first reported by Fischer et

al. [20]. This behavior of competing MO configurations is usually caused by near de-
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generacies of atomic energies and strong interactions with an excited 2Σ+
g state. The

multi-reference nature of the B 2Σ+
g state is depicted in Fig. 2.2. At short internuclear

separation, the dominant configuration is 1σ2
g1σ

2
u2σ

2
g3σg while at large separation it

becomes 1σ2
g1σ

2
u2σ

2
u2σg . As shown in Fig. 2.2, the calculated self-consistent field

(SCF) energies, show a curve crossing where the MO configuration changes.

2.2 Computational Details

Typically, for calculation of potential energy curves, one starts with a Hartree Fock

(HF) reference wavefunction and build on additional electron-electron interactions for

a more quantitative description of a real system. In this case however, a single HF

reference is not a good description of the system at all regions of potential energy

curve. This fact is also reflected in a preliminary calculation done at the CCSD(T)

level of theory, which finds a discontinuity in the potential curve for the B 2Σ+
g state

at the SCF curve crossing (see Fig. 2.3). Valence full configuration interaction (FCI)

calculations were found to give a smooth potential curve.

Therefore our computational approach is to perform valence FCI using the aug-

mented correlation consistent polarized valence n-tuple zeta (aug-cc-pVnZ) basis set

of Dunning [21]. In order to use FCI method, one still has to rely on HF reference

wavefunctions. In the case of the B 2Σ+
g state of the Be+

2 dimer, we calculate the SCF

energy at every interatomic separation (R), using both MO configurations. Since

SCF is a variational approach, the lower energy among the two SCF calculations cor-

responds to the correct occupation of the orbitals. Keeping this in mind, we use the

correct SCF reference for the valence FCI calculations. The alternate approach for

this calculation was to use a complete active space (CAS) wavefunction as a reference
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Figure 2.3. The curves in black show a CCSD(T) calculation done with aug-cc-pV5Z
basis set, whereas the curves in red are a full CI calculation using the same basis set.
The inset shows a discontinuity (black line) in the CCSD(T) curve for the B 2Σ+
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state due to the change in reference configuration at larger internuclear separation.
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for a multi-reference configuration interaction (MRCI) calculation.

The choice of basis set is one of the most crucial aspects of any quantum chemistry

calculation. Since Be+
2 is a light system, owing to only 7 electrons, we choose a large

basis set of quadruple (QZ) and quintuple zeta (5Z) quality for our calculations. The

5Z basis set would simply mean that it includes “h” angular momentum functions (s

corresponds to n = 0, p to n = 1 and so forth). The 5Z basis set contains 14s, 8p,

4d, 3f , 2g and 1h Gaussian type angular momentum functions, which are contracted

to 6s, 5p, 4d, 3f , 2g, 1h functions. We show below an example of the cc-pV5Z ba-

sis set for Be+
2 in MOLPRO program format. The exponents are indicated by the

corresponding angular momentum function (s,p,d...) and the contraction coefficients

are indicated by “c”. This implies that for the cc-pV5Z basis set, there are 14 s-type

functions and 10 contraction coefficients, representing the 1s and 2s core of Be+
2 and

similarly for other angular momentum functions.
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b a s i s={
!
! cc−pV5Z Bas i s Set from EMSL l i b r a r y
! BERYLLIUM (14 s , 8 p , 4 d , 3 f , 2 g , 1 h) −> [ 6 s , 5 p , 4 d , 3 f , 2 g , 1 h ]
!
s , BE , 54620.0000000 , 8180 .0000000 , 1862 .0000000 , 527 .3000000 ,
172 .0000000 , 62 .1000000 , 24 .2100000 , 9 .9930000 , 4 .3050000 ,
1 .9210000 , 0 .8663000 , 0 .2475000 , 0 .1009000 , 0 .0412900
c , 1 . 10 , 0 .0000180 , 0 .0001380 , 0 .0007230 , 0 .0030390 , 0 .0109080 ,
0 .0340350 , 0 .0911930 , 0 .1992680 , 0 .3293550 , 0 .3404890
c , 1 . 10 , −0.0000030 , −0.0000250 , −0.0001310 , −0.0005580 , −0.0019880 ,
−0.0063700 , −0.0172170 , −0.0408580 , −0.0742370 , −0.1192340
c , 11 .11 , 1
c , 12 .12 , 1
c , 13 .13 , 1
c , 14 .14 , 1
p , BE , 43 .7500000 , 10 .3300000 , 3 .2260000 , 1 .1270000 , 0 .4334000 ,
0 .1808000 , 0 .0782700 , 0 .0337200
c , 1 . 4 , 0 .0006330 , 0 .0048080 , 0 .0205270 , 0 .0678160
c , 5 . 5 , 1
c , 6 . 6 , 1
c , 7 . 7 , 1
c , 8 . 8 , 1
d , BE , 1 .6350000 , 0 .7410000 , 0 .3350000 , 0 .1519000
c , 1 . 1 , 1
c , 2 . 2 , 1
c , 3 . 3 , 1
c , 4 . 4 , 1
f , BE , 0 .6860000 , 0 .4010000 , 0 .2350000
c , 1 . 1 , 1
c , 2 . 2 , 1
c , 3 . 3 , 1
g , BE , 0 .6030000 , 0 .3240000
c , 1 . 1 , 1
c , 2 . 2 , 1
h , BE , 0 .5100000
c , 1 . 1 , 1
}

Clearly more exponents in each angular momentum function and more angular

momentum functions would mean a better and much accurate description of the real

system. Since computational time scales very quickly with the total number of basis

functions, one is usually limited to a finite basis set. The core electrons are better

described by tight Gaussian exponents (larger values) whereas the valence electrons

are described accurately with diffuse exponents (smaller values). The role of such

18



Table 2.1. Additional diffuse functions added to cc-pV5Z basis set.

Orbitals Exponents Contraction coefficients

s 0.013777 1.0

p 0.007668 1.0

d 0.077200 1.0

f 0.013750 1.0

g 0.174000 1.0

h 0.225000 1.0

diffuse (augmented) functions is also extremely crucial in describing the valence elec-

trons at large interatomic separations. Since we are also interested in studying the

long-range behavior of these systems, we need good diffuse functions in our basis set.

The published quintuple zeta basis set, did not have any augmented basis functions,

hence we derive the exponents by a continuation of even-tempered exponents for each

angular momentum functions. Table 2.1 shows the augmented basis functions derived

for the 5Z basis set.

In order to reach the goal of solving Schrödinger equation with an infinite basis

set, one approach that is often used is to extrapolate the results from a finite basis set

calculation to the complete basis set (CBS) limit. In order to use this approach, we

utilize our results from the aug-cc-pVQZ and aug-cc-pV5Z basis set. For extrapolating

the SCF energies, we have used Schwenke’s linear formula [22],
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Eex
SCF = EX

SCF + α[EY
SCF − EX

SCF ] , (2.1)

where EX
SCF and EY

SCF correspond to the SCF energies calculated with aug-cc-pVQZ

and aug-cc-pV5Z basis sets respectively. The Schwenke extrapolation coefficient α

is determined by fitting to accurate benchmark calculations; for our choice of basis

sets α = 1.1099137. For extrapolating the FCI correlation energies we have used the

following formula given by Helgaker [23],

Eex
FCI =

X3Ecorr
X − Y 3Ecorr

Y

X3 − Y 3
, (2.2)

where X, Y are 4, 5 corresponding to the aug-cc-pVQZ and aug-cc-pV5Z basis sets.

The total valence energy is given by the sum of the extrapolated SCF and FCI

energies,

Evalence = Eex
SCF + Eex

FCI . (2.3)

The total valence energy obtained from extrapolation of the basis sets was numerically

very close to the valence energy obtained purely from a full CI calculation with a 5Z

basis set. This suggests that results from the 5Z calculation were very close to being

converged. The CBS extrapolation increased the well depths of the X 2Σ+
u and B 2Σ+

g

states by ∼ 40 cm−1, however the dissociation energy for the outer well in the B 2Σ+
g

state was unchanged. Now the total energy of the Be+
2 dimer is given by,

Etotal = Evalence + Ecore−valence , (2.4)

where Evalence is the total valence energy obtained earlier and Ecore−valence is the cor-

rection to the valence energy from interactions of the valence electrons to the core and
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the interactions among the core electrons. Core-core (CC) and core-valence (CV) cor-

relations were calculated as the difference between all-electron and frozen core CCSDT

[24] calculations done with Martin’s MTsmall basis set [25]. The MTsmall basis set

consists of a completely uncontracted cc-pVTZ basis set augmented with two tight d

and one tight f functions. For a three electron valence system, the coupled-cluster

with singles, doubles and triples (CCSDT) is equivalent to full CI. The all electron

calculations were very expensive computationally and took ∼ 8 hours for a single

point energy calculation. Scalar relativistic corrections were estimated to be ∼ 10

cm−1 and are neglected.

In quantum chemistry, calculations using finite basis sets are susceptible to basis

set superposition error (BSSE). As the atom/ ion of the Be+
2 molecular ion approach

one another, their basis functions overlap. Each monomer borrows functions from

other nearby components, effectively increasing its basis set and improving the cal-

culation of derived properties such as energy. If the total energy is minimized as a

function of the system geometry, the short-range energies from the mixed basis sets

must be compared with the long-range energies from the unmixed sets, and this mis-

match introduces an error. We correct for the effects of BSSE by the counterpoise

method of Boys and Bernardi [26]. In the counterpoise method the BSSE is calcu-

lated by re-performing all the calculations using the mixed (dimer) basis sets, and the

error is then subtracted a posteriori from the uncorrected energy. The mixed basis

sets for the individual atom/ion are realized by introducing ghost (dummy) orbitals,

i.e, basis set functions which have no electrons or protons.

The FCI calculations were done using the MOLPRO [27] and PSI3 [28] electronic

structure programs running on a Linux workstation (2 quad core Intel Xeon E5520
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CPU). The DETCI program in PSI3 was much faster in comparison to the CI pro-

gram of MOLPRO, thus we used PSI3 for computing the valence energies with the larger

5Z basis sets. The core-core and core-valence corrections were done with the multi-

reference coupled cluster (MRCC) program [29] of M. Kállay as implemented using the

MOLPRO program. Examples of input files for calculations of potential energy curves

using the different programs have been provided in Appendix A.1.

Le Roy’s LEVEL program [30] has been used to calculate the bound vibrational

levels, Franck-Condon factors and Einstein A-coefficients. Using these Einstein A-

coefficients we were able to calculate the lifetimes of all vibrational levels of the B 2Σ+
g

state. A sample input and output file of the LEVEL program are provided in Appendix

B.1.

2.3 Results and Discussions

2.3.1 Potential Curves and Spectroscopic Constants

Fig. 2.4 shows the ab initio potential curves for the lowest 2Σ+
u and 2Σ+

g states

of Be+
2 . These were obtained by the methodology described in the previous section.

The most interesting feature of the ground states of the Be+
2 dimer is that the B 2Σ+

g

state has a double minima.

This double-well nature of the B 2Σ+
g state has been seen in other alkaline-earth

molecular ions as well. This is discussed in detail, in Chapter 4 where a comparison

is made to other alkaline-earth systems. The nature and strength of interaction of

the B 2Σ+
g state with the next excited state of this symmetry 2 2Σ+

g , is crucial in

understanding the double-well potential energy curve. In the B 2Σ+
g state, the two
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Figure 2.4. The figure shows the calculated ab initio potential curves of Be+
2 . The

inset is a magnification of the shallow long-range well in the B 2Σ+
g state (in red).

The positions of the first few bound vibrational levels are shown (in blue) for both
states of the 9Be+

2 dimer. Note that the energy scale for the inset is in cm−1.
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wells are widely separated by ∼ 5 Å. Both wells support bound vibrational states.

We have calculated the radiative lifetimes of the bound levels in the B 2Σ+
g state,

and found that the 12 bound levels in the shallow outer well are long lived (∼ ms)

compared to the ones in the deeper inner well (∼ µs).

We use a standard Dunham analysis [31] to calculate the spectroscopic constants

(Table 2.2). The minima for each potential well is approximately identified and 10

points each at a successive internuclear separation of 0.01 Å for both increasing and

decreasing R are calculated. The potential well comprising of 21 points is fitted with

V (x) = V0 + a0ρ(x)2[1 + a1ρ(x) + a2ρ(x)2 + ...] , (2.5)

where

ρ(x) =
x− re
re

, (2.6)

and the coefficients a0, a1 etc. are the Dunham expansion coefficients. Although the

Dunham series is an infinite series, it converges very fast and for all practical purposes

one can terminate it keeping the fourth order coefficient without any loss of accuracy.

V0 is the value of the potential energy (in atomic units) at re. From the Dunham

analysis, we calculate the spectroscopic constants re, Be, ωe and ωexe. The calculated

spectroscopic constants are shown in Table 2.2. Unfortunately, there has not been any

experimental measurement for the B 2Σ+
g state, so we could only compare the spec-

troscopic constants of the X 2Σ+
u against recent experiments. The agreement with the

experimental values is extremely good and we believe that the values for the B 2Σ+
g

state have a similar accuracy since the ab initio methods for calculating both states

were the same. The X 2Σ+
u state supports approximately 70 bound vibrational levels,
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Table 2.2. Calculated spectroscopic constants of Be+
2

State re (Å) Be (cm−1) ωe (cm−1) ωexe (cm−1) De (cm−1)

X2Σ+
u 2.221 0.756 525.299 4.454 16435

Exp. [32] 2.21(8) 525.88(18) 4.44(3) 16438(5)

B2Σ+
g (Inner) 2.123 0.829 547.452 11.681 2550

B2Σ+
g (Outer) 7.106 0.074 33.703 3.548 79

while the inner and outer wells of the B 2Σ+
g state support 5 and 13 levels, respectively.

2.3.2 Transition Moments and Lifetimes

For homonuclear molecules like Be+
2 , there is no permanent dipole moment. How-

ever there are transitions between different electronic states which are dipole allowed.

To compute the electronic dipole transition moments coupling the X 2Σ+
u and B 2Σ+

g

states of Be+
2 , we have used a 16 orbital complete active space self consistent field

(CASSCF) wavefunction as a reference for performing multi-reference configuration

interaction (MRCI) calculations. The core-valence contribution to the electronic tran-

sition moment is found to be negligible and hence omitted in the present calculations.

The transition dipole moments have been calculated using MOLPRO. Of the many

possible methods to calculate transition moments using the CI code in MOLPRO, two

are particularly useful. In the first/direct method, we can reduce the symmetry of the
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system to C2v from D2h. As a result of this, both the X 2Σ+
u and B 2Σ+

g states can now

be described by the same symmetry operator A1. Thus, we can simultaneously solve

for two roots of the A1 symmetry, and extract the transition moment as a function

of internuclear separation R from the CI output in MOLPRO. The second and more

general method is to store the electronic wavefunctions of the corresponding states

of respective symmetries into separate files, and then in the next step calculate the

transition dipole moment between those different symmetry states. An example of

transition moment calculation is provided in Appendix A.3.

The transition moment for electric dipole transitions is defined as

µXB(R) = 〈B | er |X〉 , (2.7)

where |Xu〉 and |Bg〉 are the electronic wave functions corresponding to the states X

2Σ+
u and B 2Σ+

g when the two Be nuclei are separated by the distance R. Fig. 2.5

shows a plot of the computed electronic dipole transition moment between the B 2Σ+
g

and X 2Σ+
u ground states of Be+

2 . The curve shows a zero-crossing at around 5.5 a0

which is approximately the same distance at which the dominant molecular orbital

configuration changes from (1σ2
g 1σ2

u 2σ2
g 3σg) to (1σ2

g 1σ2
u 2σ2

u 2σg) in the B 2Σ+
g state

of Be+
2 (Fig. 2.2).

The transition moment µXB asymptotically follows the classical dipole behavior,

µXB ∼ R/2 [33, 34], and we observe this behavior in the calculated curve (Fig. 2.5).

This is understood by noting that for large R, the electron is localized on either one of

the Be nuclei labeled A and B, respectively located at±R/2 from the geometric center

on the molecular axis. The gerade and ungerade symmetries are well approximated
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Figure 2.5. The figure shows a plot of the computed electronic dipole transition
moment µXB coupling the B 2Σ+

g to the X 2Σ+
u state. The dotted line (in blue) shows

R/2.

by an even and odd combination of states with the electron centered on A or B, i.e.

|Bg〉 ∼ 1√
2

(|A〉+ |B〉) and |Xu〉 ∼ 1√
2

(|A〉 − |B〉), so that

µXB = 〈Bg|z|Xu〉 =
1

2
[〈A|z|A〉 − 〈B|z|B〉] ∼ R

2
, (2.8)

where we put e = 1 in atomic units and omitted the cross terms because the overlap

between the electronic wave functions centered of A and B are vanishingly small at

large R. Since r ∼ ±R/2êR is constant, then 〈A|r|A〉 ∼ R/2 and 〈B|r|B〉 ∼ −R/2,

leading to µXB ∼ R/2. We note that although the transition moment grows linearly
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with R, the probability of spontaneous transition will tend to zero since it is propor-

tional to ν3
XB, which vanishes exponentially as R→∞.

The calculated potential curves and the electronic transition dipole moments were

used as input to Le Roy’s LEVEL program to calculate the Einstein A-coefficients

coupling the vibrational bound levels of the B 2Σ+
g state to the X 2Σ+

u state. We

have also calculated the radiative lifetimes (Table 2.3) of the vibrational levels in the

B 2Σ+
g state using these Einstein A-coefficients. Note that the bound levels in the

shallow outer well are extremely long-lived (∼ 10−3 s) in comparison to the levels in

the inner well (∼ 10−7 s). Our results for v′ = 0 - 3 agree well with the results of

Fischer et al. [20].
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Table 2.3. Radiative lifetimes of the vibrational levels of the B 2Σ+
g state (in s) for

9Be+
2 .

v′ B 2Σ+
g → X 2Σ+

u

0 0.849 × 10−7

1 0.937 × 10−7

2 1.032 × 10−7

3 1.161 × 10−7

4 1.423 × 10−7

5 1.539 × 10−7

6 2.870 × 10−3

7 1.861 × 10−3

8 1.586 × 10−3

9 1.557 × 10−3

10 1.992 × 10−3

11 1.840 × 10−3

12 2.340 × 10−3

13 3.382 × 10−3

14 5.277 × 10−3

15 10.067 × 10−3

16 25.718 × 10−3

17 97.361 × 10−3
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2.3.3 Long-Range Coefficients

For large internuclear separations, the long-range form of the intermolecular po-

tential is

VLR(R) = V∞ −
(αd/2)

R4
− (αq/2 + C ′6)

R6
− ...± Eexch , (2.9)

where Eexch is the exchange energy contribution and V∞ is the asymptotic energy

(which we have set to zero). Note that αd is the static dipole polarizability, αq is the

static quadrupole polarizability, and C ′6 is the dispersion coefficient. The ± sign in

Eexch (see Section 4.7) corresponds to the 2Σ+
g and 2Σ+

u states, respectively.

All the parameters in Eq. (2.9) are common for both the X 2Σ+
u and B 2Σ+

g states.

Neglecting higher order terms in Eq. (2.9), and adding the potentials for both states,

the exchange term cancels and we get

−(Vg + Vu)

2
×R4 = (α1/2) +

(α2/2 + C ′6)

R2
. (2.10)

We have performed finite-field CCSD(T) calculations with the aug-cc-pV5Z basis

set using MOLPRO to obtain the values of the static atomic dipole and quadrupole

polarizabilities. We get αd = 38.12 a.u. and αq = 300.01 a.u. which are in excellent

agreement with previous results [35]. Using αd and αq, we can numerically fit the

value of dispersion coefficient C ′6, using Eq. (2.10). From the fit we get C ′6 = 124.22

a.u. This is in good agreement with unpublished results of Mitroy [36]. Table 2.4

lists the values of the long-range coefficients.
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Table 2.4. Long-Range Coefficients for both X 2Σ+
u and B 2Σ+

g states (in a.u.)

αd αq C′6

This work 38.12 300.01 124.23
Previous [35] 37.76 300.98
Previous [36] 119.99

2.4 Concluding Remarks

Accurate ab initio calculations have been performed to compute the X 2Σ+
u and

B 2Σ+
g states of the Be+

2 dimer. Since the B 2Σ+
g state has a shallow well near 13.4

bohr, it was necessary to include diffuse functions in the basis sets to describe the well

accurately. Large augmented basis sets of the Dunning correlation consistent series

were thus chosen and the results were also extrapolated to the complete basis set

limit. We have corrected our valence only FCI results for core-core and core-valence

effects using CCSDT calculations with both full and frozen core using Martin’s MTs-

mall basis set.

Since the B 2Σ+
g state has not been experimentally observed we were unable to

compare our theoretical values for dissociation energies or spectroscopic constants

[32]. However there are recent experimental results for the X 2Σ+
u state which com-

pare very well with our calculated results.
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Chapter 3

Excited States in Be+
2 dimer — An

application to Photoassociation

3.1 Low lying asymptotes in Be+
2

In the previous chapter, we have discussed the ab initio calculations of the ground

X 2Σ+
u and B 2Σ+

g states of the Be+
2 dimer. Both these ground states originate from

the same long-range asymptote comprising of the Be neutral atom and the Be+ ion

in their respective ground states. Now, there may be a situation in which either of

the neutral atom or the ion or both can be in an electronically excited state. In this

chapter, we shall consider first order (single photon) excitations of both the Be neu-

tral atom and the Be+ ion, and calculate the family of excited state potential energy

curves in the Be+
2 dimer.

We first note down the excitations of the neutral atom and ion, and map the

energetics of the system. Typically, the atomic and ionic excitation energies are well

known and listed in the NIST atomic spectral database. The first and most impor-

tant task to calculate electronically excited states from the ab initio perspective is to

make sure whether one can reproduce the known atomic/ionic excitation energies.

The next task is to list down the different symmetries of the electronically excited

atom or ions. This is important because the different symmetry operations would
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Table 3.1. The lowest three asymptotes of Be+
2 . Also note that we have referred to

the 12Πu state † (in Channel II below) as A2Πu in the remainder of this chapter.

Channel Asymptote Molecular states

I Be(1Sg) + Be+(2Sg) X 2Σ+
u , B 2Σ+

g

II Be(3Pu) + Be+(2Sg) 1 2Πg,u
†, 2 2Σ+

g,u

1 4Σ+
g,u, 1 4Πg,u

III Be(1Sg) + Be+(2Pu) 3 2Σ+
g,u, 2 2Πg,u

quantify the number of potential energy curves arising from the different excited

asymptotes. For example, in the case of the ground state asymptote, we have

Be(1Sg) + Be+(2Sg) → 2Σ+
u,g .

Therefore, a combination of singlet sigma and doublet sigma states would give

rise to doublet sigma states of both gerade and ungerade symmetry. Similarly, we list

down the other combinations of single excitation of Be and Be+. The three lowest

asymptotes for Be+
2 are shown in Table 3.1.

3.2 Ab inito curves for Excited States

We have calculated all the doublet and quartet states arising from the lowest

asymptotes of Be+
2 . The potential energy curves of all doublet states corresponding

to the three lowest asymptotes of Table 3.1 are shown in Fig. 3.1. The only asymptote
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which gives rise to quartet electronic states (shown in Fig. 3.2) is denoted by “II” in

Table 3.1; it arises from the combination of Be atom in excited 3Pu state and Be+

in ground 2Sg state. The ab initio calculations were performed using MOLPRO with

valence full configuration interaction (FCI) and the aug-cc-pV5Z basis set of Peterson

[37, 38]. Similar results have been obtained previously by Meng, Bruna, and Wright

[39, 40].

3.3 Theoretical background on photoassociation (PA)

In the previous section, we have calculated excited states of the Be+
2 dimer, from

asymptotes comprising of single photon excitations of the Be neutral atom and Be+

ion. The excited states of a molecular ion are important for many reasons. Apart

from studying avoided crossings and perturbations from higher states, they are of

particular interest for formation of cold and ultracold molecular ions. One of the

approaches in such experiments is to use the excited states as an intermediate step

to form cold molecular ions into their lowest vibrational state.

The cooling and trapping [13] of molecular ions at sub-kelvin temperatures is a

topic of growing interest. Several techniques like buffer-gas cooling and Stark decel-

erators [41] have been developed to obtain cold neutral molecules. A popular method

for the formation of stable ultracold neutral molecules in the lowest rovibrational

levels is from the photoassociation (PA) of ultracold atoms [42], where two colliding

atoms absorb a photon to form a molecule. Schematically this is shown as

X + Y + hν → (XY )∗ . (3.1)
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Over the last several years, PA has been widely used to study molecular forma-

tion and long-range interactions. Such studies have a wide range of applications in

metrology, molecular spectroscopy, precision measurements and quantum computing

[9]. Formation of ultracold alkali dimers (both homonuclear and heteronuclear) have

been explored in detail both experimentally and theoretically. More recently [43]

alkaline earth dimers like Be2 have also been studied in detail. One of the major ad-

vantages of using alkaline earth ionic dimers is that the ion and the neutral atom can

be imaged separately. This opens up a wide range of possibilities both for experiments

and theory for processes like resonant charge transfer [6] and quantum information

storage.

In this section, we shall develop a PA scheme for the formation of ultracold Be+
2

molecular ions in the B 2Σ+
g state. In the previous chapter, we have described the

calculation of potential curves for the X 2Σ+
u and B 2Σ+

g states of Be+
2 and shown the

existence of a long-range well in the B 2Σ+
g state, which supports long lived (∼ms)

vibrational levels. From the experimental viewpoint, such long-lived bound levels are

extremely attractive. Since the longer-lived the molecules are, the longer is the time

for possible manipulations and measurements. It is for this reason that we develop

a PA scheme to form cold Be+
2 molecular ions in the shallow long-range well of the

B 2Σ+
g state.

In the previous section, we have calculated low-lying excited states in Be+
2 . We

choose the first excited state of 2Πu symmetry, the A 2Πu state, as the intermediate

excited state to populate into for the PA scheme. As a first step, the Franck-Condon

overlap between two electronic states, defined by
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FCF = 〈ψ1|ψ2〉 , (3.2)

is calculated to estimate the probability of radiative decay from state 2 to state 1.

Once we have confirmed that there is a good probability of radiative decay into the

lower B 2Σ+
g state in the vicinity of the long-range well, we do a more elaborate treat-

ment to calculate the PA rate.

In order to have consistency in the ab initio calculations of the potential energy

curves, we treat the A 2Πu at the same level of theory as the ground X 2Σ+
u and B 2Σ+

g

states. The valence energy was calculated using full configuration interaction (FCI)

with the aug-cc-pV5Z basis set of Peterson [37, 38]. The core-core and core-valence

corrections to the correlation energy were made at the CCSDT/MTsmall level of the-

ory, as done previously for the X 2Σ+
u and B 2Σ+

g states. The calculated potential

curve for A 2Πu state is also corrected for the effects of basis set superposition error

by the counterpoise method of Boys and Bernardi [26]. Scalar relativistic corrections

were estimated to be small and are neglected.

A fully quantum mechanical scattering treatment is used to calculate the PA rate

and estimate the total number of molecules formed per second in the rovibrational

levels of the B 2Σ+
g state. The methods used for calculation of PA rates was developed

previously in our group by a former graduate student Elizabeth Juarros [44] for LiH

molecule. We use a very similar methodology here. Some of the numerical code was

also developed in collaboration with Subhas Ghosal, a former postdoc of the group.

The photoassociation rate coefficient is defined as,

Kv′ = 〈vrelσPA〉 . (3.3)
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For a laser L = (I,∆), of intensity I and detuning ∆ from a bound level (v′, J ′) this

becomes [45, 46]

Kv′(T, L) =
〈πvrel
κ2

∞∑
l=0

(2l + 1)|Sl,v′(ε, L)|2
〉
, (3.4)

where ε = ~2κ2/2µ = µv2
rel/2, µ is the reduced mass, vrel is the relative velocity of

the colliding pair of atom and ion and Sl,v′ represents the scattering matrix element

for producing the state v′ from the continuum state ε.

For ultracold temperatures, we only consider s-wave scattering i.e. only the l=0

term contributes and we can approximate

|Sl=0,v′|2 ' 2πγs(I, ε, v
′)δ(ε−∆) , (3.5)

where γs(I, ε, v
′) = πI|Dv′(ε)|2/ε0c. Note that

|Dv′(ε)|2 ≡ |〈v′|D(R)|ε〉|2 , (3.6)

where D(R) is the dipole transition moment between the A 2Πu and B 2Σ+
g states.

For an ultracold temperature T , assuming a Maxwellian velocity distribution, the

maximum value of Kv′(T, L = I,∆) becomes [47, 48]

Kmax
v′ =

4π2

h

I

ε0

e−1/2

QT

Cv′

√
kBT

2
, (3.7)

where c is the speed of light, kB is the Boltzmann constant and QT = (2πµkBT/h
2)3/2

(µ is the reduced mass). We also assume | Dv′(ε) |2= Cv′
√
ε according to Wigner’s
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threshold law [49].

We note that this approximation is not valid when the intensity I becomes large

and saturation effects need to be estimated [50]. The limiting value of the photoas-

sociation rate coefficient is given by

K limit(T ) =
kBT

hQT

=
h2

(2πµ)3/2

1√
kBT

. (3.8)

The rate of molecules formed per second can be obtained if we multiply Kv′ given

by the above equations by the atomic densities nBe and nBe+ , and the volume V

illuminated by the laser beam, giving us Rv′ = nBenBe+Kv′V .

3.4 PA scheme via the A2Πu state

For the current PA scheme, we have chosen the A 2Πu state as the excited state

which would radiatively couple to the lower B 2Σ+
g state. Once a vibrational level in

the A 2Πu state is populated, it decays into the ground state by spontaneous emission,

or by stimulated emission with another laser. For the case of spontaneous emission,

the total rate of formation in the ground B 2Σ+
g state is given by [51, 46]

Rtot = rv
′

v Rv′ = rv
′

v nBenBe+Kv′V , (3.9)

where, rv
′
v = Av

′
v τv′ is the branching ratio between an excited vibrational level (v′, J ′ =

1) and the ground state (v, J = 0). Av
′
v is the Einstein A-coefficient (the width of

spontaneous emission) and τv′ = 1/
∑
v

Av
′

v is the lifetime of the level (v′, J ′ = 1).
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However, the population in excited state can also decay by stimulated emission,

with the help of a second laser. In this case, the two-photon stimulated Raman

photoassociation process is given by [47]

K
(2)
vv′ = K

(1)
v′

(Ωvv′

∆

)2

, (3.10)

where K
(1)
v′ is the single photon photoassociation rate being by Eq. (3.7), Ωvv′ is the

bound-bound Rabi frequency and ∆ is the detuning. Ωvv′ can be estimated using

~2Ω2
vv′ = (2πI2/c)|Dvv′|2, where Dvv′ is the transition matrix element between bound

levels v and v′.

The A 2Πu state lies energetically lower than the B 2Σ+
g state (Fig. 3.3) which

means the lowest rovibrational levels of the A 2Πu state would be extremely long lived,

since spontaneous emission to the lowest ground X 2Σ+
u state is dipole forbidden.

In the present PA scheme (Fig. 3.3), the red band of the excited levels are not

accessible, thus one has to go to a much higher, possibly a Rydberg state, to probe

the deeply bound levels of the B 2Σ+
g state which in turn can radiatively decay into

A 2Πu. The A 2Πu state supports 60 bound levels, however there is good Franck-

Condon overlaps with the B 2Σ+
g outer well (v = 8 - 15, J ′ = 0) only for the few

uppermost rovibrational levels (v′ = 50 - 59, J = 1). The lifetimes of bound levels in

the A 2Πu state are calculated by the same procedure used previously for the B 2Σ+
g

state [52].

3.5 Transition moment and Long-range expansion coefficients

The transition moment between A 2Πu and B 2Σ+
g of Be+

2 are obtained from multi-

reference configuration interaction (MRCI) calculations using a 16 orbital complete
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active space self consistent field (CASSCF) reference. Fig. 3.3(c) shows the com-

puted electronic dipole transition moment between the A 2Πu and the B 2Σ+
g ground

states of Be+
2 .

Starting with our ab initio results, we compute the Be+
2 PA formation rate. The

calculated potential curve for the B 2Σ+
g state was smoothly joined to the long-range

form −C4/R
4 − C6/R

6 − C8/R
8 [52]. The A 2Πu state was smoothly continued to

−C3/R
3 − C4/R

4 − C6/R
6. Note that the expansion coefficients are different for the

two states since they come from different atom/ion asymptotes, Be(1Sg) + Be+(2Sg)

and Be(3Pu) + Be+(2Sg) for the B 2Σ+
g and A 2Πu states, respectively.

Note that C3 = Q × q, where Q is the quadrupole moment of the Be atom in

the 3P state and q is the charge of the Be+ ion (+1). C4 = αd/2, where αd is the

dipole polarizability of the beryllium atom in the respective ground/excited state.

We report the long-range expansion for all the doublets going to the same asymptote

as that of A 2Πu state. Note that C3 for the A 2Πu and 1 2Πg state has opposite

sign and magnitude (half) from the 2 2Σ+
g,u states (see Table 3.2). This behavior has

been previously studied for alkali dimers by Marinescu and Dalgarno [53]. The ab

initio calculations of polarizabilities and expansion coefficients agree well with semi-

emprical calculations, provided by our collaborator Jim Mitroy in a private communi-

cation. The methodology for computing the dispersion coefficients is described below.

The approach used to generate the dispersion coefficients is based on the work

of Dalgarno who did many of the early calculations utilizing oscillator strength sum

rules [54, 55]. In the case of states with non-zero angular momentum, the sums over

oscillator strengths are rewritten in terms of sums over the reduced matrix elements
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Table 3.2. The static atomic dipole polarizability (αd), static quadrupole polariz-
ability (αq), quadrupole moment (Q) and dispersion coefficients for low lying doublets
of Be+

2 . All values are in atomic units (a.u.).

Molecular State αd αq Q C3 C4 C ′6 C8

(= Q× q) (=αd/2)

X 2Σ+
u , B 2Σ+

g [52] 38.12 300.01 0.00 0.00 19.06 120.20 —

Semi-empirical 37.73 — — — 18.86 120.35 3876.34

A 2Πu, 1 2Πg 39.04 275.01 −2.27 −2.27 19.52 123.29 —

2 2Σ+
u , 2 2Σ+

g 39.04 275.01 4.54 4.54 19.52 123.29 —

Semi-empirical 39.04 — 4.54 4.54 19.52 127.50 —
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of the electric multipole operators [56, 57]. The underlying structure models used to

describe the Be+ and Be ground and excited states employ a frozen core based on

a Hartree-Fock wave function. A semi-empirical core polarization potential is then

added to the Hamiltonian. The effective Hamiltonian is then diagonalized in a very

large basis of one-electron or two-electron states constructed using Laguerre Type

Orbitals [58]. Specific details of the structure models for Be+ [59] and Be [60] have

been published previously. Contributions arising from core excitations are explicitly

included in the evaluation of dispersion coefficients and polarizabilities [58, 56]. Cal-

culations using this approach reproduce the close exact Hylleraas calculations of the

polarizabilities of the Be+ 2s and 2p states to better than 0.01 a3
0 [59]. Similarly, the

present model calculation of the Be ground state dipole polarizability reproduces the

best ab-initio calculation to better than 0.1% [60].

3.6 Photoassociation Rates

We report our computed values for Kmax
v′ going into the excited rovibrational lev-

els (v′, J ′=1) in Table 3.3 for certain levels with maximum Franck-Condon overlap

with the ground state levels (v, J=0). We choose a laser intensity I = 1000 W/cm2

and temperature T = 1 mK for all our calculations. We choose these experimental

parameters so that the PA rate coefficient would be safely below K limit. The limiting

value for PA rate with these parameters is K limit = 3.66 × 10−10 cm3/s. We find the

largest rate coefficient to be 3.56 × 10−15 cm3/s for v′ = 59. For lower vibrational

levels Kmax
v′ steadily decreases, which can be explained by the poor overlap of the

continuum wave function of the ground B 2Σ+
g state with the excited bound level

wave functions.
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Table 3.3. Photoassociation rates K
(1)
vv′ , K

(2)
vv′ with corresponding lifetimes (τv′) and

branching ratio (rv
′
v ) for bound levels v′ and v with best Franck-Condon overlaps.

Parameters used are I1 = I2 = 1000 W/cm2, T = 1 mK, ∆ = 500 MHz. Powers of
ten are indicated in square brackets.

Levels Cv′(a.u.) K
(1)
vv′(cm3/s) τv′(s) rv

′
v Dvv′(a.u.) K

(2)
vv′(cm3/s)

(v ← v′)

06 ← 54 2.26[+1] 1.75[−17] 6.27[−11] < 1% 9.64[−8] 2.83[−20]
07 ← 56 3.07[+2] 2.38[−16] 1.57[−07] < 1% 3.42[−9] 4.85[−22]
08 ← 50 4.92[−3] 9.14[−45] 2.46[−15] 99% 1.36[−5] 1.22[−19]
09 ← 57 1.18[+2] 9.14[−17] 2.08[−04] 47% 4.76[−5] 3.61[−14]
10 ← 59 4.59[+3] 3.56[−15] 2.06[−05] 23% 1.91[−3] 2.26[−09]
11 ← 58 1.10[+3] 8.53[−16] 1.85[−05] 14% 5.65[−4] 4.74[−11]
12 ← 51 4.58[−2] 6.14[−44] 2.63[−15] 12% 1.15[−6] 8.18[−21]
13 ← 52 2.26[+1] 3.82[−21] 3.61[−14] 12% 3.41[−6] 3.54[−17]
14 ← 53 3.30[+0] 1.83[−30] 1.90[−12] 10% 9.31[−6] 3.93[−17]
15 ← 55 1.13[+2] 8.81[−17] 2.49[−09] 9% 5.03[−5] 3.86[−14]
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Larger rates can be obtained by saturating the transition to K limit. One can also

use another laser to obtain a two-photon assisted PA rate (see Eq. (3.10)). In that

case one ensures that the molecules formed in the excited level can be transferred to

the ground state with ∼ 100% efficiency. Also since the formation rate is large for

the uppermost vibrational level v′, the laser wavelength necessary (∼ 455 nm) for

this process would be close to the 2s - 3p atomic transition of Be, which can be easily

realized experimentally.

3.7 Concluding Remarks

We note that by using photoassociation, a large number of Be+
2 molecules could be

formed in the long-range well of the B 2Σ+
g state. This means that PA can be used as

an experimental probe to study the long-range properties of the ground B 2Σ+
g state

in Be+
2 dimer. Owing to the long lifetimes of the molecules realized in the long-range

well, there can be many applications in the study of resonant charge transfer and

quantum information storage.

In order to obtain the PA rates, we first calculated the excited potential energy curves

of the Be+
2 dimer using similar ab initio techniques that we developed in Chapter 2.

We also calculated the electronic dipole transition moments coupling the A 2Πu and

the B 2Σ+
g state. For the proposed PA scheme, we got a single photon rate of ∼ 10−15

cm3/s for the highest vibrational level in the A 2Πu state. This rate got significantly

improved once we used a two-photon scheme to obtain the final PA rate of ∼ 10−9

cm3/s. With the tremendous advancement in the field of lasers, using a two-photon

PA scheme is easily achievable experimentally. Thus, the theoretical results look ex-

tremely hopeful in order to produce cold Be+
2 molecular ions.
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Chapter 4

Other homonuclear alkaline-earth systems
— Ca+

2 , Sr+
2 and Mg+

2

4.1 Motivations

In the previous chapters, we have developed the ab initio methodology to calcu-

late ground and excited states in Be+
2 dimer. We want to extend our study to other

homonuclear species of the alkaline earth family – Mg+
2 , Ca+

2 , and Sr+
2 (Ba+

2 is omitted

since it requires large relativistic corrections). The valence electronic structures are

similar for all alkaline-earth molecular ions,

Be+
2 : (2s)2

Mg+
2 : (3s)2

Ca+
2 : (4s)2

Sr+
2 : (5s)2

Ba+
2 : (6s)2.

In this chapter, we obtain accurate ab initio calculations for the X 2Σ+
u , B 2Σ+

g ,

and A 2Πu states of Mg+
2 , Ca+

2 , and Sr+
2 molecular ions. Due to recent interests in

experiments on Ca+
2 and Sr+

2 [61, 8] we developed a computational scheme keeping the

valence electronic structure of Ca and Sr in mind. We later extend our calculations

to describe Mg+
2 , which turns out to be the exception in this series, i.e. without a
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“double well” in the B 2Σ+
g state. Although the valence electronic structure is very

similar among Be, Mg, Ca, and Sr, no unique computational model could describe

the intricacies of the various ionic dimers accurately. Hence, the different species are

described in separate sections, and a comparative study between them is made at the

end.

4.2 Ca+
2 molecular ion

In this section, we describe the ab initio methods used in our calculations for the

Ca+
2 dimer, and follow with a discussion of the results, which include the potential

curves of the X 2Σ+
u , B 2Σ+

g , and A 2Πu states and their spectroscopic constants. We

also calculate electronic dipole transition moments for the X 2Σ+
u ↔ B 2Σ+

g and the

B 2Σ+
g ↔ A 2Πu transitions. Bound vibrational levels are computed for all the states

along with Franck-Condon overlaps and radiative lifetimes for the most abundant

calcium isotope (40Ca 96.94%). We also provide an analysis of long-range behavior,

calculation of static atomic dipole and quadrupole polarizabilities, and determination

of the Van der Waals dispersion coefficient C ′6.

4.2.1 Computational Methods

We can express the total energy of Ca+
2 at any interatomic separation R as

Etotal = Evalence + ∆Ecore−valence + ∆Escalar−relativistic . (4.1)

For the ground X 2Σ+
u and B 2Σ+

g states, the valence contribution to the total en-

ergy is calculated by a multi-reference configuration interaction (MRCI) method using

a 18 orbital complete active space (CAS) wavefunction as a reference. The presence of
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near degeneracies in the constituent atoms can lead to a rich structure in the resulting

interaction potentials. The active space was chosen to include molecular counterparts

of nearly degenerate 4s, 4p and 3d orbitals of Ca. The state-averaged CAS includes

all doublet states correlated to Ca+(2D) + Ca(1S) and Ca+(2S) + Ca(1S) asymptotes

with equal weights. We have used the augmented correlation consistent polarized

valence quintuple zeta (aug-cc-pV5Z) basis set of Peterson [37, 38]. In order to assess

the quality of MRCI, we do a comparison with a full CI calculation with aug-cc-pVTZ

basis, and find out that the difference in total energy at the equilibrium separation of

7.3 bohrs for the X 2Σ+
u state of Ca+

2 is 4.5 microhartrees. At large separation (1000

bohrs), this difference further reduces to 1.5 microhartrees.

The second term in Eq. (4.1), the correction from the core-valence contribution

is estimated by

∆Ecore−valence = [ERIV − EV al]R − [ERIV − EV al]R∞ . (4.2)

The core-valence correction ∆Ecore−valence is the difference of energies from a va-

lence only (Ar core) and a restricted inner valence (RIV, Ne core) CCSDT calcu-

lation. For this purpose we have used the correlation-consistent polarized weighted

core-valence triple zeta (cc-pwCVTZ) basis set of Koput and Peterson [37]. To assess

the convergence with basis set of the calculated core-valence contribution, we per-

formed single point calculations at the equilibrium bond separation for the ground

state with a larger basis set (cc-pwCVQZ). The effect of increasing the basis set from

TZ to QZ changed the core-valence energy by ∼ 8 cm−1 at the re of the B 2Σ+
g state.

These results indicate that the core-valence contribution to the total energy is ade-

quately converged with the TZ basis sets.
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The last correction term ∆Escalar−relativistic is the contribution from relativistic

effects, which for a heavy atom like Ca is significant. This can be expressed as

∆Escalar−relativistic = [Erel − Enon−rel]R − [Erel − Enon−rel]R∞ . (4.3)

We have used the Douglas-Kroll version of the cc-pwCVTZ basis set from Kirk

Peterson (cc-pwCVTZ-DK), and performed CCSDT calculations to estimate this cor-

rection. The magnitude of scalar relativistic correction at the equilibrium bond dis-

tance for the B 2Σ+
g state of the Ca+

2 is ∼ 180 cm−1. For Ca+
2 , the valence electron

space contains only 3 electrons, thus the valence CCSDT is equivalent to full CI.

The calculation of the A2Πu state, correlating to the Ca+ 3d atomic level, is com-

plicated by the near degeneracy with the Ca 4s4p atomic level. The second excited

2Πu state comes from an atomic asymptote of Ca 4s4p and Ca+ 4s, which lies ∼

1500 cm−1 above the A2Πu asymptote. We find, however, that valence CAS+MRCI

calculations incorrectly predict the Ca 4s4p and Ca+ 4s asymptote to lie below the

Ca 4s2 and Ca+ 3d asymptote. The correct ordering of the atomic energy levels is

obtained when core-valence correlation including double excitations of the inner va-

lence electrons are included in the correlation treatment using the cc-pwCVQZ (or

better) basis set.

We expect that a balanced description of valence and core-valence interactions

in the A2Πu state would be obtained from a CAS(19,26)+MRCI calculation that

includes molecular orbitals arising from the atomic 3s, 3p, 3d, 4s and 4p orbitals.

This is a much more demanding calculation than those required for the X 2Σ+
u and

B 2Σ+
g states that correlate to ground states atoms. It was found that a smaller

CAS(19,21)+MRCI+Q/cc-pwCVQZ (MRCI plus Davidson correction) calculation
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correlating the 3s3p inner valence electrons with a 4s3d + 4px valence reference

was sufficient to obtain the correct ordering of the first and second 2Πu molecular

states. Extending this calculation to include the entire 4p reference space using the

cc-pwCV5Z was attempted but was too computationally demanding for our available

resources.

An alternative approach to the multi-reference all electron calculation is to replace

the argon core of the Ca atoms with an effective-core potential (ECP) where the effects

of core-valence correlation are included using a core polarization potential (CPP) [62].

The ECP and CPP used for Ca+
2 are listed below. Since most ab initio calcula-

tions were employed using MOLPRO, we list the ECP and CPP in the MOLPRO format,

b a s i s={
!
! b a s i s s e t used with Ca ECP
!
s , Ca , 3 . 915549 , 1 . 717346 , 0 . 753222 , 0 . 330361 ,
0 . 144895 ,0 . 063550 ,0 . 027873 ,0 . 012225 ,0 . 005362
p , Ca , 1 . 791540 , 0 . 730947 , 0 . 298226 , 0 . 121676 ,
0 .049644 ,0 .020255 ,0 .008264
d , Ca , 2 . 7 2 2 , 1 . 2 9 6 , 0 . 6 4 8 , 0 . 2 1 6 , 0 . 0 7 2 , 0 . 0 2 4
f , Ca , 0 . 2 6 4 , 0 . 1 5 5 , 0 . 0 9 1
g , Ca ,0 . 166635

ECP, Ca , 1 8 , 3 , 0 ;
1 ; 2 , 1 . 000000 , 0 . 000000 ;
1 ; 2 , 0 . 898000 , 12 . 466000 ;
1 ; 2 , 0 . 548000 , 5 . 146000 ;
1 ; 2 ,1 .119000 , −7 .709000 ;

! CPP Input − should be put be f o r e
! the RHF card

! cpp , i n i t , 1 ;
! ca , 1 , 3 . 0 6 , , , 0 . 4 3 ;
}
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Figure 4.1. Ab initio X 2Σ+
u (in black), B 2Σ+

g (in red) and A 2Πu (in blue) states
of Ca+

2 . Dashed lines show calculation with a pseudopotential, while solid lines show
the results of an all electron correlated calculation. For the A 2Πu state, results of
all electron MRCI calculations are shown in green •. Note that a0 is the Bohr radius
(atomic unit of length).
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This method was used with great success by Czuchaj et al for Ca2 ground and

excited states [63]. We have performed comparisons between the all electron calcula-

tions for the first two 2Σ states as described above and the valence 4s4p3d space MRCI

using the ECP+CPP and basis set of Czuchaj et al [63]. The agreement was found

to be satisfactory for the case of the lowest Σ states as seen in Fig. 4.1. Additionally

we have compared the A2Πu state calculated using the same ECP+CPP method to

the core-valence MRCI+Q/cc-pwCVQZ calculation using the 3s3p4s3d + 4px space

discussed above. These two calculations agree very well, as demonstrated by Fig. 4.1.

Because of the good agreement with the all electron calculations and the computa-

tional limitations in performing multi-reference core-valence correlation calculation,

we have used the ECP+CPP method to calculate the A2Πu state. We note in pass-

ing that the use of the CPP is essential; without it one does not obtain the correct

ordering of the excited atomic asymptotes. All the potential curves are also corrected

for basis-set superposition error (BSSE) using the standard counterpoise technique

of Boys and Bernardi [26]. The BSSE was negligible (∼ 2 – 4 cm−1) at the potential

minima for the different curves.

The MRCI valence calculations were done using the MOLPRO electronic structure

program [27]. The core-valence CCSDT calculations were carried out using CFOUR

(coupled-cluster techniques for computational chemistry) program [64]. A sample in-

put file for calculation of core-valence corrections using the CFOUR program is provide

in Appendix A.4. The MOLPRO package has scripting facilities built in to its code,

unlike other similar programs like CFOUR. Hence, to use such a program to calculate a

series of data points, at various internuclear separations, one needs to use third party

scripts or programs. Most commonly used coding platforms are in PERL and PYTHON.

We have developed a general PYTHON program, which can be used with most quantum
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chemistry software to generate a series of data points at the desired internuclear sep-

arations, for a certain level of theory. Since in this context using the CFOUR program

was the most efficient for calculating the core-valence corrections, we have provided

the PYTHON script for use with CFOUR program in Appendix A.5. The scalar relativistic

corrections were done at the CCSDT level of theory using the MRCC (multi-reference

coupled cluster) program [29] of M. Kállay. All of the programs were running on a

Linux workstation. All calculations employed restricted open-shell (ROHF) reference

wavefunctions.

4.2.2 Potential Curves and Spectroscopic Constants

Fig. 4.2 shows the ab initio potential curves for the X 2Σ+
u and B 2Σ+

g states of

Ca+
2 . The calculated curves are corrected for the effects of basis set superposition

error by the counterpoise method of Boys and Bernardi [26]. Fig.4.1 shows the A 2Πu

state. We have used a standard Dunham analysis [31] to calculate the spectroscopic

constants (Table 4.1). We calculate bound vibrational levels for the X 2Σ+
u , B 2Σ+

g ,

and A 2Πu state for the 40Ca+
2 dimer.

Unfortunately there are no experimental spectroscopic data for the ground or ex-

cited states of the Ca+
2 dimer. There are, however, some previous theoretical studies

of Ca2 [63, 66] and Ca+
2 [61, 63, 65], and a comparison to the results for the X 2Σ+

u

state is given in Table 4.1.

No spectroscopic constants have been reported for the most recent calculation by

Sullivan et al. [61]. Another approach for calculating interaction energies in alkaline

earth elements, is using symmetry-adapted perturbation theory (SAPT), which has
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Figure 4.2. Calculated ab initio potential curves of Ca+
2 . The inset is a magnification

of the double-well nature in the B 2Σ+
g state (in red); lowest vibrational levels in the

inner well are shown in blue thick lines and outer well in red thin lines (for 40Ca).
X 2Σ+

u state has 168 bound levels and B 2Σ+
g state has 56 bound levels, 6 of which

are localized in the inner well.
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Table 4.1. Calculated spectroscopic constants of Ca+
2

State re (Å) Be (cm−1) ωe (cm−1) ωexe (cm−1) De (cm−1)

X 2Σ+
u 3.844 0.056 127.829 0.071 9440

Previous [63] 3.773 132.300 9817
Previous [65] 3.995 0.053 119.000 8388

B 2Σ+
g (Inner) 4.719 0.037 41.593 0.561 284

B 2Σ+
g (Outer) 8.665 0.011 8.549 3.839 137

A 2Πu 3.303 0.077 194.195 0.370 14746

been demonstrated earlier by Patkowski et al. [67]. The B 2Σ+
g state has a double

well similar to that found in our Be+
2 calculations [52]. Both of these wells support

bound vibrational states. This double-well nature of the B 2Σ+
g state is most likely

caused by perturbations from an excited 2Σ+
g state.

We have calculated radiative lifetimes (see Fig. 4.3) for bound vibrational levels

in both the inner and outer wells of the B 2Σ+
g state. Since these wells are separated

by a large barrier, the wavefunction of the lower vibrational levels can be strongly

localized in either wells. The localization of the vibrational wavefunctions can be at-

tributed to the asymmetry of the double well (see Fig. 4.2) and disappears for levels

above the barrier.

The behavior of the radiative lifetimes exhibits three distinct regimes, one where

the wavefunction is mainly localized in the inner well (in blue), one where it is localized

in the outer well (in red), and the last being the region (in green) in which the

wavefunction spreads over both wells, resulting in poor Franck-Condon overlap with

57



0 10 20 30 40 50
Vibrational level (v)

10-6

10-5

10-4

10-3

Li
fe

tim
e 

(s
)

(a)

(b)

(c)

8 12 16 20
R (a0)

-240

-120

0
En

er
gy

 (c
m

-1
)

8 12 16 20

10-14
10-7
100

|
|2

v = 0

v = 7

v = 6
v = 40

v = 6

Figure 4.3. (a) Calculated radiative lifetimes of bound levels of 40Ca+
2 in the B 2Σ+

g

state, on a log-scale. The shorter lifetimes (blue •) correspond to bound levels lo-
calized in the inner well, the longer lifetimes (red ◦) to levels localized in outer well,
and the increasingly longer lifetimes (green ♦ ) to levels spread over both wells. (b)
show examples of each cases: v= 0 and 7 in the inner well, v=6 in the outer well, and
v=40 in both. (c) depicts |ψ|2 of v=6 on a log-scale; showing that the amplitude in
the inner well is extremely small. The reverse is true for v= 7 and so on.
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Figure 4.4. Energies of bound levels of B 2Σ+
g state in 40Ca+

2 using the same con-
vention as in Fig.4.3. The inset magnifies the difference in slopes of levels localized
in the inner well (shown in blue) from the ones in the outer well (shown in red).

the ground X 2Σ+
u state and hence longer lifetimes. The inset shows the square of

the amplitude of wavefunction in v=6, of B 2Σ+
g state in a logarithmic plot as a

demonstration that the amplitude is negligible inside the inner well but still finite,

preserving the correct number of nodes for that level. Fig.4.4 shows a plot of the

energies of all bound vibrational levels in the B 2Σ+
g state of 40Ca+

2 . The localization

effect of wavefunctions discussed above is also exhibited in this plot; the density of

levels in the more extended outer well is larger than in the inner well, leading to

different energy slopes. The inset of Fig. 4.4 exemplifies this point.

4.2.3 Electronic dipole transition moments

Electronic dipole-allowed transitions are calculated using similar ab initio method-

ology developed for Be+
2 in Chapter 2. We calculate two transition moments, one of

them couples the ground X 2Σ+
u and B 2Σ+

g states, and the other one couples the
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B 2Σ+
g state to the excited A 2Πu state. We use a complete active space self con-

sistent field (CASSCF) wavefunction as a reference for performing multi-reference

configuration interaction (MRCI) calculations. The core-valence contribution to the

electronic transition moment is found to be negligible and hence omitted in the present

calculations. The calculation of the transition moment coupling the B 2Σ+
g state to

the excited A 2Πu state was done with the ECP+CPP valence CAS+MRCI method.

The electronic dipole transition moment (in atomic units) is given by

µ12(R) = 〈2 | z | 1〉 , (4.4)

where |1〉 and |2〉 are the electronic wave functions corresponding to the pair of states

X 2Σ+
u ↔ B 2Σ+

g or B 2Σ+
g ↔ A 2Πu, when the two Ca nuclei are separated by the

distance R.

Fig. 4.5(a) shows the electronic transition dipole moment µBA coupling the B 2Σ+
g

and the A 2Πu states. The transition moment goes to zero asymptotically. Fig. 4.5(b)

shows µXB between the B 2Σ+
g and the X 2Σ+

u states of Ca+
2 . The transition moment

µXB asymptotically follows the classical dipole behavior, µXB ∼ R/2 [33, 34] (see

Fig. 4.5(b)). We note that although the transition moment grows linearly with R,

the probability of spontaneous transition will tend to zero since it is proportional to

ν3
XB, which vanishes exponentially as R→∞.
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61



Table 4.2. The static atomic dipole polarizability (αd), static quadrupole polariz-
ability (αq) and dispersion coefficient for X 2Σ+

u , B 2Σ+
g , and A 2Πu states of Ca+

2 .
All values are in atomic units. The square brackets indicate powers of ten.

Molecular State αd αq C4 Dispersion C6

(=αd/2) coefficient (C ′6) (=αq/2+C ′6)

X 2Σ+
u , B 2Σ+

g 1.606[2] 3.073[3] 8.032[1] 1.081[3] 2.618[3]
Previous [68] 1.571[2] 3.081[3]
Previous [36] 1.085[3]

A 2Πu 1.606[2] 3.073[3] 8.032[1] 4.950[2] 2.031[3]

4.2.4 Polarizabilities and long-range coefficients

The long-range analysis for Ca+
2 was done in a way very similar to that of Be+

2

described in Chapter 2. For large internuclear separations, the long-range form of the

intermolecular potential can be written as

VLR(R) = V∞ −
∑
n

Cn
Rn

, (4.5)

which, for the molecular ion Ca+
2 , can be approximated by

VLR(R) ∼ V∞ −
C4

R4
− C6

R6
, (4.6)

where V∞ is the energy of the atomic asymptote. C4=αd/2, αd is the static dipole po-

larizability, C6 = (αq/2 + C ′6), αq is the quadrupole polarizability, and C ′6 the Van der

Waals dispersion coefficient. In the expression for long-range energy we have ignored

the exchange energy contribution Eexch which is very small (discussed in Section 4.7).

Also we have truncated the series at powers of R−6, not including contributions from

R−8 and R−10 order coefficients.
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We have performed finite-field CCSD(T) calculations with the aug-cc-pV5Z basis

set using MOLPRO to obtain the values of the static atomic dipole and quadrupole

polarizabilities. We obtain αd = 160.64 a.u. and αq = 3073.39 a.u which are both in

good agreement with a previous result [68] of 157.1 a.u. and 3081 a.u., respectively.

The values of static dipole and quadrupole polarizability do not change for the excited

A 2Πu state, since it comes from an atomic asymptote in which the Ca ion is in an

excited 2D state whereas the Ca atom is in ground 1S state (see Fig.4.1). Using a

numerical fit, as described by Banerjee et al. [52], we were able to extract the value of

the dispersion coefficient C ′6 for all the states. The value of dispersion coefficient for

ground states are in good agreement with unpublished results of Mitroy [36], which

are done by the methods used by Mitroy and Zhang [69, 70] for Ca and Ca+. Table

[4.2] lists the values of polarizabilities and dispersion coefficient for X 2Σ+
u , B 2Σ+

g

and A 2Πu states of the Ca+
2 dimer.
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4.3 Sr+
2 molecular ion

Studies involving Sr atom is now the focal point in the development of precision

measurements and atomic clock. There has been many theoretical studies for the

Sr atom and Sr2 neutral dimer [8]. However, very little is known about the Sr+
2

ionic dimer. With the advancement in cooling and trapping of molecular ions, new

experiments have been proposed to study the Sr+
2 ionic dimer. To better guide ex-

perimental efforts, we extend our ab initio treatment of alkaline-earth molecular ions

and calculate the X 2Σ+
u , B 2Σ+

g , and A 2Πu states of Sr+
2 . Owing to many similarities

with Ca+
2 , I will refer to the previous sections for details of the computation and only

present the results of the ab initio calculations in the following sub-sections.

4.3.1 Computational Methods

Sr+
2 is the heaviest of the family of alkaline-earth elements that we have calcu-

lated. Owing to its large size and many electrons, developing an ab initio method to

accurately describe the different electronic interactions was an extremely challenging

task. We showed in our calculations of the A 2Πu state in Ca+
2 that the core elec-

trons approximated by an effective-core potential (ECP) can still give a very accurate

results. We hence use a similar ECP+CPP approach to calculate all states of Sr+
2

molecular ion. Since one does not have to calculate the potential energy in pieces,

this method is computational cheap and yet reliable. The ECP and CPP is obtained

from Stoll et al. [71] and is provided in the MOLPRO format below.
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b a s i s={
!
! b a s i s s e t used with Sr ECP
!
s , Sr , 0 . 7917400 ,0 . 3161780 ,0 . 0665650 ,0 . 0269900 ,
1 .982593 , 0 .010944 , 0 . 004437 ;
p , Sr , 0 . 2258250 ,0 . 0956910 ,0 . 0420770 ,0 . 0180770 ,
1 .257691 , 0 .532933 , 0 . 007766 ;
d , Sr , 2 . 7 2 2 , 1 . 296 , 0 . 648 , 0 . 216 , 0 . 072 , 0 . 0 2 4 ;
f , Sr , 0 . 2 6 4 , 0 . 155 , 0 . 0 9 1 ;
g , Sr , 0 . 1 6 6 6 3 5 ;

ECP, Sr , 3 6 , 3 , 0 ;
1 ; 2 , 1 . 000000 , 0 . 000000 ;
1 ; 2 , 0 . 796200 , 15 . 387000 ;
1 ; 2 , 0 . 421200 , 5 . 077000 ;
1 ; 2 ,0 .492700 , −2 .248000 ;
!
! CPP Input − should be put be f o r e
! the RHF card

! cpp , i n i t , 1 ;
! sr , 1 , 5 . 5 1 , , , 0 . 3 1 5 ;
}

4.3.2 Potential Curves and Spectroscopic Constants

Fig. 4.6 shows the X 2Σ+
u , B 2Σ+

g and A 2Πu states of Sr+
2 , computed with the

ECP+CPP method described earlier. The potential energy curves are very similar

to that of the Ca+
2 dimer. The B 2Σ+

g state exhibits a similar double well nature as

that of Be+
2 and Ca+

2 , as shown in the inset of Fig. 4.7. Both double wells support

bound vibrational levels.

The spectroscopic constants are calculated using the standard Dunham analysis

and are shown in Table 4.3. We believe this will be a valuable starting point for the

future experiments with Sr+
2 . There has not been any prior experimental or theoret-

ical values to compare our results with.
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u (in black), B 2Σ+

g (in red)
and A 2Πu (in blue) states of Sr+

2 .

Table 4.3. Calculated spectroscopic constants of Sr+
2

State re (Å) Be (cm−1) ωe (cm−1) ωexe (cm−1) De (cm−1)

X2Σ+
u 4.269 0.021 78.634 0.197 8303

B2Σ+
g (Inner) 4.929 0.015 32.922 0.307 548

B2Σ+
g (Outer) 8.990 0.004 5.245 1.872 146

A2Πu 3.593 0.029 122.294 0.290 15947
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Figure 4.7. Calculated ab initio potential curves for ground states of Sr+
2 . The inset

is a magnification of the double-well nature in the B 2Σ+
g state (in red). First few

bound vibrational levels are shown in each potential minima (in blue), X 2Σ+
u state

has 240 bound levels and B 2Σ+
g state has 96 levels, 16 of which are localized in the

inner well.
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Figure 4.8. Computed electronic dipole transition moment µXB between the X 2Σ+
u

to the B 2Σ+
g state shown in black. The dashed line R/2, corresponds to the classical

dipole behavior.

4.3.3 Electronic dipole transition moments

Electronic dipole transition moments are calculated using a similar ab initio method-

ology to that developed for Ca+
2 . Fig. 4.8 shows the dipole transition moment coupling

the B2Σ+
g to the X2Σ+

u state in Sr+
2 . Fig. 4.9 shows the electronic dipole transition

moment coupling the A2Πu state to B2Σ+
g state. Both the transition moments quali-

tatively show a very similar pattern to that obtained for Ca+
2 .

4.3.4 Polarizabilities and long-range coefficients

The long-range analysis for Sr+
2 was done in a very similar way to that of Ca+

2 .

For the excited A 2Πu state, we have to consider an additional expansion coefficient

C3 [53] arising from the quadrupole moment of the Sr atom in the excited 3P state.
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Figure 4.9. Computed electronic dipole transition moment µBA between the B 2Σ+
g

and A 2Πu states.

We have ignored the exchange energy contribution Eexch (see Section 4.7 for details)

which is very small. Also we have truncated the series at powers of R−6, not including

higher order contributions from R−8 and R−10 coefficients.

For estimating the dipole and quadrupole polarizabilities, we have performed rela-

tivistic finite-field calculations in MOLPRO. In order to do compute the energies at finite

fields, an all electron basis set from Sadlej et al. [72] were used. A complete active

space (CAS) comprising of 29 orbitals was used as a reference for MRCI calculations.

The state-averaged CAS included all doublet states correlated to Sr(1S) + Sr+(2S)

and Sr(3P ) + Sr+(2S) asymptotes with equal weights. Table 4.4 lists the values of

polarizabilities for the X 2Σ+
u , B 2Σ+

g , and A 2Πu states of Sr+
2 . Our calculated values

agree very well with previous theoretical and experimental results.
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Table 4.4. The static atomic dipole and static quadrupole polarizabilities for the
X 2Σ+

u , A 2Πu, and B 2Σ+
g states of Sr+

2 . The values in square brackets indicates
powers of ten. All values are in atomic units (a.u.).

Molecular State Dipole Quadrupole
polarizability (αd) polarizability (αq)

X 2Σ+
u , B 2Σ+

g 1.936[2] 4.633[3]
Prev. theory [72] 1.940[2] —
Prev. theory [68] 1.972[2] 4.630[3]
Prev. theory [73] 2.045[2] 4.641[3]
Prev. expt. [74] 1.860[2] ± 15 —

A 2Πu 4.602[2] 6.736[3]
Prev. theory [8] 4.570[2] —

The effect of core-valence corrections to the dipole and quadrupole polarizabilities

have been estimated by Porsev et al. [68] to be ∼ 5 a.u. and 17 a.u. respectively.

Also, since the core is exactly the same for the excited A 2Πu state, we can assume the

same core-valence corrections as for the ground X 2Σ+
u and B 2Σ+

g states. Since we

do not include the effect of such corrections in our calculation of the polarizabilities,

the error in our values for dipole and quadrupole polarizabilities are ∼ 2% and 0.3 %

respectively. Using a numerical fit, as described by Banerjee et al. [52], we were able

to extract the value of the dispersion coefficient C ′6 for all the states. Table 4.5 lists

the values all calculated and derived long-range coefficients for the X 2Σ+
u , B 2Σ+

g ,

and A 2Πu states of Sr+
2 .
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Table 4.5. The long-range coefficients for the X 2Σ+
u , A 2Πu, and B 2Σ+

g states of
Sr+

2 . The values in square brackets indicates powers of ten. All values are in atomic
units (a.u.).

Molecular State Quadrupole C3 C4 C ′6 C6

moment (Q) (= Q× q) (=αd/2) (=αq/2 + C ′6)

X 2Σ+
u , B 2Σ+

g — — 9.680[1] 3.653[3] 5.970[3]
A 2Πu 8.415 8.415 2.301[2] 2.731[3] 6.100[3]

4.4 Mg+
2 molecular ion

The last species that was studied in this family of alkaline-earth molecular ions

was Mg+
2 . Owing to the similar valence electronic structure, most results were found

to be similar to other members of the family. One major exception though, is the

absence of the double well in the B 2Σ+
g state of Mg+

2 . The B 2Σ+
g state still exhibits a

long-range shallow well. We shall discuss more about the double-well nature of B 2Σ+
g

state and make a qualitative comparison of the different alkaline-earth molecular ions

in the next section.

4.4.1 Computational Methods

Due to the smaller number of electrons in Mg+
2 , we use an all-electron description

of the problem similar to the case of Be+
2 . The potential energy curves were calculated

as a sum of the valence and the core-valence contributions.

The valence energy was obtained from MRCI calculations using a CAS space com-

prising of the valence s, p and d orbitals. We have used the augmented 5Z basis sets

of Peterson, given below in MOLPRO format.
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b a s i s={
!
! MG aug−cc−pV5Z
!
sp ,Mg, v5z ; c ;
d ,Mg, 1 . 0 8 3 7 , 0 . 4 9 6 8 , 0 . 2 2 7 8 , 0 . 1 0 4 4 ;
f ,Mg, 0 . 4 9 1 7 , 0 . 2 7 6 4 , 0 . 1 5 5 4 ;
g ,Mg, 0 . 4 4 2 7 , 0 . 2 3 1 1 ;
h ,Mg, 0 . 3 7 3 1 ;

s ,Mg, 0 . 0 1 0 8 ;
p ,Mg, 0 . 0 0 7 1 ;
d ,Mg, 0 . 0 3 7 1 ;
f ,Mg, 0 . 0 5 7 9 ;
g ,Mg, 0 . 0 9 4 7 ;
h ,Mg, 0 . 1 5 7 7 ;
}

The core-valence contribution to the total energy is obtained as a difference be-

tween frozen-core and RIV CCSDT calculations done with the cc-pWCVTZ basis

sets. The scalar relativistic corrections are estimated to be small and are neglected.

The valence calculations were done using MOLPRO and the core-valence corrections

using the CFOUR program.

4.4.2 Potential Curves and Spectroscopic Constants

Fig. 4.10 shows the X 2Σ+
u , B 2Σ+

g , and A 2Πu states of Mg+
2 computed with the

ab initio method described above. Table 4.6 lists the spectroscopic constants re, Be,

ωe, ωexe and De for all the calculated states of Mg+
2 . There has been only one pho-

todissociation experiment to study the X 2Σ+
u state of Mg+

2 [75], and our calculations

agree well with the experimental value of the dissociation energy.

No experiments yet have been reported for the B 2Σ+
g and A 2Πu states. The

potential energy curves are qualitatively similar to the other members of the alkaline-
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Table 4.6. Calculated spectroscopic constants of Mg+
2

State re (Å) Be (cm−1) ωe (cm−1) ωexe (cm−1) De (cm−1)

X 2Σ+
u 3.050 0.149 210.453 0.991 10624

Previous [75] 10200 ± 300

B 2Σ+
g 7.897 0.022 11.610 3.825 89

A 2Πu 2.625 0.201 325.234 1.361 15890

earth series. The B 2Σ+
g state has a shallow long-range well, which supports 16 bound

vibrational levels. This is depicted more clearly in the inset of Fig. 4.11. These levels

are long-lived. Table 4.7 shows the radiative lifetimes of the bound levels in the B 2Σ+
g

state.

4.4.3 Electronic dipole transition moments

Electronic dipole transition moments are calculated using similar ab initio method-

ology developed for Sr+
2 and Ca+

2 . Fig. 4.12 shows the dipole transition moment

coupling the B 2Σ+
g to the X 2Σ+

u state. Fig. 4.13 shows the electronic dipole transi-

tion moment coupling the A 2Πu state to the B 2Σ+
g state. Both transition moments

qualitatively show a very similar pattern to that obtained for the other members of

the alkaline-earth family of molecular ions.

4.4.4 Polarizabilities and long-range coefficients

The long-range analysis for Mg+
2 was performed in a similar way to that of Sr+

2 .

As was the case with Sr+
2 , the A 2Πu state in Mg+

2 comes from an excited asymptote,

73



5 10 15 20 25
R (a.u.)

-10

0

10

20

En
er

gy
 *

 1
03  (c

m
-1

)

X 2 u
+

B 2 g
+

Mg(1S) + Mg+(2S)

A 2 u

Mg*(3P) + Mg+(2S)

Figure 4.10. Calculated potential energy curves X 2Σ+
u (in black), B 2Σ+

g (in red),
and A 2Πu (in blue) for Mg+

2 .
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Figure 4.11. Calculated ab initio curves for ground states of 24Mg+
2 . The inset is

a magnification of the shallow long-range well in the B 2Σ+
g state (in red). First few

bound vibrational levels are shown in each potential minima (in blue), X 2Σ+
u state

has 103 bound levels and B 2Σ+
g state has 16 bound levels.
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Table 4.7. Radiative lifetimes of the vibrational levels of the B 2Σ+
g state (in s) for

24Mg+
2 .

v′ B 2Σ+
g → X 2Σ+

u

0 1.06 × 10−3

1 7.26 × 10−4

2 5.71 × 10−4

3 4.85 × 10−4

4 4.36 × 10−4

5 4.08 × 10−4

6 3.94 × 10−4

7 3.92 × 10−4

8 3.99 × 10−4

9 4.17 × 10−4

10 4.45 × 10−4

11 4.85 × 10−4

12 5.39 × 10−4

13 6.13 × 10−4

14 7.51 × 10−4

15 1.16 × 10−3
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Figure 4.12. Computed electronic dipole transition moment µXB, coupling the
X 2Σ+

u to the B 2Σ+
g state shown for Mg+

2 . The dashed line R/2, corresponds to the
classical dipole behavior.
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Figure 4.13. Computed electronic dipole transition moment µBA coupling the B 2Σ+
g

to the A 2Πu state shown for Mg+
2 .

comprising of the Mg neutral atom in the excited 3P state and the Mg+ in the ground

2S state (see Fig. 4.11). For calculating the static dipole and quadrupole polarizabili-

ties, we have used finite field CCSD(T) method in MOLPRO with the aug-cc-pV5Z basis

sets. Table 4.8 lists the values of polarizabilities for the X 2Σ+
u , B 2Σ+

g and A 2Πu

states of Mg+
2 . Our calculated values agree well with previous theoretical results of

Derevianko et al. [68]. Table 4.9 lists all the values of calculated and derived long-

range coefficients.
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Table 4.8. The static atomic dipole and quadrupole polarizabilities for the X 2Σ+
u ,

A 2Πu and B 2Σ+
g states of Mg+

2 . The values in square brackets indicates powers of
ten. All values are in atomic units (a.u.).

Molecular State Dipole Quadrupole
polarizability (αd) polarizability (αq)

X 2Σ+
u , B 2Σ+

g 7.502[1] 8.802[2]
Prev. theory [68] 7.224[1] 8.773[2]

A 2Πu 8.892[1] 9.723[2]

Table 4.9. The long-range coefficients for the X 2Σ+
u , A 2Πu, and B 2Σ+

g states of
Mg+

2 . The values in square brackets indicates powers of ten. All values are in atomic
units (a.u.).

Molecular State Quadrupole C3 C4 C ′6 C6

moment (Q) (= Q× q) (=αd/2) (=αq/2 + C ′6)

X 2Σ+
u , B 2Σ+

g — — 3.751[1] 2.169[2] 6.570[2]
A 2Πu 4.285 4.285 4.446[1] 2.118[2] 6.980[2]
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4.5 Beyond the Born-Oppenheimer (BO) regime –

Non-Adiabatic Corrections

In most studies of atomic and molecular properties, the Born-Oppenheimer ap-

proximation is an extremely good approximation since the nuclei are massive com-

pared to electrons, and hence their motion can be neglected. However in studies of

atom-ion collisions, especially those involving different isotopes, the motion of the

nuclei must be taken into account. In this section we shall explore the regime where

the Born-Oppenheimer approximation fails, and develop ab initio methods to account

for the non-adiabatic corrections.

In the case of collisional studies between two isotopes of the same element, the

charge transfer reaction becomes near-resonant rather than a resonant process; as is

seen in previous studies with HD+ [76] and Li+2 [77]. This near-resonant process is

driven by the small non-adiabatic couplings between the two electronic states that

are due to the small kinematic effects because of the finite nuclear mass. The molec-

ular u–g symmetry is broken and the molecular states separate at large internuclear

distances to asymptotic binding energies for A + A′+ and for A+ + A′, differing by a

small amount ∆E that depends on the masses and, to a smaller extent, on the overlap

of electronic wavefunctions with the nuclei. The Born-Oppenheimer approximation

fails because its symmetry properties are determined by the electronic Hamiltonian

only.

Here we have devised a scheme similar to that of Peng et al. [5] for calculating by

means of ab initio methods the rather weak couplings due to non-BO corrections using

a MCSCF/MRCI framework. All of the code has been implemented in MOLPRO quan-

tum chemistry program (see Appendix C.1). We show here the non-BO corrections
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for the 9Be10Be+ molecular ion. The study is extended into the more complicated

systems of 24Mg25Mg+ and 40Ca43Ca+, whose results are shown in Appendix C.3.

The total Hamiltonian of the system including the motion of the nuclei can be

written as [5]

H = TN + Te + Tmp + Vint(r,R) , (4.7)

where TN is the kinetic energy operator for the relative motion of the nuclei, Tmp is

the mass polarization term, Te is the electron kinetic energy, R is the vector connect-

ing the nuclei, r measures the coordinates of electrons in the center of nuclear mass

(CNM) frame, and Vint(r,R) contains all the electrostatic interactions. Combining

Vint(r,R) and Te yields the non- relativistic BO electronic Hamiltonian He.

The mass-polarization term arises because it is not possible to rigorously separate

the centre of mass motion from the internal motion for a system with more than two

particles. This reads as

Tmp =
Ne∑
i,j=1

− 1

2MN

∇i∇j , (4.8)

where MN is the total nuclear mass and the summation runs over the total number of

electrons. The matrix element of Tmp between BO eigenstates ψα and ψβ is denoted

as εmpαβ . Using standard quantum mechanical treatment (as shown in [5]), one can

recast the time-independent radial Schrödinger equation in matrix form

[
I
d2

dR2
+ 2µF

d

dR
+ 2µE − 2µ

(
I
J(J + 1)− λ2

2µR2
+ V −L

)]
χ = 0 , (4.9)
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with I being the identity matrix and µ representing the reduced mass of the entire

system. F and L matrices have only off-diagonal elements and approach zero asymp-

totically in the BO representation. The matrix V originates from the nuclear kinetic

operator and the mass polarization term. Its diagonal elements are an adiabatic cor-

rection to the BO states. The off-diagonal elements couple the two 2Σ+ states. Our

goal is to calculate, the matrix elements of V , F and L, which would constitute the

non-BO corrections. Our prototype system for all the calculations is the 9Be10Be+

molecular ion, for which the affected BO states are the X 2Σ+
u , A 2Πu, and B 2Σ+

g

states. The non-BO matrix elements are defined as [5]

Fαβ =
1

µ

〈
ψα

∣∣∣ ∂
∂R

∣∣∣ψβ〉 , (4.10)

Vαβ =
Nnuc∑
i=1

〈
ψα

∣∣∣− 1

2Mi

∇2
i

∣∣∣ψβ〉 , (4.11)

and

Lαβ =
1

µR2

[√
(J + Λ + 1)(J − Λ)〈ψα|iLy|ψβ〉

−
√

(J − Λ + 1)(J + Λ)〈ψα|iLy|ψβ〉
]
. (4.12)

These non-BO matrix elements have been calculated in the ab initio framework,

more details of which are provided in Appendix C.1. The most important correction

to the BO regime is the diagonal BO correction, which breaks the u–g symmetry and

separates the long-range into two distinct asymptotes depending on the mass of the

nuclei. This is given by,

Vαα =
Nnuc∑
i=1

〈
ψα

∣∣∣− 1

2Mi

∇2
i

∣∣∣ψα〉 . (4.13)
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The inclusion of the diagonal BO correction in the potential energy curves for a par-

ticular system gives rise to the so-called “diabatic states”. Both the diagonal and

off-diagonal contributions of the V matrix is implemented by a numerical differenti-

ation procedure as described in the previous work of Peng et al. [5].

We compute the overlap of the BO wave functions at displaced nuclear Cartesian

coordinates

O∆x
αβ = 〈ψα(x−∆x;R)|ψβ(x+ ∆x;R)〉 , (4.14)

where x represents the general nuclear cartesian coordinate and ∆x is the displace-

ment. For every value of internuclear separation R, we calculate the overlap of the

electronic wavefunctions between the positive and negative displacements ∆x, ∆y and

∆z corresponding to the nuclear cartesian coordinate x, y and z respectively. Using

the four-point formula for numerical differentiation [5] we get for each coordinate I

Vαβ,I =
1

48∆x2

[
16(O∆x

αβ +O∆x
βα )− (O2∆x

αβ +O2∆x
βα )− 30δαβ

]
, (4.15)

and therefore

Vαβ =
Nnuc∑
I=1

− 1

2MI

Vαβ,I . (4.16)

We show in Fig. 4.14, the Vαβ coupling between the X 2Σ+
u and B 2Σ+

g states in

the 9Be10Be+ molecular ion. The diagonal corrections Vuu and Vgg, when added to

the BO states produce the diabatic potential energy curves. The g-u symmetry is

broken and the asymptotes are separated to the limits of 9Be+ + 10Be and 10Be+ +
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Figure 4.14. Calculated Vαβ coupling between the X 2Σ+
u and B 2Σ+

g states in
9Be10Be+ molecular ion. The diagonal couplings (multiplied by 104) are shown in
black (dotted) and red (dashed) lines, and off-diagonal coupling Vgu (multiplied by
106) is shown in blue (solid) line.
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Figure 4.15. Calculated first derivative coupling (multiplied by 104) Fαβ between
the X 2Σ+

u and B 2Σ+
g states in 9Be10Be+ molecular ion.

9Be. The asymptotic difference is numerically equal to the off-diagonal correction Vgu.

The BO wavefunctions are calculated at MCSCF level of theory. The active space

in this MCSCF wave function was composed of seven electrons in ten MOs, formed

by 1s2s2p orbitals of the Be atoms. All ab initio calculations are performed using

the MOLPRO program. Fig. 4.15 shows the first derivative coupling Fαβ between the

X 2Σ+
u and B 2Σ+

g states. Also, we calculate the Ly coupling between the X 2Σ+
u and

A 2Πu states in 9Be10Be+ molecular ion (see Fig. 4.16). As we have seen for Vαβ, all

the off-diagonal couplings Fαβ and LΣΠ are extremely small and more important for

small internuclear separations.
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Figure 4.16. Calculated Ly coupling (multiplied by 103) between X 2Σ+
u and A 2Πu

states of 9Be10Be+.

4.6 A comparative study of all homonuclear alkaline-earth

dimers

In the previous sections, we have presented a detailed analysis of the electronic

structure and properties of homonuclear alkaline-earth molecular ions Ca+
2 , Sr+

2 , and

Mg+
2 . This work was preceded by the ab initio calculations of the ground and ex-

cited states of the Be+
2 dimer in Chapters 2 and 3. In this section we shall provide

a qualitative comparison of the potentials in the alkaline-earth family of molecular

ions and look more closely at the “double-well” B 2Σ+
g state. Owing to the similar

valence electronic structure of these alkaline-earth ionic dimers, we expected a lot of

similarities in the potential energy curves of these molecular ions. In all these cases we

studied very carefully the lowest three states, namely the X 2Σ+
u , A 2Πu, and B 2Σ+

g

states. Although the X and B states belong to the ground state asymptote, the first

excited 2Π state comes down strongly and intersects the B 2Σ+
g state thus becoming
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the lower lying state energetically, and is hence named the A state. We stick to this

particular naming convention for all the elements in this series.

We show in Fig. 4.17 the potential energy curves for the X 2Σ+
u , A 2Πu, and

B 2Σ+
g states of the Be+

2 , Mg+
2 , Ca+

2 , and Sr+
2 molecular ions. The X 2Σ+

u state is

always bound by ∼ 10,000 cm−1 for all these molecular ions. The equilibrium bond

separation shifts to a higher value of inter-nuclear distance as one moves from Be to

Sr due to the increase in size of the constituent atom/ion. The B 2Σ+
g state has a

double minima for all these ionic dimers except Mg+
2 . The A 2Πu goes down strongly

and intersects the 2Σ states for all the alkaline-earth molecular ions. For Be, Ca, and

Sr this intersection takes place below the dissociation energy of the ground 2Σ states.

We believe such perturbations at short-range would also affect long-range behavior

like resonant charge transfer processes. In the case of Mg+
2 the crossing takes place

at energies much higher than the dissociation channel.

The presence of barriers and multiple minima in potential energy curves is always

caused by interactions with an excited electronic state. For the case of the B 2Σ+
g

state, the nearest state perturbing it is the next excited Σ+
g state. We use the respec-

tive ab initio methods developed for each one of the Be, Ca, Sr, and Mg molecular

ions to calculate the excited 2 2Σ+
g state. Fig. 4.18 shows a plot of the B 2Σ+

g and

2 2Σ+
g states for Be+

2 , Ca+
2 , Sr+

2 , and Mg+
2 . From the curves in Fig. 4.18 we can

qualitatively describe the interaction between the 2Σ+
g states in each of the species

of alkaline-earth molecular ions. Two prominent double-wells has been observed for

the Ca+
2 and Sr+

2 molecular ions, which is evident from the separation of the ground

and excited state asymptotes (< 15,000 cm−1). In the case of both Be+
2 and Mg+

2

this separation of atomic asymptotes is ∼ 20,000 cm−1, which is significantly higher
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Figure 4.17. Calculated ab initio curves for the X 2Σ+
u (in black), A 2Πu (in blue)

and B 2Σ+
g (in red) states of the Be+

2 , Mg+
2 , Ca+

2 and Sr+
2 molecular ions.
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2 (in green) and Sr+

2 (in blue). Solid lines represent
the ground B 2Σ+

g state, whereas the dashed lines represent excited 2 2Σ+
g states.
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than the other members of this family. However in Be+
2 , the 2 2Σ+

g state comes down

very strongly at shorter separation and interacts with the ground B 2Σ+
g state, hence

causing the double-well. In the case of Mg+
2 though, the excited 2 2Σ+

g state comes

down but gets pulled up by an attractive interaction most likely from yet another ex-

cited state, and hence does not perturb the B 2Σ+
g state enough to form a double-well.
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4.7 Long-Range — Inclusion of Exchange energy

The general form of long-range molecular potential is given as

VLR(R) = Edisp(R) + Eexch(R) , (4.17)

where Edisp(R) is the collection of all dispersion terms in the long-range expansion

and Eexch(R) is the exchange energy contribution. In the previous sections for dis-

cussion on the long-range interaction, we have not included the contribution of the

exchange energy term. Here we shall explore the various terms involved in the ex-

change energy contribution, and present a thorough comparison of the long-range of

the Be+
2 , Mg+

2 , Ca+
2 , and Sr+

2 molecular ions including both dispersion and exchange

energy contributions.

The analytic expression for exchange energy as a function of internuclear separa-

tion R is given by [77],

Eexch(R) =
1

2
ARαe−βR

[
1 +

B

R
+
C

R2
+ ...

]
. (4.18)

This long-range expansion was studied in great detail by Bardsley et al. [78] and the

parameters α, β and B are related by simple expressions connecting the ionization

potential ε of the constituent atoms, in a homonuclear system. They are defined as

β =
√

2× ε , (4.19)

α = (2ν − 1) , (4.20)

B = ν2
(3

2
ν − 1

)
, (4.21)

where ν=1/β. In order to obtain the exchange energy for Be+
2 we calculate the

ionization energy ε for Be atom at same level of theory as our potential energy curve
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Figure 4.19. Exchange energy and comparison of ab initio data and numerical fit,
in Be+

2 . Starting at R=20 onwards, numerical inaccuracies become significant.

calculations. Using this value of ε we can evaluate the expansion parameters α, β,

and B from Bardsley’s equations (shown above). The amplitude A and second order

expansion coefficient C are obtained from numerical fit of Eq. (4.18) with the ab

initio data. Note that the sign of C is negative which is consistent with previous

calculations of alkali molecular ions [77], and also analytic results of H+
2 [79, 80],

E
H+

2
exch(R) = 2Re−R−1

(
1 +

1

2R
− 25

8R2
− 131

48R3
− 3923

384R4

− 145399

3840R5
− 5219189

46080R6
− 509102915

645120R7
− 37749539911

10321920R8

)
. (4.22)

We show in Fig. 4.19, the exchange energy for Be+
2 . We plot the difference of

ab initio B 2Σ+
g and X 2Σ+

u potential energy curves on a log scale and numerically

fit it with Eq. (4.18). We see very good agreement for the exchange energy of Be+
2 .
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Table 4.10. Long-range expansion coefficients for the X 2Σ+
u and B 2Σ+

g states
of homonuclear alkaline-earth molecular ions. All values are in atomic units. The
numbers in square brackets indicates powers of ten.

Expansion coefficients Be+
2 Mg+

2 Ca+
2 Sr+

2

αd 3.812[1] 7.502[1] 1.606[2] 1.936[2]
αq 3.000[2] 8.802[1] 3.073[3] 4.633[3]
C′6 1.242[2] 2.169[2] 1.081[3] 3.653[3]
C4 (=αd/2) 1.906[1] 3.751[1] 8.032[1] 9.680[1]
C6 (=αq/2 + C′6) 2.742[2] 6.570[2] 2.618[3] 5.970[3]

A 1.094 0.769 0.364 0.301
ε 0.341 0.280 0.224 0.208
α (calculated) 1.419 1.667 1.983 2.091
α (fitted) 1.472 1.671 1.992 2.101
β (calculated) 0.826 0.749 0.670 0.646
β (fitted) 0.835 0.748 0.682 0.651
B (calculated) 1.191 1.781 2.754 3.150
B (fitted) 1.103 1.799 2.764 3.162
C -3.576[1] -5.118[1] -7.050[1] -8.881[1]

Starting at R=20 a.u. onwards, the ab initio calculations reach the limit of numer-

ical accuracies which is typically around 10−6 a.u. (∼ 0.1 cm−1). We also perform

similar analysis for the long-range of other homonuclear molecular ions Mg+
2 , Ca+

2 ,

and Sr+
2 . We present in Table 4.10 a comprehensive list of all long-range coefficients,

both dispersion and exchange energy contributions for all the molecular ions.
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4.8 Concluding Remarks

In this chapter, we have shown in detail the ab initio calculations involved in

the electronic structure determination and properties of the alkaline-earth family of

molecular ions. Although the dimers have very similar valence electronic configura-

tion, the intricacies of the core-valence and relativistic effects make determination

of a unique ab initio method that would describe each one of the species accurately

impossible. We thus sub-divided the chapter into Sections, dedicated to Ca+
2 , Sr+

2 ,

and Mg+
2 to distinguish the differences in the details of computation.

Aside from computing the potential energy curves we have also provided spec-

troscopic values of the desired electronic states, transition dipole moments, radiative

lifetimes, polarizability, and long-range analysis of all (except Ba+
2 ) alkaline-earth

molecular ions. Last but not the least, we provide a qualitative treatment of the

comparison of the different alkaline-earth ionic dimers giving particular attention to

the double-well structure in the B 2Σ+
g state.
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Chapter 5

Heteronuclear alkaline-earth molecular
ions — BeMg+, BeCa+ and MgCa+

5.1 Overview of the problem

In the previous chapters, we have calculated ab initio potential curves for the

ground and low lying excited states of homonuclear alkaline-earth molecular ions —

Be+
2 , Mg+

2 , Ca+
2 , and Sr+

2 . We discussed in detail the methods involved in the com-

putation and obtained properties like transition dipole moments, radiative lifetimes,

spectroscopy, and long-range coefficients. In this chapter, we extend our calculations

to study heteronuclear alkaline-earth molecular ions using very similar methods.

Let us consider heteronuclear alkaline-earth molecular ion XY+, where X, Y can

be Be, Mg or Ca. The ground state can be formed by the combination of X and Y+

or Y and X+, since X and Y are distinguishable. This is shown schematically in Fig.

5.1. The configuration lower in energy determines the ground X 2Σ+ state asymptote.

We also calculate the lowest lying excited states for 2Σ+ and 2Π symmetries. In

order to choose which excitations to calculate, we adopt a simple rule; we consider

every possible state, arising from single excitations from the ground asymptote. The

reason for this choice is that one-photon excitations can be experimentally achieved

more simply. Once again, let us refer to our schematic description of a molecular ion
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X Y+

X+ Y

+ = XY+

+ = YX+

Figure 5.1. Diagram of ground state constituent atom/ions in a heteronuclear molec-
ular ion XY+.

XY+ to elaborate this point. We illustrate the possible manifold of excited states in

Fig. 5.2. (X)∗ represents the atom in its excited state, while (X+)∗ represents the ion

in its excited state.
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Figure 5.2. Diagram of the excited state manifold in a heteronuclear molecular ion
XY+ formed by single excitations.
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5.2 Methods and Basis Sets

We use similar methods as developed in the previous chapters. For each of BeMg+,

BeCa+, and MgCa+ systems, we use a complete active space (CAS) comprising of s,

p and d orbitals; as a reference to perform MRCI calculations. We use the effective-

core potential (ECP) approach to describe the core-valence electron correlation. We

list below the ECP+basis functions used for Be and Mg [81] in MOLPRO format. The

ECP+CPP for Ca has already been mentioned in Chapter 4.

b a s i s={
!
! b a s i s s e t from SBK−LFK (EMSL)
!
! BERYLLIUM (4 s , 5 p , 4 d) −> [ 2 s , 3 p , 2 d ]
! BERYLLIUM (4 s , 5 p , 4 d) −> [ 2 s , 3 p , 2 d ]
s , BE , 1 .447000000 , 0 .352200000 , 0 .121900000 , 0 .043950000
c , 1 . 3 , −0.15647000 , 0 .10919000 , 0 .67538000
c , 4 . 4 , 0 .32987000
p , BE , 0 .100498500 , 1 .447000000 , 0 .352200000 , 0 .121900000 , 0 .043950000
c , 1 . 1 , 1
c , 2 . 4 , 0 .08924000 , 0 .30999000 , 0 .51842000
c , 5 . 5 , 0 .27911000
d , BE , 0 .321727700 , 0 .103393000 , 0 .053121400 , 0 .012485900
c , 1 . 2 , 0 .41435500 , 1 .00000000
c , 3 . 4 , 0 .06302500 , 1 .00000000

! ECP+CPP from Stutgar t webs i te
!Q=2. , SEFIT , DF, Ref 5 ; CPP: alpha =0.052; d e l t a =1.28; ncut =1.
ECP, Be , 2 , 2 , 0 ;
1 ; 2 , 1 . 000000 , 0 . 000000 ;
1 ; 2 , 2 . 653000 , 13 . 325000 ;
1 ; 2 ,3 .120000 , −1 .574000 ;
!
!
! cpp , i n i t , 1 ;
! be , 1 , 0 . 0 5 2 , , , 1 . 2 8 ;
}
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b a s i s={
!
! ECP + CPP from Stutgar t webs i te
! Q=2. , SEFIT , DF, Ref 5 ; CPP: alpha =0.476; d e l t a =0.87; ncut =1.
ECP,Mg, 1 0 , 3 , 0 ;
1 ; 2 , 1 . 000000 , 0 . 000000 ;
1 ; 2 , 1 . 732000 , 14 . 676000 ;
1 ; 2 , 1 . 115000 , 5 . 175700 ;
1 ; 2 ,1 .203000 , −1 .816000 ;
!
!
s , Mg , 4 .302235 , 0 .753995 , 0 .067089 , 0 . 039 , 0 .01752 ,
0 . 006 , 0 . 003 , 0 .001
c , 1 . 2 , −0.013469 , −0.134665
c , 3 . 3 , 1
c , 4 . 4 , 1
c , 5 . 5 , 1
c , 6 . 6 , 1
c , 7 . 7 , 1
c , 8 . 8 , 1
!
p , Mg , 0 . 2 , 0 . 085 , 0 . 020 , 0 . 004 , 0 .0009
c , 1 . 1 , 1
c , 2 . 2 , 1
c , 3 . 3 , 1
c , 4 . 4 , 1
c , 5 . 5 , 1
d , Mg , 1 . 455 , 0 .4332 , 0 .10839 , 0 .024635
c , 1 . 2 , 0 .02754 , 0 .05391
c , 3 . 3 , 1
c , 4 . 4 , 1
f , Mg , 0 . 015 , 0 .0005
c , 1 . 1 , 1
c , 2 . 2 , 1
!
!
! cpp , i n i t , 1 ;
!mg, 1 , 0 . 4 7 6 , , , 0 . 8 7
}
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5.3 Potential energy curves and Spectroscopic Constants

As mentioned in the beginning of the chapter, before we calculate potential energy

curves, it is essential to list down which states we are interested in. A map of the

various energy asymptotes of the constituent atom/ions and the possible molecular

states arising from the respective asymptotes is called a “molecular correlation dia-

gram”. Such a map is key to identifying the required electronic states for the ab initio

calculation.

We subdivide this section into three sub-sections, one each for BeMg+, BeCa+,

and MgCa+. For each one of them, we also list the molecular correlation diagram.

5.3.1 BeMg+

Table 5.1 shows the correlation diagram for the lowest asymptotes in the BeMg+

molecular ion. Figs. 5.3 and 5.4 show the ab initio potential energy curves for the

low lying 2Σ+ and 2Π states, respectively.
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Table 5.1. The lowest asymptotes for BeMg+. We note that channel VI is a double
excitation, which is energetically lower than the channel VII asymptote.

Channel Asymptote Molecular states

I Be(1S) + Mg+(2S) 2Σ+

II Mg(1S) + Be+(2S) 2Σ+

III Be∗(3P) + Mg+(2S) 2Σ+, 2Π

IV Mg∗(3P) + Be+(2S) 2Σ+, 2Π

V (Mg+)∗(2P) + Be(1S) 2Σ+, 2Π

VI Be∗∗(1P) + Mg+(2S) 2Σ+, 2Π

VII (Be+)∗(2P) + Mg(1S) 2Σ+, 2Π
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Figure 5.3. The figure shows the ground and low lying excited states of 2Σ+ sym-
metry in BeMg+. The asymptotes are listed in Table 5.1.
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Figure 5.4. The figure shows the low lying 2Π states in BeMg+. The asymptotes
are listed in Table 5.1.
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Table 5.2. The lowest asymptotes for BeCa+.

Channel Asymptote Molecular states

I Be(1S) + Ca+(2S) 2Σ+

II (Ca+)∗(2D) + Be(1S) 2Σ+, 2Π, 2∆

III Be∗(3P) + Ca+(2S) 2Σ+, 2Π

IV (Ca+)∗∗(2P) + Be(1S) 2Σ+, 2Π

V Ca(1S) + Be+(2S) 2Σ+

VI (Be+)∗(2P) + Ca(1S) 2Σ+, 2Π

5.3.2 BeCa+

Table 5.2 shows the correlation diagram for the lowest asymptotes in the BeCa+

molecular ion. Figs. 5.5 and 5.6 show the ab initio potential energy curves for the

low lying 2Σ+ and 2Π states, respectively. Due to low lying excitations in the Ca+

molecular ion, the second 2Σ+ state (from channel V) lies much higher in the corre-

lation diagram and after three excited asymptotes.
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Figure 5.5. The figure shows the ground and low lying excited states of 2Σ+ sym-
metry in BeCa+. The asymptotes are listed in Table 5.2.
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Figure 5.6. The figure shows the low lying 2Π states in BeCa+. The asymptotes are
listed in Table 5.2.
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Table 5.3. The lowest asymptotes for MgCa+.

Channel Asymptote Molecular states

I Mg(1S) + Ca+(2S) 2Σ+

II Ca(1S) + Mg+(2S) 2Σ+

III (Ca+)∗(2D) + Mg(1S) 2Σ+, 2Π, 2∆

IV Mg∗(3P) + Ca+(2S) 2Σ+, 2Π

V (Ca+)∗∗(2P) + Mg(1S) 2Σ+, 2Π

VI Ca∗(3P) + Mg+(2S) 2Σ+, 2Π

5.3.3 MgCa+

Table 5.3 shows the correlation diagram for the lowest asymptotes in the MgCa+

molecular ion. Figs. 5.7 and 5.8 show the ab initio potential energy curves for the

low lying 2Σ+ and 2Π states, respectively.
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Figure 5.7. The figure shows the ground and low lying excited states of 2Σ+ sym-
metry in MgCa+. The asymptotes are listed in Table 5.3.
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Figure 5.8. The figure shows the low lying 2Π states in MgCa+. The asymptotes
are listed in Table 5.3.
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Table 5.4. Spectroscopic constants for the absolute ground X 2Σ+ state in the
BeMg+, BeCa+ and MgCa+ molecular ions.

Molecular Ion re (Å) Be (cm−1) ωe (cm−1) ωexe (cm−1) De (cm−1)

BeCa+ 2.998 0.254 254.158 6.472 4387

BeMg+ 2.683 0.356 303.306 2.552 6933

MgCa+ 3.416 0.095 156.779 0.852 5851

5.3.4 Spectroscopic Constants — X 2Σ+ state

Table 5.4 lists the spectroscopic constants re, Be, ωe, ωexe and De for the absolute

ground X 2Σ+ state for BeMg+, BeCa+ and MgCa+ molecular ions. Dunham analysis

was used to calculate the spectroscopic constants.

5.4 Concluding Remarks

We calculate accurate ab initio potential energy curves to describe the ground

and low lying excited states of heteronuclear alkaline-earth molecular ions – BeMg+,

BeCa+ and MgCa+. We also perform a Dunham analysis to calculate spectroscopic

constants for the absolute ground X 2Σ+ in all these species.
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Chapter 6

Mixed alkali alkaline-earth systems — An
application to Hyperfine Structure

6.1 Example of the NaCa+ molecular ion

In this chapter, we discuss electronic structure calculations pertaining to a spe-

cific heteronuclear alkali alkaline-earth system – NaCa+. The primary focus of this

chapter is to study the very complicated hyperfine structure of molecular ions arising

from their nuclear spins and electric quadrupole interactions. A combination of alkali

and alkaline-earth system brings the key elements of each of their families together,

thereby making the system much richer than a traditional heteronuclear species of

either alkali or alkaline-earth element.

Of particular interest is the fact that the most abundant isotope for alkaline earth

elements has zero nuclear spin. So using a mixed alkali alkaline-earth species, one can

obtain a very clean and simple hyperfine spectrum. Thus, we are most interested in

studying the 23Na40Ca+ system, although we shall briefly consider the example of the

43Ca isotope, which has a non-zero nuclear spin. Owing to the closed valence shell,

the absolute ground state of this system is X 1Σ+, unlike doublets for the alkaline-

earth species. We calculate accurate ab initio curves for the ground and low lying

excited states for the NaCa+ molecular ions and study the hyperfine structure of the

lowest singlet X 1Σ+ and triplet a 3Σ+ state.
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6.2 Potential Energy Curves

The ground and low lying excited states in NaCa+ were calculated using similar

methods developed previously. We use a 2 electron, 18 orbital complete active space

as a reference to perform MRCI calculations, with the MOLPRO program. We have also

used the equation of motion coupled cluster (EOM-CCSD) method to calculate and

compare the singlet ground and excited states. In this situation, for two valence elec-

trons, CCSD is equivalent to full CI. We get very good agreement between MRCI and

CCSD potential energy curves. Since the EOM program is able to calculate only the

singlet states, we had to rely purely on the CAS+MRCI method for the calculation of

triplet states. The ECP+CPP approach has been used as well for the description of

core-valence correlations. Basis sets corresponding to the ECP for Na were obtained

from Dulieu et al. [82]. ECP and basis sets used for Ca [63] were the same as that

used previously.

Table 6.1 shows the correlation diagram for the lowest asymptotes in the NaCa+

molecular ion. Fig. 6.1 shows the ab initio potential energy curves for the low lying

1Σ+ and 3Σ+ states. As described in the previous chapter, the molecular correlation

diagram gives a map of the different asymptotes, and the electronic states arising

from them. As mentioned in the previous section, the correlation diagram shows the

richer manifold of states arising from the different atomic asymptotes. As before, we

are most interested in studying single excitations of the constituent atoms, especially

Na (2S↔2P) resonance transition. Hence, we show in Fig. 6.1 potential energy curves

arising from asymptotes I, II and VIII.
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Table 6.1. The lowest asymptotes for NaCa+. A single (*) represents a single
excitation for an atom/ion, double (**) for double excitation and so on.

Channel Asymptote Molecular states

I Na+(1S) + Ca(1S) 1Σ+

II Na(2S) + Ca+(2S) 1Σ+, 3Σ+

III Na+(1S) + Ca∗(3P) 3Σ+, 3Π

IV Na+(1S) + Ca∗∗(3D) 3Σ+, 3Π, 3∆

V Na(2S) + (Ca+)∗(2D) 1Σ+, 1Π, 1∆

3Σ+, 3Π, 3∆

VI Na+(1S) + Ca∗∗∗(1D) 1Σ+, 1Π, 1∆

VII Na+(1S) + Ca∗∗∗∗(1P) 1Σ+, 1Π

VIII Na∗(2P) + Ca+(2S) 1Σ+, 1Π, 3Σ+, 3Π
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Figure 6.1. Ab initio potential energy curves for the low lying singlet and triplet
states of NaCa+.
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6.3 Hyperfine spectra of NaCa+ in the X1Σ+ state

Over the past few years, there has been a lot of advancement in the experimental

methods to form the lowest rovibrational ground state of alkali dimers at ultracold

temperatures. Methods ranged from direct photoassociation [83] to stimulated Ra-

man adiabatic passage [84]. Owing to the richer manifold of states in mixed alkali

alkaline systems, hybrid ion traps and experiments to study cold collisions in NaCa+

system were proposed at UCONN [85, 86]. Resonant charge transfer and collisional

studies with the cold atom/ion pair were studied.

One of the goals of the such experiments is to form a stable molecular quantum gas.

In order to do that, one would require to produce a large number of molecules at ultra-

cold temperatures in the same hyperfine level. Thus, one would require the knowledge

of the hyperfine structure arising from the nuclear spin and electric quadrupoles of

the constituent atom/ions. Another important application of preparing a molecule

in a particular state is the ability to have an extreme state selectively. Such highly

selective states do not suffer from any perturbation from nearby states, and thus are

very good candidates for quantum computation.

6.3.1 Hyperfine Hamiltonian

For a molecular ion in a 1Σ+ state, the total Hamiltonian of the system in an

external magnetic field can be written as [87, 88]

Htot = Hrot +Hhfs +Hzee , (6.1)

where
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Hrot = BvN
2 −DvN

4 , (6.2)

Hhfs = HQ +Hsr +Ht +Hss

=
2∑
i=1

Vi ·Qi +
2∑
i=1

ci ·N · Ii + c3I1 · T · I2 + c4I1 · I2 , (6.3)

and

Hzee = −grµNN ·B −
2∑
i=1

giµNIi ·B(1− σi) . (6.4)

Here, the dummy index i refers to each nuclei of the diatomic molecular ion while I1

and I2 refer to the nuclear spins of atom 1 and 2, respectively.

The first term of the total Hamiltonian given by Eq. (6.2) consists of the rota-

tional part. The rotational and centrifugal constants of the molecule are given by

Bv and Dv respectively (we neglect the centrifugal distortion in this work). We note

that the rotational quantum operator is denoted by N , we reserve J for denoting the

angular momentum including electron spin for triplet states, as is discussed in the

following section.

The hyperfine Hamiltonian given by Eq. (6.3) consists of four parts. The first

term represents the interaction of electric quadrupole of the nuclei and the electric

field gradients created by the electrons, eqQ1 and eqQ2. The second is the spin-

rotation term, which describes the interaction of the nuclear spin with the magnetic

moment created by the rotation of the molecule. Its coupling constants are c1 and

c2. The last two terms represent the interaction between the two nuclear spins I1

and I2; there is both a tensor component, with coupling constant c3, and a scalar

component, with coupling constant c4. The tensor T represents the angular part of
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a dipole-dipole interaction.

The Zeeman Hamiltonian given by Eq. (6.4) consists of two contributions from ro-

tational and nuclear Zeeman terms. The rotational g-factor is denoted by gr, whereas

the nuclear g-factors corresponding to the two nuclei are given by g1 and g2, respec-

tively. σi represents the isotropic nuclear shielding for atom i.

6.3.2 Coupling coefficients and Matrix elements

In this section, we discuss the calculation of coupling coefficients defined in the

previous section, and also look at the matrix elements for the various terms in the

hyperfine Hamiltonian. We use ab initio methods to calculate the hyperfine coupling

constants. Density functional theory (DFT) is used with all-electron def2-QZVPPD

basis sets, in the GAUSSIAN program to calculate all of the coefficients, except the

rotational g-constant for which the DALTON program was used. The sample input files

for these calculations are provided in Appendix D.1. Table 6.2 lists the calculated

values of the coupling constants for X 1Σ+ state of 23Na43Ca+ at equilibrium inter-

nuclear separation re= 3.43 Å.

The hyperfine energy levels are obtained by diagonalizing the matrix representa-

tion of the Hamiltonian (see Eq. (6.1)) in a suitable basis set of angular momentum

functions. We discuss the matrix elements of the different terms in the Hamiltonian

given by Eq. (6.1). Detailed derivations of all these matrix elements have been done

in standard texts [89, 90]. The matrix elements of the rotational Hamiltonian (Hrot)

is given by,
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Table 6.2. Hyperfine coupling coefficients for 23Na43Ca+. I1 = 3/2 and I2 = 7/2 for
23Na and 43Ca atoms respectively.

Terms Coupling coefficients

eqQ1 (MHz) -1.843
eqQ2 (MHz) 0.015
c1 (Hz) 378.901
c2 (Hz) -523.270
c3 (Hz) -272.936
c4 (Hz) -670.252
gr 0.010
σ1 (ppm) 591.373
σ2 (ppm) 1335.627

〈Hrot〉 = 〈N,mN ,m1,m2|Hrot|N ′,m′N ,m′1,m′2〉

= BvN(N + 1)δN,N ′δm1,m′
1
δm2,m′

2
. (6.5)

We now list down the matrix elements of the four contributions in the hyperfine

Hamiltonian. The first contribution is the electric quadrupole term. For a heteronu-

clear diatomic molecule, there are two distinct terms due to the electric quadrupole

moment of the two nuclei. We shall only list the matrix element for one of the them

(say atom 1), since the other term (for atom 2) would be exactly similar. The matrix

element for the quadrupole Hamiltonian HQ is given by,
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〈H(1)
Q 〉 = 〈i2,m2, (i1N)F1,mF1|V

(1)
1 ·Q(2)

1 |i2,m′2, (i1, N ′)F ′1,m′F1
〉

= δF1,F ′1
δmF1

,mF ′1
δm2,m′

2
(−1)N+N ′+i1+F2

× eqQ1

4
[(2N + 1)(2N ′ + 1)]1/2

×

N 2 N ′

0 0 0


 i1 2 i1

−i1 0 i1


−1N i1 F1

i1 N ′ 2

 . (6.6)

The matrix element for spin-rotation Hamiltonian Hsr is given by,

〈H(1)
sr 〉 = 〈i2,m2, (i1N)F1,mF1|H(1)

sr |i2,m′2, (i1, N ′)F ′1,m′F1
〉

= δm2,m′
2
δN,N ′δF1,F ′1

δmF1
,mF ′1

× 1

2
c1(F1(F1 + 1)− i1(i1 + 1)−N(N + 1)) . (6.7)

The matrix element for tensorial spin-spin interaction Ht is given by,

〈Ht〉 = 〈N, (i1, i2)I, F,mF1|Ht|N ′, (i1, i2)I ′, F ′,mF ′1
〉

= c3

√
30δF,F ′δmF ,m

′
F

(−1)N
′+N+I+F

× i1(i1 + 1)(2i2 + 1)[(2N + 1)(2N ′ + 1)(2I + 1)(2I ′ + 1)]1/2

×

N 2 N ′

0 0 0


N I F

I ′ N ′ 2



i1 i2 1

i1 i2 1

I I ′ 2

 . (6.8)

Finally, the last term in the hyperfine Hamiltonian is the scalar spin-spin interac-

tion Hss, whose matrix element is given by,

〈Hss〉 = 〈N, (i1, i2)I, F,mF |Ht|N ′, (i1, i2)I ′, F ′,mF ′〉

= δN,N ′δI,I′δF,F ′δmF ,m
′
F

× 1

2
c4(I(I + 1)− i1(i1 + 1)− i2(i2 + 1)) . (6.9)
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Now we are left with the evaluation of the matrix element of the Zeeman Hamilto-

nian (see Eq. (6.4)), which consists of the nuclear Zeeman and the rotational Zeeman

terms.

〈HNZ〉 = 〈N,mN ,m1,m2|HNZ |N ′,m′N ,m′1,m′2〉

× δN,N ′δmN ,m
′
N
δm1,m′

1
δm2,m′

2

× −mNBzgrµN , (6.10)

and

〈H i
IZ〉 = 〈N,mN ,m1,m2|HNZ |N ′,m′N ,m′1,m′2〉

× δN,N ′δmN ,m
′
N
δm1,m′

1
δm2,m′

2

× −miBzgiµN(1− σi) . (6.11)
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6.3.3 Magnetic Hyperfine Spectra

We show in Fig. 6.2 the magnetic hyperfine spectra of the X 1Σ+ state for

23Na43Ca+ molecular ion. Each state with a total angular momentum F splits into

(2F + 1) values in the presence of a magnetic field. Since 43Ca isotope has a nega-

tive magnetic moment, it gives rise to an inverted hyperfine spectra. The zero field

splitting is ∼ few kHz, similar to most X 1Σ+ splitting for other heteronuclear alkali

species [88].

However, as mentioned previously, we would like to take advantage of the zero

nuclear spin of the 40Ca isotope. Fig. 6.3 shows the hyperfine spectra of the X 1Σ+

state for 23Na40Ca+ ionic dimer. The only angular momentum involved in this system,

is the nuclear spin of the 23Na atom of 3/2. Hence, there is no zero-field splitting,

however with the non-zero value of magnetic field, the single hyperfine level splits

into 4 distinct widely separated Zeeman states. The hyperfine spectra of the X 1Σ+

state for N = 1, for both 23Na43Ca+ and 23Na40Ca+ are shown in Appendix D.3.
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Figure 6.2. The figure shows the magnetic hyperfine spectrum of 23Na43Ca+ in its
ground X 1Σ+ state at equilibrium internuclear separation. The inset is a magnifi-
cation of the zero-field splitting, the energy scale (on Y-axis) being in kHz, and the
X-axis reads the magnetic field in Gauss.
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Figure 6.3. The figure shows the magnetic hyperfine spectrum of 23Na40Ca+ in its
ground X 1Σ+ state at equilibrium internuclear separation. Note that, owing to 40Ca
having no nuclear spin there is no zero-field splitting in the singlet state.
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6.4 Hyperfine spectra of NaCa+ in the a3Σ+ state

In the previous section, we have discussed about the hyperfine spectra of the

NaCa+ molecular ion in the ground X1Σ+ state at equilibrium internuclear separa-

tion. Although the singlet ground state is the most stable configuration of the system,

recently there is a lot of interest in the hyperfine spectra of the triplet states.

As we have seen in the previous section, the hyperfine spectra becomes much more

cleaner and simpler when we use the 40Ca isotope with zero nuclear spin instead of the

43Ca isotope with a nuclear spin of 7/2. This becomes even more crucial, when aside

from a nuclear spin, there is present a non-zero electronic spin S = 1 for the a3Σ+

state. It is for this reason that we limit our discussion of triplet hyperfine spectra to

the 40Ca isotope.

The simplest way to quantify the various calculations of the hyperfine spectra is to

use the Hund’s case (b) notation and use the following angular momentum coupling

scheme. The individual nuclear spins I1 and I2 couple to form total nuclear spin

I. Now because of the non-zero electronic spin S, the rotational angular momentum

N couples with S to form total angular momentum J , N+S=J . In the next step,

J couples with total nuclear spin I to form the grand total angular momentum F :

J+I=F . In the presence of magnetic field, this hyperfine level F splits into an ad-

ditional (2F + 1) energy levels, giving the magnetic hyperfine spectra.

6.4.1 Hyperfine Hamiltonian – additional terms

There are additional terms in the Hamiltonian arising from the non-zero electronic

spin S. The total Hamiltonian of the system can still be written in the form of Eq.
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(6.1). There are two additional terms in the hyperfine Hamiltonian which can be

written as

Hmore
hfs = HR +HFC

= γeN · S + bFI · S . (6.12)

The first term in Eq. (6.12) HR denotes the electronic spin-rotation term with a cou-

pling coefficient γe. The second term HFC signifies the interaction of this non-zero

electronic spin S with the nuclear spin I of the molecular ion; this is the Fermi-

contact interaction term with coupling coefficient bF .

The next term in the Hamiltonian is the Zeeman term (Eq. 6.4) which needs to

be modified to include the interaction of electronic spin S with the external magnetic

field B

Hmore
zee = −gsµBS ·B . (6.13)

6.4.2 Coupling coefficients and Matrix elements

As discussed for the 1Σ+ state, all coupling coefficients were calculated with ab ini-

tio methods. Table 6.3 lists the required hyperfine coupling coefficients for 23Na40Ca+

in the a3Σ+ state at re = 4.05 Å. Note that the triplet state is somewhat extended as

is seen from the larger re. For calculation of the matrix elements and notations for

angular momentum algebra and basis functions we refer to Carrington and Brown’s

textbook [89]. The matrix element for electronic spin-rotation Hamiltonian becomes

〈HR〉 = 〈N,S, J,mJ |HR|N,S, J,mJ〉

= γe(−1)N+J+S

S N J

N S 1


× (N(N + 1)(2N + 1)S(S + 1)(2S + 1))1/2 . (6.14)
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The matrix element for Fermi-contact interaction is given by

〈HFC〉 = 〈N,S, J, I, F,mF |bFI · S|N,S, J ′, I, F ′,m′F 〉

= bF δmFm
′
F
δFF ′(−1)J

′+F+I((2J + 1)(2J ′ + 1))1/2

× (−1)J+N+1+S(S(S + 1)(2S + 1)I(I + 1)(2I + 1))1/2

×

I J ′ F

J I 1


J S N

S J ′ 1

 . (6.15)

The matrix element for the magnetic Zeeman term coupling the electronic spin S is

given by

〈HS
Zee〉 = 〈N,S, J, I, F,mF |HS

Zee|N,S, J ′, I, F ′,mF 〉

= −gSµBBz(−1)F−mF ((2F + 1)(2F ′ + 1))1/2

× (−1)F
′+J+1+I((2J + 1)(2J ′ + 1))1/2

× (−1)J+N+1+S(S(S + 1)(2S + 1))1/2

×

 F 1 F ′

−mF 0 mF


F J I

J ′ F ′ 1


J S N

S J ′ 1

 . (6.16)
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Table 6.3. Hyperfine coupling coefficients for the a3Σ+ state of 23Na40Ca+ at re =
4.05Å. I1 = 3/2 and I2 = 0 for 23Na and 40Ca atoms respectively. Note that nuclear
spin-spin interaction terms are absent, since they are zero identically.

Terms Coupling coefficients

eqQ1 (MHz) -1.104
c1 (Hz) 378.901
γe (MHz) 27.856
bF (MHz) 326.001
gr 0.010
σ1 (ppm) 624.331
σ2 (ppm) 458.733

6.4.3 Magnetic Hyperfine Spectra

Fig. 6.4 shows the magnetic hyperfine spectrum of 23Na40Ca+ in its ground a 3Σ+

state at its equilibrium internuclear separation, re=4.05 Å. Since for the a 3Σ+ state,

the electronic spin is non-zero, S=1, this couples with the nuclear spin of 23Na to pro-

duce the magnetic hyperfine structure. As mentioned previously in this chapter, this

coupling is precisely the reason for choosing the mixed alkali alkaline-earth species

to explore the hyperfine structure. The very interesting hyperfine map of the triplet

state would help to prepare a pure quantum state in its fully stretched hyperfine state

|F,MF 〉= |5/2, 5/2〉.

The strongest coupling governing the zero-field splitting is the Fermi-Contact in-

teraction term, which in the case of 23Na40Ca+ is about few hundred MHz. Each

hyperfine level corresponding to a particular value of F , splits into (2F + 1) values

in the presence of external magnetic field B. At low enough magnetic field of < 100

G, the splitting between two successive hyperfine levels is ∼ 50 MHz, which is large
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Figure 6.4. The figure shows the magnetic hyperfine spectrum of 23Na40Ca+ in its
ground a 3Σ+ state at equilibrium internuclear separation. Note that the electronic
spin of 40Ca couples to the nuclear spin of 23Na to produce a simple and clean hyperfine
map, with the zero-field splitting governed by the Fermi-Contact interaction.
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enough to be easily resolved experimentally.

6.5 Concluding Remarks

In this chapter, we have developed a fully quantum mechanical treatment of the

hyperfine structure in the lowest singlet and triplet states of NaCa+. We believe the

accurate knowledge of the hyperfine spectrum in such species, would pave the path

for engineering pure quantum states using ultracold molecular ions.

It has been demonstrated that owing to the intricate angular momentum coupling,

the hyperfine spectra is very complex. In problems as demanding as this, there is al-

ways space for further improvements and developments based on the ground work

that has already been laid down. We have calculated the hyperfine spectrum for the

equilibrium inter-nuclear separations for all the systems described above. The next

important aspect to study would be to analyze such a spectrum with the change of

the inter-nuclear separation R, along the potential energy surface of the system. This

would lead to modified potential energy curves for a particular system in presence of

an external magnetic field. Further calculations in this direction are currently under-

way in our group in the case of mixed alkali alkaline-earth systems.
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Chapter 7

Electronic structure calculations in
polyatomic molecular ions – Gold

Nanoclusters

7.1 Introduction and Overview

Until now, we have discussed electronic structure calculations in diatomic molecu-

lar ions, mostly in the alkaline-earth family. In this chapter, we extend our discussion

to the study of polyatomic systems – gold nanoclusters. The jump from diatomic

to polyatomic systems is not straight-forward, and one often has to undertake many

approximations to simplify the quantum mechanical problem. One such approxima-

tion is the exclusion of certain parts of the structure, and qualitatively describe it

with classical mechanics, while treating other regions of interest quantum mechan-

ically. Owing to many bond lengths, and hence many more degrees of freedom a

discussion of potential energy curves is deliberately omitted. Instead the quality of

the calculated structure is compared with the experimental X-Ray structure. Local

properties, such as NMR shieldings, are also calculated by ab initio methods. The

choice of gold nanoclusters as our system of interest was guided by several interests

and applications in both physics and chemistry.

It is well known that gold nanoparticles are capable of catalyzing a number of

fundamental chemical reactions [91, 92, 93]. Tunable reactions in metallic nanoparti-

cles can be obtained by encapsulation of nanocrystals in thiolated monolayers [94, 95]
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known as monolayer protected clusters (MPCs). Exploiting MPCs for applications

in the area of catalysis requires a proper structural and dynamical characterization

of the physical properties of the protecting layer. It was not until recently, that such

requisite has been met by the total structure determination of a number of thiolated

gold clusters [96, 97, 98]. Such structures are characterized by surface gold atoms in

the so called “staple” (–S–Au–S–) or “V-shape” motifs (–S–Au–S–Au–S–), as opposed

to commonly assumed structures in which thiolates only passivate a high symmetry

gold cluster. Along these experimental studies, Density Functional Theory has been

crucial to interpret structural data under the light of NMR spectroscopy [99, 100],

optical absorption [101], and electrochemical experiments [102]. Due to the size of

these clusters, augmented by thiolated ligands, theoretical characterization (e.g cal-

culation of spectra) requires an enormous amount of computational resources (both

in time and memory). Intrinsic limitations of current Quantum Chemistry software

places these types of calculations at the limits of computational tractability. This is

clearly the case if, in addition to quantum detail, finite temperature simulations are

required. In fact, a number of studies have shown a marked dependence of optical and

electrochemical properties on temperature [103, 104, 105]. Thus, to retain quantum

detail and incorporate finite temperature motions it would certainly be advantageous

to develop approaches that can combine these features with a reasonable computa-

tional cost.

Empirical potentials have been used in the past for gold clusters to search struc-

tural minima followed by quantum mechanical refinement [106], but little has been

done in the context of MPC’s, especially considering the recent re-evaluation of the

sulfur-gold binding motifs. Another approach would be to develop hybrid methods

such as QM/MM, which were originally developed in the context of enzyme reactions
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[107]. In this work we develop MM and QM/MM models, explore different imple-

mentations, and evaluate their ability to reproduce experimental data. We envision

that such approaches will be of value to enable, in a practical manner, sampling of

a large number of monolayer conformations. In particular, such procedures will be

relevant to describe highly interacting oligopeptide ligands [108, 99]. In addition,

partitioning the system into a QM and MM region will lead to several advantages.

Apart from the obvious computational benefits, such method opens up a wide range

of possibilities for certain studies of similar systems for which a full QM description

is impractical and often unnecessary. This new approach also opens the possibility

of focusing strictly on the electronic structure of the monolayer alone (or of the gold

cluster and a fraction of the monolayer) which, for instance, can be advantageous to

obtain insight into catalytic properties of these MPC’s[109]. Thus, the goal of this

study is to develop a first generation of hybrid methods that can both decrease the

computational cost and, at the same time, reproduce the intricacies of the various

gold-sulfur surface motifs.

We use [Au25(SCH3)18]− molecular ion as the central prototype model and extend

our theory to explain structural and chemical properties of larger MPC’s. We begin

by determining a minimum set of parameters and functional forms that would be

sufficient to describe a thiol-protected gold cluster via a Molecular Mechanics (MM)

force field. We then use these parameters to develop a hybrid QM/MM model which

treats regions of chemical interest at a DFT level of theory, keeping all other atoms

in the cluster at the MM level.
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7.2 Computational Methods

We propose the use of hybrid QM/MM models to study physical and chemical

properties of monolayer protected gold clusters. Au-SCH3, Au-(SCH3)-Au, and [Au25-

(SCH3)18]− are used as the training systems. In the following sections, we present the

parameters and functions necessary to describe the structure in a molecular mechan-

ics (MM) framework. We continue our discussion by introducing QM/MM hybrid

models to predict or refine structures and NMR properties of similar gold clusters.

All QM/MM calculations were performed with the Gaussian 09 suite [110] using the

two-layer ONIOM scheme [111, 112]. In this scheme, the entire system is divided into

two regions (X and Y ). The QM/MM energy is obtained via an extrapolation of

three independent calculations:

E = E(QM)X + E(MM)X+Y − E(MM)X (7.1)

where E(QM)X is the energy of region X at the QM level, E(MM)X+Y is the energy

of the entire system (X and Y ) at the MM level, and E(MM)X is the energy of X at

the MM level. In the so called “electronic embedding” (EE) approach, electrostatic

interactions between X and Y are included in each of the terms of the right hand side

of Eq. 7.1, so that electrostatic interactions are canceled out at the MM level, but

remain at the QM level. In the “mechanical embedding” (ME) approach, electrostatic

interactions between region X and Y are only included at the MM level (the last two

terms of Eq. 7.1). In both EE and ME, Van der Waals (VDW) interactions between

X and Y are considered at the MM level (in the term E(MM)X+Y ). All calculations

presented here make use of the EE approximation.
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7.2.1 Molecular Mechanics Model

Construction of QM/MM models was made under the assumption that even a

pure MM force field description of the thiolated clusters should reproduce the exper-

imental structural data, at least in a qualitative and semi-quantitative manner. To

this end, we sought to develop a force field with a minimal set of parameters and

functional forms. Derivation of the force field was guided by the notion that these

clusters present two well defined domains. Domain 1 contains the inner core (i.e.

13 Au atoms for Au25(SCH2-R)18 and 23 Au atoms for Au38(SCH2-R)24) forming

high symmetry packed structures. For this domain we defined a 6-12 Lennard-Jones

potential as implemented in the Amber force field [113]. Domain 2 contains the thi-

olated ligands and all Au atoms involved in the V-shape or staple motifs (Fig. 7.1).

All gold atoms in this domain are assigned the same force field atom type (AuS). As

starting values we took those reported in the UFF force field of Rappé et al [114].

These parameters were modified systematically and stepwise until the geometry of

[Au25(SCH3)18]−1 was reproduced within a tolerance of 0.2 Å in the root mean square

deviation. Gold atoms in 1 are separated from those that are only bonded to other

core atoms (type Au) and those that are connected to core atoms and sulfur atoms

(type AuC). Although the VDW parameters are identical for these two types, this

distinction is required for the definition of bonded parameters (vide infra). VDW

parameters are reported in Table 7.1.

Electrostatic interactions between the ligands and gold atoms in domain 1 are

assumed to be negligible. Support for this assumption is given by a Bader charge

analysis [115, 116] of [Au25(SCH3)18]−1 which shows that charges in domain 1 are

very small (≈ −0.04e for the central core atom and ≈ 0.02e for the other core atoms),

adding up to a total charge of 0.15e. Bader charges for AuS atoms are also small
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Figure 7.1. Possible binding patterns between gold and thiolated ligands

Table 7.1. 6-12 Lennard Jones parameters for a general MPC. Partial charges cor-
respond to thiol in [Au25(SCH3)18]−1

Atom Atom-type σ ε charge

Au Au 1.5000 1.0000 0.00000
Au AuC 1.5000 1.0000 0.00000
Au AuS 1.9000 1.0000 0.00000
S SS 2.0000 0.2500 -0.22417
S SC 2.0000 0.2500 -0.22417
C CT 1.9080 0.1094 -0.15441
H H1 1.3870 0.0157 0.10767
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Table 7.2. Stretching parameters corresponding to the force field formula (1/2)ke(r−
req)

2.

At-type1 At-type2 kr req

AuC SC 150.00 2.48
AuS SC 150.00 2.38
AuS SS 150.00 2.38
SC CT 237.00 1.84
SS CT 237.00 1.84
CT H1 340.00 1.09
CA H1 340.00 1.09

(≈ 0.04e). Thus, to facilitate transferability among different core sizes, the charges on

all gold atoms are assumed to be zero. Charges on the thiol ligands are taken from an

Electrostatic Potential (ESP) analysis (as implemented in Gaussian 09) for the neutral

molecule Au2-[SCH3]2. This analysis provides the following charges: qS = −0.23605,

qC = −0.16628, and qH = 0.09580. To ensure that the total MM charge adds up to

the total charge of the cluster (Q), a simple correction δq is applied to each charge

via the formula δq = (Q/M − (qS + qC + 3qH))/5, where M is the number of thiolated

ligands. Table 7.1 reports these charges for Q = −1 and M = 18, which uses the

correction δq = 0.01188.

Bonded parameters (stretching, bending, torsion) involving X-Au-S-X were de-

rived by fitting the force constants in all functional forms to match vibrational fre-

quencies of selected modes of vibration for the molecules Au-SCH3 and (Au-SCH3-

Au). All other parameters intrinsic to SCH3 were taken from the Amber force field

without modification. Tables 7.2, 7.3, and 7.4 report all bonded parameters involving

the newly defined atom types and the existing types in the Amber force field.

136



Table 7.3. Bending parameters corresponding to the force field formula (1/2)kθ(θ−
θeq)

2.

At-type1 At-type2 At-type3 kθ θeq

AuC SC CT 35.00 105.00
AuS SC CT 35.00 105.00
SC CT H1 50.00 109.50
H1 CT H1 35.00 109.50
SC AuS SS 20.00 180.00
AuS SS CT 35.00 105.00
AuS SS AuS 20.00 100.00
AuC SC AuS 20.00 91.00
SS CT H1 50.00 109.50
SC CT CT 50.00 111.50
SS CT CT 50.00 111.50
H1 CT CA 35.00 110.50
CA CA H1 35.00 120.00

Table 7.4. Amber torsional parameters corresponding to the force field formula∑4
i=1 Mi[1 + cos(iθ −Oi(i+ 4))]/Np.

At-type1 At-type2 At-type3 At-type4 O1 O2 O3 O4 M1 M2 M3 M4 Np

AuC SC CT H1 0 0 0 0 0.00 0.00 0.16 0.00 1.00
AuC SC CA H1 0 0 0 0 0.00 0.00 0.16 0.00 1.00
AuS SC CT H1 0 0 0 0 0.00 0.00 0.16 0.00 1.00
AuS SC CA H1 0 0 0 0 0.00 0.00 0.16 0.00 1.00
AuS SS CT H1 0 0 0 0 0.00 0.00 0.16 0.00 1.00
AuS SS CA H1 0 0 0 0 0.00 0.00 0.16 0.00 1.00
SC AuS SC CT 0 0 0 0 0.00 0.00 0.00 0.00 1.00
SC AuS SC CA 0 0 0 0 0.00 0.00 0.00 0.00 1.00
SC AuS SS CT 0 0 0 0 0.00 0.00 0.00 0.00 1.00
SC AuS SS CA 0 0 0 0 0.00 0.00 0.00 0.00 1.00
AuS SS AuS SC 0 0 0 0 0.00 0.00 0.00 0.00 1.00
AuC SC AuS SS 0 0 0 0 0.00 0.00 0.00 0.00 1.00
CT SC AuS SS 0 0 0 0 0.00 0.00 0.00 0.00 1.00
CA SC AuS SS 0 0 0 0 0.00 0.00 0.00 0.00 1.00
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7.2.2 QM/MM Model

One of the major objectives in developing a full MM force field is to use it as the

underlying potential in hybrid QM/MM models. We benchmark our model by com-

paring structural descriptors in [Au25(SCH3)18]−. The crystal structure of [N(C8H17)4

]+[Au25(SCH2CH2Ph)18]−1 was determined recently by Heaven et al. [97], which was

followed by several other experimental investigations [117] and theoretical [118] cal-

culations using density functional theory (DFT) methods. The initial geometry for

our QM/MM calculations is derived from that crystal structure by replacing the

ethylphenyl groups with methyl groups. We adjust the resulting [Au25(SCH3)18]−

structure to obtain a symmetric structure belonging to the point group Ci.

The [Au25(SCH3)18]− structure consists of an icosahedral Au13 core, protected by

six V-shape motifs in an approximate octahedral arrangement. Each of the S atoms

are connected to the organic ligand (CH3), forming a monolayer protected cluster.

We propose a QM/MM model in which the icosahedral Au13 core is treated via MM

whereas the V-shape motifs with the ligands are treated via QM methods(see fig-

ure 7.2). These two regions interact with each other via the ONIOM extrapolation

scheme with electronic embedding as described in Eq. 7.1.

Our choice of the partition for [Au25(SCH3)18]− cluster was fairly straight-forward,

making use of the intuitive definition of domains presented in the previous section.

The icosahedral Au13 core is very stable and can be accurately described by a Lennard-

Jones potential. Each of the gold atoms in the core, except the central one, is bonded

to a sulphur atom forming a V-shape motif. A “cut” is defined between atoms types

AuC and SC. These bond cuts are implemented in ONIOM by defining a “link-atom”

to satisfy the valence and avoid broken bonds. The default choice of such a link-
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Figure 7.2. Structure of [Au25(SCH3)18]−, with Au atoms shown in orange, S in
yellow, C in gray. H atoms are not shown for clarity. The Au13 core (MM region) is
shown with spheres while all other atoms (QM region) are shown with sticks.
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Figure 7.3. Structure of Au38(SCH3)24. The Au23 core (MM region) is shown with
spheres while all other atoms (QM region) are shown with sticks.
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atom is typically a hydrogen atom. However for our purposes, the best choice of

link-atom turned out to be another Au atom, thus forming Au(link)–S bonds in place

of Au(core)–S bonds. Since the core has a small charge (≈ 0.15e), and since the

QM region needs to be assigned an integer charge, we assume a –1 charge solely dis-

tributed among the atoms of domain 2 (QM region), thus making the entire structure

an anion. The force field (based on Amber) described previously was used for the MM

region. DFT was used to describe the remaining 102 atoms in domain 2. We used the

LANL2DZ psuedopotential and basis sets as defined in Gaussian 09 with the BLYP

functional. For computational efficiency, we use density fitting with the W06 fitting

basis [119]. It is evident that for this type of partition the gain in computational

time, with respect to a full QM calculation, is minimal, since the QM region has

effectively 24 gold atoms. Nevertheless, such partitioning scheme represents a proof

of concept and will clearly become computationally more efficient for larger clusters

and for cases where a reduced number of ligands are described quantum mechanically.

As a second example, we use our QM/MM model to optimize the structure of

Au38(SCH3)24. The X-ray structure was determined recently [120] along with a full

DFT comparison [121]. The Au38(SCH3)24 structure has a bi-icosahedral Au23 core,

consisting of two icosahedral Au13 units joined by three shared Au atoms at the cen-

ter. This core is protected by six long [(Au)2(SCH)3] semi-ring (V-shape motifs) and

three short [Au(SCH3)2] semi-rings (staple motifs) (see figure 7.3). The entire struc-

ture has D3 symmetry, the largest Abelian point group being C2.

By analogy with our partitioning of the [Au25 (SCH3)18]− system, we describe

the bi-icosahedral Au23 core in Au38(SCH3)24 by our modified Amber force field. The

outer shell comprising the V-shape and staple motifs was described quantum mechan-
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Figure 7.4. Hybrid structure [Au25(SCH3)12(SCH2CH2 Ph)6]−. The two semi-rings,
belonging to the QM region, have ethyl-phenyls as ligands (shown by sticks). The
remaining four semi-rings have methyls, which together with the Au13 core belong to
the MM region (shown in balls & sticks).

ically using DFT. As before, we use the BLYP pure functional with LANL2DZ and

density fitting basis set W06. Charge of the QM region was assumed to be zero.

We show in our final example, that one can use the same prescription proposed

earlier to isolate a portion of the monolayer for a QM description, while retaining

an MM description of the remainder. For this purpose, we took the [Au25(SCH3)18]−

structure and changed the ligands in two of the semi-rings from methyl to ethylphenyl,
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Table 7.5. Structure validation for different QM/MM models. All distances are
reported in Angstroms.

Cluster d21 (d21)XRAY drms (drms)XRAY δS (%)

[Au25(SCH3)18]− 2.84 2.87 2.73 2.76 1.09

[Au38(SCH3)24] 2.09 2.02 1.71 1.76 2.84

[Au25(SCH3)12(SCH2CH2Ph)6]− 2.87 2.87 2.72 2.76 1.45

thus forming [Au25(SCH3)12(SCH2CH2Ph)6]− (see figure 7.4). The QM region con-

tains two semi-rings on opposite sides of the structure and the Ci symmetry of the

original structure is preserved. Again the Au13 core and remaining (Au)2(SCH3)3

semi-rings are in the MM region. We optimized the geometry and calculated NMR

properties of 13C and 1H. Results are reported in the following section.

7.3 Results and Discussions

We report in Table 7.5 an analysis of the optimized structure for the different

clusters described in the previous section. To assess the accuracy of our structure,

we define the parameters d21 and drms as the distance between two neighboring Au

atoms in the core and the “root mean square” distance of all Au atoms from the

central atom in the core, respectively. We define the percent error δS as,

δS =
|(drms)XRAY − (drms)MODEL|

(drms)XRAY
× 100 (7.2)

We note that the maximum error in structure optimization using our QM/MM

models is ∼ 3 %, which is remarkably good. We then used the optimized structures

to calculate NMR properties of 13C and 1H, which we present in Tables 7.6 and 7.7.
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Guided by the benchmark studies of Cheeseman et al. [122], our calculations of NMR

chemical shifts are performed with the B3LYP hybrid functional, using the LANL2DZ

basis set for Au, and the 6–31G(d,p) for S, C and H. We see that the NMR isotropic

shieldings obtained using the QM/MM model compare very well to that found using

full DFT on the same [Au25(SCH3)12(SCH2CH2Ph)6]− structure. We also calculate

the mean unsigned error (MUE) to compare theory with NMR experiments reported

recently [100]. The mean unsigned error is defined as,

MUE =
1

ni

∑
i

(|δimodel − δiexperiment|) (7.3)

where ni is the total number of different types of C and H atoms, and δ are the NMR

chemical shifts. The maximum MUE is 3.5 ppm for 13C and 0.18 ppm for 1H NMR.

Thus we see that both 13C and 1H agree remarkably well with the known experimental

results. Although small, we believe that the discrepancies arise from the fact that the

experimental structure has six semi-rings with CH2CH2Ph as the functional group

for all ligands whereas the QM/MM and full DFT models have two semi-rings with

CH2CH2Ph as ligands and the rest replaced with CH3, so we are neglecting some of

the electrostatic interactions that arise due to the difference in the structure. How-

ever, the error seems to be small in comparison to the huge gain in computational

efficiency. More precisely, the time taken to caculate the NMR shielding tensors with

the QM/MM model was approximately 1 hour, whereas the same calculation with

full DFT took 12 hours using the same hardware.
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Table 7.6. 13C NMR chemical shifts δ (in ppm) for [Au25(SCH3)12(SCH2CH2Ph)6]−

cluster. Reported are the calculated values within the QM/MM approximation, full
DFT calculation, and experimental values.

Atom QM/MM DFT Experiment [100]

α–Cinner 50.75 55.80 —
α–Couter 48.72 49.74 35.97

β–Cinner 45.11 44.26 —
β–Couter 44.07 43.47 42.18

i–Cinner 137.35 141.05 141.88
i–Couter 137.43 140.42 140.88

m–Cinner 125.48 125.00 128.52
m–Couter 125.61 124.94 128.63

o–Cinner 125.29 126.49 129.85
o–Couter 125.37 125.42 129.30

p–Cinner 123.99 122.45 126.27
p–Couter 123.96 122.35 126.49

MUE (in ppm) 3.50 3.23
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Table 7.7. 1H NMR chemical shifts δ (in ppm) for [Au25(SCH3)12(SCH2CH2Ph)6]−

cluster.

Atom QM/MM DFT Experiment [100]

α–CH2,inner 2.92 3.23 3.80broad

α–CH2,outer 3.18 2.97 3.13

β–CH2,inner 2.93 2.95 3.13
β–CH2,outer 3.03 3.07 t2.93

m–CHinner 7.28 7.24 7.15
m–CHouter 7.29 7.19 7.19

o–CHinner 7.19 7.54 7.19
o–CHouter 7.23 7.35 7.14

p–CHinner 7.23 7.02 7.08
p–CHouter 7.27 7.09 7.15

MUE (in ppm) 0.18 0.18

7.4 Concluding Remarks

The use of X-ray crystallography to determine the structure of gold nanoparticles

has been limited, owing partly to the difficulty of obtaining samples of sufficiently

uniform size for the growth of single crystals. Until recently, there had been just one

example of an Au cluster, Au102(p-MBA)44, which had been determined by crystallog-

raphy [96]. Since then, there have been successful crystal structure determinations of

smaller sized gold clusters like Au25 [97] and Au38 [120]. The recent availability of de-

tailed structural data has created an opportunity for the construction and validation

of computational methods for modeling these systems. Starting from the analysis of

[Au25(SCH3)18]− molecular ion, we have developed generalized hybrid QM/MM mod-

els to accurately describe the structure of monolayer protected gold clusters. We have

found that errors in the calculated geometries from our QM/MM model are ∼ 3%,
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compared to the crystal structures. In addition, the isotropic chemical shifts obtained

from NMR calculation agree very well among the QM/MM model, full DFT calcu-

lations and experiment. Use of these hybrid models not only saves computational

resources but also enables the study of physical properties and chemical reactions

for larger molecular ions where physical insight can be obtained by describing only a

small region of the system at a high QM level.
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Chapter 8

Summary and Outlook

In this thesis, we present accurate electronic structure calculations for potential

energy curves of ground and excited states of both homonuclear and heteronuclear

alkaline-earth molecular ions. We also compute the transition dipole moments, ra-

diative lifetimes, polarizabilities, and long-range coefficients for such ionic dimers. So

far, very little is known about these systems and we believe that our calculations

would provide the foundation on which modern experiments on these cold molecular

ions could be developed. The initial goal for such experiments would be to study

resonant charge transfer. Since in the alkaline-earth ionic dimers the charge and the

neutral atom can be imaged separately, experiments on ultracold atom-ion collisions

and resonant charge transfer could be accurately controlled and measured.

We have also explored in Chapter 3 a pathway to form Be+
2 , in the long-range

shallow well of the metastable B 2Σ+
g state by ultracold photoassociation. Such ex-

periments for formation of cold molecular ions would help understand not only the

problems of atomic physics, but can also lead to model quantum systems for the study

of many body physics, disorder, and artificial crystals.

In Chapter 4, we have presented our recent findings for the non-adiabatic cor-

rections to the Born-Oppenheimer approximation. Although, for most practical sce-

narios, the corrections to Born-Oppenheimer approximation are extremely small and
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negligible, such corrections become important for studies involving the mass of nuclei.

For accurate description of studies involving ultracold atom-ion collisions among two

different isotopes of the same element [5], non-adiabatic corrections must be included

in the description of the quantum system.

In Chapter 6 we calculate the hyperfine structure of NaCa+. The magnetic hy-

perfine spectra of the a3Σ+ state shows a well separated spacing of the energy levels

∼ 50 MHz at a magnetic field of 100 G. Such spacing is experimentally achievable.

Last but not the least, we have described in Chapter 7 the development of a hy-

brid QM/MM method to treat polyatomic systems, like ionic clusters. The size of

the system forces the ab initio calculations at the limits of computational tractability.

However, we demonstrate that by intelligent partition of the large system, we can still

achieve the computational accuracy of full quantum mechanical descriptions.
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Appendix A

Input files for Quantum Chemistry
programs

A.1 MOLPRO input

We list a sample input file for use with the MOLPRO program, which calculates the

total valence energy for the B 2Σ+
g state in the Be+

2 molecular ion. The sample input

uses the aug-cc-pVQZ basis set, available from the EMSL basis set library.

!
∗∗∗ , Be2+ Sigma G State Po t en t i a l Energy Curve

memory , 250 ,M
gthresh , ze ro =1.d−14, one int =1.d−14, twoint =1.d−14, energy =1.d−12

b a s i s={
!
! BERYLLIUM (13 s , 7 p , 4 d , 3 f , 2 g ) −> [ 6 s , 5 p , 4 d , 3 f , 2 g ]
! BERYLLIUM (12 s , 6 p , 3 d , 2 f , 1 g ) −> [ 5 s , 4 p , 3 d , 2 f , 1 g ]
! BERYLLIUM (1 s , 1 p , 1 d , 1 f , 1 g )
s , BE , 14630.0000000 , 2191 .0000000 , 498 .2000000 , 140 .9000000 ,
45 .8600000 , 16 .4700000 , 6 .3190000 , 2 .5350000 , 1 .0350000 , 0 .2528000 ,
0 .1052000 , 0 .0426100 , 0 .0143900
c , 1 . 9 , 0 .0000920 , 0 .0007130 , 0 .0037350 , 0 .0154680 , 0 .0528740 ,
0 .1456940 , 0 .3026810 , 0 .4049360 , 0 .2223870
c , 1 . 9 , −0.0000170 , −0.0001300 , −0.0006790 , −0.0028570 , −0.0098130 ,
−0.0286090 , −0.0637600 , −0.1172310 , −0.1212020
c , 10 .10 , 1
c , 11 .11 , 1
c , 12 .12 , 1
c , 13 .13 , 1
p , BE , 14 .0300000 , 3 .1680000 , 0 .9024000 , 0 .3036000 , 0 .1130000 ,
0 .0428600 , 0 .0065000
c , 1 . 3 , 0 .0040990 , 0 .0256260 , 0 .1037680
c , 4 . 4 , 1
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c , 5 . 5 , 1
c , 6 . 6 , 1
c , 7 . 7 , 1
d , BE , 1 .0720000 , 0 .4410000 , 0 .1811000 , 0 .0554000
c , 1 . 1 , 1
c , 2 . 2 , 1
c , 3 . 3 , 1
c , 4 . 4 , 1
f , BE , 0 .4810000 , 0 .2550000 , 0 .0930000
c , 1 . 1 , 1
c , 2 . 2 , 1
c , 3 . 3 , 1
g , BE , 0 .4150000 , 0 .1834000
c , 1 . 1 , 1
c , 2 . 2 , 1
}

d =[100 .0 , 50 . 0 , 20 . 0 , 10 . 0 , 7 . 5 , 5 . 0 , 3 . 0 ]

do i =1,#d
! Be2+ Molecule
data , truncate , 2 1 0 0 . 2
geomtyp=xyz
geometry={

2
Be2+
be1 0 . 0 . d( i )∗ toang
be2 0 . 0 . −d( i )∗ toang
}
set , charge=1
{ rh f ; wf , 7 , 1 , 1 ;
save , 2 1 0 0 . 2 ; s t a r t , atden}
ehf1 ( i )=energy
{ f c i ;}
e1 ( i )=energy
enddo

do i =1,#d
! Be+ Ion
geomtyp=xyz
symmetry , x , y
geometry={

2
Be2+
be1 0 . 0 . d( i )∗ toang
be2 0 . 0 . −d( i )∗ toang
}
set , charge=1
dummy, Be1
{ rh f ; wf , 3 , 1 , 1 ; }
e2 ( i )=energy
enddo
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do i =1,#d
! Be Atom
geomtyp=xyz
symmetry , x , y
geometry={

2
Be2+
be1 0 . 0 . d( i )∗ toang
be2 0 . 0 . −d( i )∗ toang
}
set , charge=0
dummy, Be1
{ rh f ; wf , 4 , 1 , 0 ; }
ehf3 ( i )=energy
ccsd
e3 ( i )=energy
enddo

do i =1,#d
d( i )=2∗d( i )
d i f f ( i )=( e1 ( i )−e2 ( i )−e3 ( i ) )∗ tocm
enddo

table , d , d i f f
d i g i t s , 2 , 2

A.2 PSI3 input

Following is a sample input file for B 2Σ+
g state in the Be+

2 molecular ion, used

with the PSI3 program with aug-cc-pV5Z basis set. The CI program in PSI3 is much

faster than MOLPRO, so for large basis set calculations, it is much preferred.

% Be2+

p s i : (
l a b e l = ”Be2+ sigma g”
memory = (4048 .0 MB)
charge = 1
multp = 2
jobtype = sp
wfn = d e t c i
f c i = true
convergence = 7
r e f e r e n c e = roh f
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dertype = none
b a s i s = ”AV5Z”
puream = true

% occ 1
docc = (1 0 0 0 0 2 0 0)
socc = (1 0 0 0 0 0 0 0)

% occ 2
% docc = (2 0 0 0 0 1 0 0)
% socc = (1 0 0 0 0 0 0 0)

f r e e z e c o r e = true
% chkpt mos = true

un i t s = bohr
zmat = (

Be
Be 1 2 .0

)
)

s c f : (
convergence = 14
maxiter = 200

% print mos = true
)

b a s i s : (
BERYLLIUM: ”AV5Z” = (

(S ( 54620.00000000 0 .00001800)
( 8180.00000000 0 .00013800)
( 1862.00000000 0 .00072300)
( 527.30000000 0 .00303900)
( 172.00000000 0 .01090800)
( 62.10000000 0 .03403500)
( 24.21000000 0 .09119300)
( 9 .99300000 0 .19926800)
( 4 .30500000 0 .32935500)
( 1 .92100000 0 .34048900) )

(S ( 54620.00000000 −0.00000300)
( 8180.00000000 −0.00002500)
( 1862.00000000 −0.00013100)
( 527.30000000 −0.00055800)
( 172.00000000 −0.00198800)
( 62.10000000 −0.00637000)
( 24.21000000 −0.01721700)
( 9 .99300000 −0.04085800)
( 4 .30500000 −0.07423700)
( 1 .92100000 −0.11923400) )

(S ( 0.86630000 1 .00000000) )
(S ( 0.24750000 1 .00000000) )
(S ( 0.10090000 1 .00000000) )
(S ( 0.04129000 1 .00000000) )
(P ( 43.75000000 0 .00063300)

( 10.33000000 0 .00480800)
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( 3 .22600000 0 .02052700)
( 1 .12700000 0 .06781600) )

(P ( 0.43340000 1 .00000000) )
(P ( 0.18080000 1 .00000000) )
(P ( 0.07827000 1 .00000000) )
(P ( 0.03372000 1 .00000000) )
(D ( 1.63500000 1 .00000000) )
(D ( 0.74100000 1 .00000000) )
(D ( 0.33500000 1 .00000000) )
(D ( 0.15190000 1 .00000000) )
(F ( 0.68600000 1 .00000000) )
(F ( 0.40100000 1 .00000000) )
(F ( 0.23500000 1 .00000000) )
(G ( 0.60300000 1 .00000000) )
(G ( 0.32400000 1 .00000000) )
(H ( 0.51000000 1 .00000000) )

% AV5Z d i f f u s e
(S ( 0 .013777 1 . 0 ) )
(P ( 0.007668 1 . 0 ) )
(D ( 0.077200 1 . 0 ) )
(F ( 0 .013750 1 . 0 ) )
(G ( 0.174000 1 . 0 ) )
(H ( 0.225000 1 . 0 ) )

)
)

A.3 Transition Moment calculation code

This is a standard input file for MOLPRO CI program, to calculate the electronic

transition dipole moment, coupling the X 2Σ+
u state to the B 2Σ+

g state in Be+
2 . This

can be easily modified to calculate other transition moments, just by changing the

respective symmetry of the relevant state.

!
∗∗∗ , Be2+ Sigma−U to Sigma−G Trans i t i on Moment

memory , 250 ,M
gthresh , energy =1.d−12

b a s i s={
!
! BE cc−pVTZ
!
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sp , Be , vtz ; c ;
d , Be , 0 . 3 4 9 3 , 0 . 1 7 2 4 ;
f , Be , 0 . 3 4 2 3 ;
s , Be , 0 . 0 1 4 7 ;
p , Be , 0 . 0 0 9 3 ;
d , Be , 0 . 0 5 8 8 ;
f , Be , 0 . 1 1 8 8 ;
s , Be , 3 . 9 5 6 4 , 1 . 4 1 6 4 ;
p , Be , 8 . 7 7 3 3 , 2 . 0 3 5 4 ;
d , Be , 1 . 6 1 9 3 ;
}

d =[1000 .0 , 30 . 0 , 20 . 0 , 19 . 0 , 18 . 0 , 17 . 0 , 16 . 0 , 15 . 0 , 14 . 0 , 13 . 0 , 12 . 0 ,
11 . 0 , 10 . 0 , 9 . 5 , 9 . 0 , 8 . 5 , 8 . 0 , 7 . 5 , 7 . 0 , 6 . 5 , 6 . 0 , 5 . 9 , 5 . 8 , 5 . 7 , 5 . 6 ,
5 . 5 , 5 . 4 , 5 . 3 , 5 . 2 , 5 . 1 , 5 . 0 , 4 . 9 , 4 . 8 , 4 . 7 , 4 . 6 , 4 . 5 , 4 . 4 , 4 . 3 , 4 . 2 ,
4 . 1 , 4 . 0 , 3 . 9 , 3 . 8 , 3 . 7 , 3 . 6 , 3 . 5 , 3 . 4 , 3 . 3 , 3 . 2 , 3 . 1 , 3 . 0 ]

do i =1,#d
geometry={Be ; Be 1 d( i )}
set , charge=1

{ rh f ; wf , 7 , 5 , 1 ; }

{mult i ; maxit , 4 0 ;
occ , 3 , 1 , 1 , 0 , 3 , 1 , 1 , 0 ;
c lo sed , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
wf , 7 , 5 , 1 ;
wf , 7 , 1 , 1 ; }

! Be2+ Sigma−U

{ c i ; wf , 7 , 5 , 1 ; maxit , 5 0 0 ; save , 6 1 4 0 . 2 ; }
e1 ( i )=energy

! Be2+ Sigma−G

{ c i ; wf , 7 , 1 , 1 ; maxit , 5 0 0 ; save , 7 1 4 0 . 2 ; }
e2 ( i )=energy

! Be2+ Pi−U to Sigma−G t r a n s i t i o n
{ c i ; trans , 6 1 4 0 . 2 , 7 1 4 0 . 2 ,dmx}

mu( i )=trdmx
enddo

table , d , e1 , e2 ,mu
d i g i t s , 2 , 12 , 12 , 12
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A.4 CFOUR input

The CFOUR program has the fastest coupled cluster (CC) code in our experience.

The input file is always named ZMAT. Here is a sample ZMAT input file, for Ca+
2

restricted inner valence (RIV) calculation at the CCSDT level of theory,

CCSDT t e s t case
CA
CA 1 R

R=VAR

∗CFOUR(CALC=CCSDT, BASIS=SPECIAL
PRINT=0,REF=ROHF
UNITS=1,CHARGE=1
MULTIPLICITY=2
CC CONV=10,CC EXPORDER=20,CC MAXCYC=500
OCCUPATION=6−2−2−0−6−2−2−0/5−2−2−0−6−2−2−0
DROPMO=1−2−3−4−5−6−7−8−9−10
MEMORY=80000000)

CA: cc−pwCVTZ
CA: cc−pwCVTZ
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A.5 PYTHON script for quantum chemistry programs

Here is a PYTHON script, which can be used with most quantum chemistry pro-

grams to generate a table of data points, for a desired level of theory and internuclear

separations. It uses common regular-expressions (REGEX) and assumes that the

UNIX command line is used to run the script.

#! usr / bin /python
# Copyright by Sandipan Banerjee , UCONN
# Python s c r i p t f o r running CFOUR program to generate
data s e t s f o r a bunch o f g iven R va lue s

import os , sys
import s t r i n g

r = ’30 . 0 28 .0 24 .0 20 .0 18 .0 16 .5 16 .0 15 .5 14 .0 13 .5 12 .0
11 .0 10 .0 9 .0 8 . 0 7 .0 6 .0 5 . 0 ’ . s p l i t ( )
l og = ’ c a 2 p c c s d t r i v s g ’
b = ”ZMAT”
ext = ’ . l ’
#o u t f i l e = ’ output sg av5z . dat ’

de f makeinp ( o ldF i l e , newFile ) :
f 1 = open ( o ldF i l e , ” r ”)
f 2 = open ( newFile , ”w”)
whi l e 1 :

t ex t = f1 . r e a d l i n e ( )
i f t ex t == ”” :

break
text = text . r e p l a c e (”VAR” , r [ i ] )
f 2 . wr i t e ( t ex t )

f 1 . c l o s e ( )
f 2 . c l o s e ( )
re turn

f o r i in range ( l en ( r ) ) :
p r i n t ’ Running ’ , r [ i ]
a = ”ZMAT. ca2p”
makeinp ( a , b)
out = ( log + ’ ’ . j o i n ( r [ i ] ) + ext )
os . system ( ’ xc four >& %s ’ % ( out ) )
os . system ( ’ xclean ’ )

e l s e :
p r i n t ’The loop i s over ’
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A.6 Dipole Polarizabilty calculation code

This is sample MOLPRO input file, for calculation of static dipole polarizability of

the Ca atom in its ground state, using the finite-field method. This is performed at

the CCSD(T) level of theory, however this can be easily modified for use with any

other level of theory.

!
∗∗∗ ,Ca Dipole P o l a r i z a b i l i t y

memory , 250 ,M
gthresh , ze ro =1.d−14, one int =1.d−14, twoint =1.d−14, energy =1.d−12

b a s i s=aug−cc−pV5Z

symmetry , x , y
geometry={ Ca }

! d e f i n e f i n i t e f i e l d s t r e ng th s

f i e l d =[0 ,0 .0001 ,−0.0001 ]

! loop over f i e l d s

do i =1,# f i e l d
! add f i n i t e f i e l d along z to H

dip , , , f i e l d ( i )
hf
{ ccsd ( t ) ; core ; maxit ,200}
e ( i )=energy

enddo

! d i p o l e moment as f i r s t energy d e r i v a t i v e
dipmz=(e (2)− e ( 3 ) ) / ( f i e l d (2)− f i e l d ( 3 ) )

! p o l a r i z a b i l i t y as second der .
dpolz=(e (2)+ e (3)−2∗ e ( 1 ) ) / ( ( f i e l d (2)− f i e l d ( 1 ) )∗ ( f i e l d (3)− f i e l d ( 1 ) ) )

tab le , e ( 1 ) , dipmz , dpolz
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A.7 Quadrupole Polarizabilty calculation code

This is sample MOLPRO input file, for calculation of static quadrupole polarizability

of the Ca atom in its ground state, using the finite-field method.

!
∗∗∗ ,Ca Quadrupole P o l a r i z a b i l i t y

memory , 250 ,M
gthresh , ze ro =1.d−14, one int =1.d−14, twoint =1.d−14, energy =1.d−12

b a s i s=aug−cc−pV5Z

symmetry , x , y
geometry={ Ca }

! d e f i n e f i n i t e f i e l d s t r e ng th s
f i e l d =[0 ,0 .0001 ,−0.0001 ]

do i =1,# f i e l d
quad , , , f i e l d ( i )
hf
{ ccsd ( t ) ; core ; maxit ,200}
e ( i )=energy

enddo

! quadrupole moment as f i r s t energy d e r i v a t i v e
quadmz=(e (2)− e ( 3 ) ) / ( f i e l d (2)− f i e l d ( 3 ) )

! p o l a r i z a b i l i t y as second der .
qpolz=(e (2)+ e (3)−2∗ e ( 1 ) ) / ( ( f i e l d (2)− f i e l d ( 1 ) )∗ ( f i e l d (3)− f i e l d ( 1 ) ) )

tab le , e ( 1 ) , quadmz , qpolz
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Appendix B

Input/ Output for bound vibrational
levels

B.1 Sample input for LEVEL code

We have used the LEVEL program, developed by Le Roy to calculate energies of

bound vibrational levels for potential energy curves for various molecular ions stud-

ied. This program is based on the Numerov algorithm implemented in FORTRAN

90. It can calculate energies and wavefunctions for different vibrational levels. We

have also used it to calculate Franck-Condon overlaps between two potentials, and to

calculate Einstein A-coefficient for radiative decay.

4 9 4 9 1 1 ! IAN ! IMN1 IAN2 IMN2 CHARGE NUMPOT
’ Leve l s o f p o t e n t i a l f o r 2( Sigma ) g State o f Be2+ ’
0 .001 1 .3 90 . 1 . d−06 ! RH RMIN RMAX EPS
100 −1 0 0 .D0 ! NTP LPPOT IOMEG VLIM
0 1 3 4 0 .D5 ! NUSE IR2 ILR NCN CNN
1.0D0 1 .0D0 0 . d0 ! RFACT EFACT VSHIFT
1.58753163240000 10313.68707042250000
1.67840044637577 5132.42814242910000
1.76926926035149 1618.33669321841000
1.86013807432726 −602.48983533663300
1.95100688830304 −1908.84232400221000
2.04187570227881 −2544.36159618185000
2.13274451625453 −2710.25471908260000
2.22361333023030 −2560.19886303708000
2.31448214420607 −2206.96259059629000
2.40535095818179 −1730.62302685235000
2.49621977215757 −1207.03593501474000
2.58708858613334 −690.79809128338000
2.67795740010911 −227.06410390732600
2.76882621408483 160.55629241621000
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2.85969502806060 477.81791782795400
2.95056384203638 730.37504802731800
3.04143265601210 924.16506871250100
3.13230146998787 1064.78118301374000
3.22317028396364 1159.01977109418000
3.31403909793941 1215.52767930164000
3.40490791191513 1240.60857200174000
3.49577672589091 1239.96482959616000
3.58664553986668 1218.54772483866000
3.67751435384240 1180.48510512383000
3.76838316781817 1129.67495626256000
3.85925198179394 1069.43324271480000
3.95012079576972 1002.52274490642000
4.04098960974544 931.36853293287000
4.13185842372121 858.20319683126200
4.22272723769698 784.33084945582200
4.31359605167275 711.26729836102800
4.40446486564847 640.02992712237800
4.49533367962425 571.53141140052400
4.58620249360002 506.36782467326300
4.67707130757574 444.99337438687400
4.76794012155151 387.64159867329900
4.85880893552728 334.44118026866500
4.94967774950305 285.43778693594000
5.04054656347878 240.58648591140600
5.13141537745455 199.77967735918000
5.22228419143032 162.85728992069600
5.31315300540604 129.61977127596400
5.40402181938171 99.84859327147650
5.49489063335737 73.31807799541440
5.58575944733357 49.81368147890520
5.67662826130924 29.10286140782550
5.76749707528490 10.95092726875040
5.85836588926057 −4.86929844335600
5.94923470323624 −18.57166225016150
6.04010351721190 −30.36143770779330
6.13097233118810 −40.42782630158080
6.22184114516377 −48.93172634756480
6.31270995913943 −56.04099579556700
6.40357877311510 −61.91213495822640
6.49444758709076 −66.68472351900470
6.58531640106643 −70.48986360311000
6.67618521504263 −73.44507098485330
6.76705402901829 −75.65195551119680
6.85792284299396 −77.20063125060340
6.94879165696963 −78.17826549377740
7.03966047094530 −78.66041140042540
7.13052928492096 −78.71989361778610
7.22139809889716 −78.41632830057250
7.31226691287282 −77.81125789116080
7.40313572684849 −76.94201050152060
7.49400454082416 −75.84455772988480
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7.58487335479982 −74.58855355349000
7.67574216877602 −73.16511367354320
7.76661098275169 −71.64245149949050
7.85747979672735 −69.99879594525370
7.94834861070302 −68.31123675481180
8.03921742467869 −66.57832457477190
8.13008623865435 −64.80096134570040
8.22095505263055 −63.01682673966720
8.31182386660622 −61.22203395958390
8.40269268058188 −59.41652530769020
8.49356149455755 −57.61930446612490
8.58443030853322 −55.85202645949550
8.67529912250888 −54.11557820451800
8.76616793648508 −52.40584474695510
8.85703675046075 −50.71871112183970
8.94790556443641 −49.05006237454840
9.03877437841208 −47.40242345820210
9.12964319238775 −45.81536924192680
9.22051200636341 −44.28992638006390
9.31138082033961 −42.81855805081400
9.40224963431527 −41.39372741731720
9.49311844829094 −40.00789765694840
9.58398726226661 −38.66011892823240
9.67485607624228 −37.36552067869560
9.76572489021794 −36.11797980470830
9.85659370419414 −34.90940187025560
9.94746251816980 −33.73169242896620
10.03833133214550 −32.57675704379400
10.12920014612110 −31.44674854590620
10.22006896009680 −30.36087897065000
10.31093777407250 −29.32553493738930
10.40180658804870 −28.34670562310380
10.49267540202430 −27.43038020749740
10.58354421600000 −26.58254786842470
−999 1 2 −1 0 1 −1 −10 ! NLEV1 AUTO1 LCDC
LXPCT NJM JDJR IWR LPRWF
0 0 ! IV (1) IJ (1 ) GV(1)= T r i a l Energy
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B.2 Sample output for LEVEL code

Find 21 Potent ia l−1 v i b r a t i o n a l l e v e l s with J= 0

v E( v ) v E( v ) v E( v ) v E( v )
−−−−−−−−−−−−−− −−−−−−−−−−−−−− −−−−−−−−−−−−−− −−−−−−−−−−−−−−
0 −2444.3506 6 −69.7655 12 −10.9105 18 −0.8481
1 −1925.3493 7 −53.7117 13 −7.8944 19 −0.4300
2 −1425.2887 8 −40.1671 14 −5.5667 20 −0.1870
3 −948.1527 9 −29.0517 15 −3.7865
4 −497.8803 10 −20.5207 16 −2.4579
5 −79.2265 11 −14.8901 17 −1.5021
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Appendix C

Non-Adiabatic corrections

C.1 Diagonal and off-diagonal matrix element computation

The diagonal and off-diagonal corrections for Ṽαβ are implemented in MOLPRO, us-

ing the following code.

!
∗∗∗ , Be2+ Non−Adiabat ic Cor r e c t i ons

memory , 350 ,m;

b a s i s={
!
! BE cc−pV5Z
!
sp , Be , v5z ; c ;
d , Be , 1 . 7 1 7 5 , 0 . 7 6 4 6 , 0 . 3 4 0 4 , 0 . 1 5 1 5 ;
f , Be , 0 . 6 1 2 7 , 0 . 3 5 6 8 , 0 . 2 0 7 8 ;
g , Be , 0 . 5 9 8 0 , 0 . 3 1 8 3 ;
h , Be , 0 . 5 1 4 2 ;
s , Be , 0 . 0 1 2 8 ;
p , Be , 0 . 0 0 7 6 ;
d , Be , 0 . 0 4 2 8 ;
f , Be , 0 . 0 7 1 9 ;
g , Be , 0 . 0 9 7 9 ;
h , Be , 0 . 2 0 3 3 ;
}

mass , i so tope , Be1=9.012182 , Be2=10.013534

ma = 9.012182
mb =10.013534
M=(ma+mb)

DeltaR = 5.0D−03
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d i s =30.00

! Do i =1, 1
Do i =1, 135

r ( i ) = d i s

R00 = −1.0D+00 ∗ mb ∗ d i s / (ma + mb)

Be1Z = R00
Be2Z = R00 + d i s
Be1X = 0.0
Be2X = 0.0
Be1Y = 0.0
Be2Y = 0.0

symmetry , x
or i ent , noor i en t
geomtyp=xyz

geometry={
Be1 Be1X∗ toang Be1Y∗ toang Be1Z∗ toang
Be2 Be2X∗ toang Be2Y∗ toang Be2Z∗ toang
}

IF ( i . eq . 1 ) Then

{mult i ; occ , 8 , 2 ; c lo sed , 0 , 0 ;
s t a r t , 2 1 4 4 . 2 ;
wf , 7 , 1 , 1 ; s ta te , 2 ; natorb , 2 1 4 5 . 2 , c i , p r i n t ;}

End IF

l a b e l 1 :
{mult i ; occ , 8 , 2 ; c lo sed , 0 , 0 ;

wf , 7 , 1 , 1 ; s ta te , 2 ; natorb , 2 1 4 5 . 2 , c i , p r i n t ; maxiter ,40}

i f ( s t a t u s . l t . 0 ) then
goto , l abe l1 , [−1] , [ 6 ]

e n d i f

{ c i ; noexc ;
wf , 7 , 1 , 1 ; s ta te , 2 , 1 , 2 ; save , 6 0 0 0 . 2 ; o r b i t a l , 2 1 4 5 . 2 ;
thresh , energy =1.d−10, c o e f f =5.d−10}

text , move Y Plus Delta R

Be1Y = DeltaR

! o r i en t , noor i en t
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geomtyp=xyz
geometry={
Be1 Be1X∗ toang Be1Y∗ toang Be1Z∗ toang
Be2 Be2X∗ toang Be2Y∗ toang Be2Z∗ toang
}

l a b e l 2 :
{mult i ; occ , 8 , 2 ; c lo sed , 0 , 0 ;

s t a r t , 2 1 4 5 . 2 ; wf , 7 , 1 , 1 ; s ta te , 2 ; o r b i t a l , 2 1 4 6 . 2 ; maxiter ,40}

i f ( s t a t u s . l t . 0 ) then
goto , l abe l2 , [−1] , [ 6 ]

e n d i f

{ c i ; noexc ;
wf , 7 , 1 , 1 ; s ta te , 2 , 1 , 2 ; save , 6 0 0 1 . 2 ; o r b i t a l , 2 1 4 6 . 2 ;
thresh , energy =1.d−10, c o e f f =5.d−10}

{ c i ; trans , 6 0 0 0 . 2 , 6 0 0 1 . 2 , b iorth , ov}
ABO1( i ) = trov (1 )
ABO2( i ) = trov (2 )
ABO3( i ) = trov (3 )
ABO4( i ) = trov (4 )

text , move Y Minus Delta R

Be1Y = −DeltaR

! o r i en t , noor i en t
geomtyp=xyz
geometry={
Be1 Be1X∗ toang Be1Y∗ toang Be1Z∗ toang
Be2 Be2X∗ toang Be2Y∗ toang Be2Z∗ toang
}

l a b e l 3 :
{mult i ; occ , 8 , 2 ; c lo sed , 0 , 0 ;

s t a r t , 2 1 4 5 . 2 ; wf , 7 , 1 , 1 ; s ta te , 2 ; o r b i t a l , 2 1 4 7 . 2 ; maxiter ,40}

i f ( s t a t u s . l t . 0 ) then
goto , l abe l3 , [−1] , [ 6 ]

e n d i f

{ c i ; noexc ;
wf , 7 , 1 , 1 ; s ta te , 2 , 1 , 2 ; save , 6 0 0 2 . 2 ; o r b i t a l , 2 1 4 7 . 2 ;
thresh , energy =1.d−10, c o e f f =5.d−10}

{ c i ; trans , 6 0 0 1 . 2 , 6 0 0 2 . 2 , b iorth , ov}
KBO1( i ) = trov (1 )
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KBO2( i ) = trov (2 )
KBO3( i ) = trov (3 )
KBO4( i ) = trov (4 )

{ c i ; trans , 6 0 0 2 . 2 , 6 0 0 1 . 2 , b iorth , ov}

KKBO1( i ) = trov (1 )
KKBO2( i ) = trov (2 )
KKBO3( i ) = trov (3 )
KKBO4( i ) = trov (4 )

{ c i ; trans , 6 0 0 0 . 2 , 6 0 0 2 . 2 , b iorth , ov}
BBO1( i ) = trov (1 )
BBO2( i ) = trov (2 )
BBO3( i ) = trov (3 )
BBO4( i ) = trov (4 )

text , move Y Plus 2∗Delta R

Be1Y = 2∗DeltaR

! o r i en t , noor i en t
geomtyp=xyz
geometry={
Be1 Be1X∗ toang Be1Y∗ toang Be1Z∗ toang
Be2 Be2X∗ toang Be2Y∗ toang Be2Z∗ toang
}

l a b e l 4 :
{mult i ; occ , 8 , 2 ; c lo sed , 0 , 0 ;

s t a r t , 2 1 4 5 . 2 ; wf , 7 , 1 , 1 ; s ta te , 2 ; o r b i t a l , 2 1 4 8 . 2 ; maxiter ,40}

i f ( s t a t u s . l t . 0 ) then
goto , l abe l4 , [−1] , [ 6 ]

e n d i f

{ c i ; noexc ;
wf , 7 , 1 , 1 ; s ta te , 2 , 1 , 2 ; save , 6 0 0 3 . 2 ; o r b i t a l , 2 1 4 8 . 2 ;
thresh , energy =1.d−10, c o e f f =5.d−10}

{ c i ; trans , 6 0 0 0 . 2 , 6 0 0 3 . 2 , b iorth , ov}
ABO11( i ) = trov (1 )
ABO22( i ) = trov (2 )
ABO33( i ) = trov (3 )
ABO44( i ) = trov (4 )

text , move Y Minus 2∗Delta R

Be1Y = −2∗DeltaR
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! o r i en t , noor i en t
geomtyp=xyz
geometry={
Be1 Be1X∗ toang Be1Y∗ toang Be1Z∗ toang
Be2 Be2X∗ toang Be2Y∗ toang Be2Z∗ toang
}

l a b e l 5 :
{mult i ; occ , 8 , 2 ; c lo sed , 0 , 0 ;

s t a r t , 2 1 4 5 . 2 ; wf , 7 , 1 , 1 ; s ta te , 2 ; o r b i t a l , 2 1 4 9 . 2 ; maxiter ,40}

i f ( s t a t u s . l t . 0 ) then
goto , l abe l5 , [−1] , [ 6 ]

e n d i f

{ c i ; noexc ;
wf , 7 , 1 , 1 ; s ta te , 2 , 1 , 2 ; save , 6 0 0 4 . 2 ; o r b i t a l , 2 1 4 9 . 2 ;
thresh , energy =1.d−10, c o e f f =5.d−10}

{ c i ; trans , 6 0 0 3 . 2 , 6 0 0 4 . 2 , b iorth , ov}
KBO11( i ) = trov (1 )
KBO22( i ) = trov (2 )
KBO33( i ) = trov (3 )
KBO44( i ) = trov (4 )

{ c i ; trans , 6 0 0 4 . 2 , 6 0 0 3 . 2 , b iorth , ov}

KKBO11( i ) = trov (1 )
KKBO22( i ) = trov (2 )
KKBO33( i ) = trov (3 )
KKBO44( i ) = trov (4 )

{ c i ; trans , 6 0 0 0 . 2 , 6 0 0 4 . 2 , b iorth , ov}
BBO11( i ) = trov (1 )
BBO22( i ) = trov (2 )
BBO33( i ) = trov (3 )
BBO44( i ) = trov (4 )

! Diagonal c o r r e c t i o n s V aa and V bb

VaaBO( i ) = (−6.93986)∗(1/24)∗(16∗KKBO1( i )
− KKBO11( i ) − 15)
VaaBOcm( i ) = ((−6.93986)∗(1/24)∗(16∗KKBO1( i )
− KKBO11( i ) − 15))∗ tocm

Vaa( i ) = VaaBO( i )−VaaBO(1)

VbbBO( i ) = (−6.93986)∗(1/24)∗(16∗KKBO4( i )
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− KKBO44( i ) − 15)
VbbBOcm( i ) = ((−6 .93986)∗(1/24)∗(16∗KKBO4( i )
− KKBO44( i ) − 15))∗ tocm

Vbb( i ) = VbbBO( i )−VbbBO(1)

! Off−Diagonal c o r r e c t i o n V ab

VabBO( i ) = (−6.93986)∗(1/48)∗(16∗(KKBO2( i )+KKBO3( i ) )
− (KKBO22( i )+KKBO33( i ) ) )
VabBOcm( i ) = (( −6 .93986)∗ (1/48)∗ (16∗ (KKBO2( i )+KKBO3( i ) )
− (KKBO22( i )+KKBO33( i ) ) ) ) ∗ tocm

Vab( i ) = VabBO( i )−VabBO(1)

r ( i ) = d i s

! d i s = d i s − 0 .1
d i s = d i s − 0 .2

EndDo

{ tab le , r ,KKBO1,KKBO2,KKBO3,KKBO4
t i t l e , < PSI (Y−dY) | PSI (Y+dY) >
d i g i t s , 2 , 13 , 13 , 13 , 13
sort , 1}

{ tab le , r ,KKBO11,KKBO22,KKBO33,KKBO44
t i t l e , < PSI (Y−2∗dY) | PSI (Y+2∗dY) >
d i g i t s , 2 , 13 , 13 , 13 , 13
sort , 1}

{ tab le , r ,VaaBO,VaaBOcm
t i t l e , VaaBO
d i g i t s , 2 , 13 , 2
sort , 1}

{ tab le , r ,VbbBO,VbbBOcm
t i t l e , VbbBO
d i g i t s , 2 , 13 , 2
sort , 1}

{ tab le , r ,VabBO,VabBOcm
t i t l e , VabBO
d i g i t s , 2 , 13 , 2
sort , 1}

{ tab le , r , Vaa
t i t l e , Vaa
d i g i t s , 2 , 13
sort , 1}
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{ tab le , r , Vbb
t i t l e , Vbb
d i g i t s , 2 , 13
sort , 1}

{ tab le , r , Vab
t i t l e , Vab
d i g i t s , 2 , 13
sort , 1}

C.2 More off-diagonal couplings

The off-diagonal first derivative coupling Fαβ, is implemented in MOLPRO using the

following code. This example is for Be+
2 .

!
∗∗∗ , Be2+ Iso tope coup l ing

memory , 240 ,m;

b a s i s={
!
! BE cc−pV5Z
!
sp , Be , v5z ; c ;
d , Be , 1 . 7 1 7 5 , 0 . 7 6 4 6 , 0 . 3 4 0 4 , 0 . 1 5 1 5 ;
f , Be , 0 . 6 1 2 7 , 0 . 3 5 6 8 , 0 . 2 0 7 8 ;
g , Be , 0 . 5 9 8 0 , 0 . 3 1 8 3 ;
h , Be , 0 . 5 1 4 2 ;
s , Be , 0 . 0 1 2 8 ;
p , Be , 0 . 0 0 7 6 ;
d , Be , 0 . 0 4 2 8 ;
f , Be , 0 . 0 7 1 9 ;
g , Be , 0 . 0 9 7 9 ;
h , Be , 0 . 2 0 3 3 ;
}

d =[30 .0 , 25 . 0 , 20 . 0 , 18 . 0 , 16 . 0 , 14 . 0 , 12 . 0 , 10 . 0 , 9 . 0 , 8 . 5 ,
8 . 0 , 7 . 5 , 7 . 0 , 6 . 8 , 6 . 6 , 6 . 4 , 6 . 2 , 6 . 0 , 5 . 8 , 5 . 6 , 5 . 4 , 5 . 2 , 5 . 0 ,
4 . 8 , 4 . 6 , 4 . 4 , 4 . 2 , 4 . 0 , 3 . 8 , 3 . 6 , 3 . 4 ]

do i =1,#d
mass , i so tope , Be1=9.012182 , Be2=10.013534

ma = 9.012182
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mb =10.013534
M=(ma+mb)
mul=ma∗mb

fac =(0.5/mul )∗ (ma−mb)

symmetry , x
or i ent , charge

geometry={be1 ; be2 1 d( i )}

set , charge=1
{ rh f ; wf , 7 , 1 , 1 ; }

{mult i ; occ , 8 , 2 ; c lo sed , 0 , 0 ;
wf , 7 , 1 , 1 ; s ta te , 2 ; natorb , 2 1 4 5 . 2 , c i , p r i n t ;}

{ c i ; noexc ;
wf , 7 , 1 , 1 ; s ta te , 2 , 1 , 2 ; save , 6 0 0 0 . 2 ; o r b i t a l , 2 1 4 5 . 2 ;

thresh , energy =1.d−10, c o e f f =5.d−10}

{ c i ; trans , 6 0 0 0 . 2 , 6 0 0 0 . 2 , b iorth , ve l o }

enddo

Finally, the off-diagonal rotational coupling Lαβ, between the 2Σ+
u and 2Πu states

is given by,

!
∗∗∗ , Be2+ Rotat iona l Coupling

memory , 240 ,m;

b a s i s={
!
! BE cc−pV5Z
!
sp , Be , v5z ; c ;
d , Be , 1 . 7 1 7 5 , 0 . 7 6 4 6 , 0 . 3 4 0 4 , 0 . 1 5 1 5 ;
f , Be , 0 . 6 1 2 7 , 0 . 3 5 6 8 , 0 . 2 0 7 8 ;
g , Be , 0 . 5 9 8 0 , 0 . 3 1 8 3 ;
h , Be , 0 . 5 1 4 2 ;
s , Be , 0 . 0 1 2 8 ;
p , Be , 0 . 0 0 7 6 ;
d , Be , 0 . 0 4 2 8 ;
f , Be , 0 . 0 7 1 9 ;
g , Be , 0 . 0 9 7 9 ;
h , Be , 0 . 2 0 3 3 ;
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}

d =[30 .0 , 25 . 0 , 20 . 0 , 18 . 0 , 16 . 0 , 14 . 0 , 12 . 0 , 10 . 0 ,
9 . 0 , 8 . 5 , 8 . 0 , 7 . 5 , 7 . 0 , 6 . 8 , 6 . 6 , 6 . 4 , 6 . 2 , 6 . 0 , 5 . 8 , 5 . 6 ,
5 . 4 , 5 . 2 , 5 . 0 , 4 . 8 , 4 . 6 , 4 . 4 , 4 . 2 , 4 . 0 , 3 . 8 , 3 . 6 , 3 . 4 , 3 . 2 , 3 . 0 ]

do i =1,#d

ma = 9.012182
mb =10.013534
M=(ma+mb)
mul=ma∗mb

fac =(0.5/mul )∗ (ma−mb)

geometry={be1 ; be2 1 d( i )}

set , charge=1
{ rh f ; wf , 7 , 5 , 1 ; }

{mult i ; occ , 3 , 1 , 1 , 0 , 3 , 1 , 1 , 0 ;
c lo sed , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
wf , 7 , 5 , 1 ;
wf , 7 , 1 , 1 ;
wf , 7 , 2 , 1 ;
maxiter , 4 0 ;
}

{ c i ; noexc ;
wf , 7 , 5 , 1 ; save , 6 0 0 0 . 2 ; }

{ c i ; noexc ;
wf , 7 , 2 , 1 ; save , 6 0 0 1 . 2 ; }

{ c i ; trans , 6 0 0 0 . 2 , 6 0 0 1 . 2 , b iorth , Ly}

t l ( i )= t r l y
enddo

table , d , t l
d i g i t s , 2 , 13

C.3 Non-adiabatic corrections in Mg+
2 and Ca+

2
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Figure C.1. Calculated Vαβ coupling between the X 2Σ+
u and B 2Σ+

g states in the
24Mg25Mg+ molecular ion. The diagonal couplings (multiplied by 104) are shown in
black (dotted) and red (dashed) lines, and off-diagonal coupling Vgu (multiplied by
106) is shown in blue (solid) line.
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Figure C.2. Calculated Vαβ coupling between the X 2Σ+
u and B 2Σ+

g states in the
40Ca43Ca+ molecular ion. The diagonal couplings (multiplied by 104) are shown in
black (dotted) and red (dashed) lines, and off-diagonal coupling Vgu (multiplied by
106) is shown in blue (solid) line.
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Figure C.3. Calculated first derivative coupling Fαβ (multiplied by 104) between
the X 2Σ+

u and B 2Σ+
g states in the 24Mg25Mg+ molecular ion.
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Figure C.4. Calculated Ly coupling (multiplied by 103) between the X 2Σ+
u and

A 2Πu states in the 24Mg25Mg+ molecular ion.
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Figure C.5. Calculated first derivative coupling Fαβ (multiplied by 104) between
the X 2Σ+

u and B 2Σ+
g states in the 40Ca43Ca+ molecular ion.
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A 2Πu states in the 40Ca43Ca+ molecular ion.
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Appendix D

Hyperfine structure calculation

D.1 Sample ab initio input – GAUSSIAN and DALTON files

As discussed in Chapter 6, there are several coupling coefficients corresponding

to the different interaction terms in the hyperfine Hamiltonian. These coefficients

are either extracted from experimental measurements or from ab initio calculations.

All the major coupling constants were obtained from DFT calculations using the

GAUSSIAN program. The rotational g-factor was obtained from a similar calculation

using the DALTON program. We list below sample input files for use with GAUSSIAN

and DALTON programs.

% Gaussian Code f o r c a l c u l a t i n g Hyper f ine coup l ing c o e f f i c i e n t s
%nproc=4
%mem=2gb
#p b3lyp /gen prop=e fg t e s t i n t=u l t r a f i n e output=p i c k e t t nmr=sp in sp in

NaCa+ − S i n g l e t sigma s t a t e

1 ,1
Na
Ca( I so =43, Spin =7, QMom=−0.0408 , GFac=−1.31727) 1 3.439651

Na 0
S 10 1 .00

379852.2008100 0.20671384468E−04
56886.0063780 0.16070466617E−03
12942.7018380 0.84462905848E−03

3664.3017904 0.35519026029E−02
1194.7417499 0.12754034468E−01

430.98192917 0.39895462742E−01
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167.83169424 0.10720154498
69.306669040 0.23339516913
29.951170886 0.36333077287
13.380791097 0.30544770974

S 3 1 .00
121.74011283 0.36142427284E−01

37.044143387 0.28820961687
13.995422624 0.79337384869

S 1 1 .00
5.9827797428 1.0000000

S 1 1 .00
2.4830455118 1.0000000

S 1 1 .00
1.0452506187 1.0000000

S 1 1 .00
0.43875640383 1.0000000

S 1 1 .00
0.65595633185E−01 1.0000000

S 1 1 .00
0.30561925072E−01 1.0000000

S 1 1 .00
0.15509064018E−01 1.0000000

P 8 1 .00
690.77627017 0.37478518415E−03
163.82806121 0.31775441030E−02

52.876460769 0.16333581338E−01
19.812270493 0.59754902585E−01

8.1320378784 0.15879328812
3.4969068377 0.29049363260
1.5117244146 0.36368131139
0.64479294912 0.28195867334

P 1 1 .00
0.26145823312 1.0000000

P 1 1 .00
0.11704726116 1.0000000

P 1 1 .00
0.40494747666E−01 1.0000000

P 1 1 .00
0.15666707355E−01 1.0000000

D 1 1 .00
5.3000000000 1.0000000

D 1 1 .00
1.5900000000 1.0000000

D 1 1 .00
0.23000000000 1.0000000

D 1 1 .00
0.75700000000E−01 1.0000000

F 1 1 .00
4.2700000000 1.0000000

F 1 1 .00
0.13500000000 1.0000000

∗∗∗∗
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Ca 0
S 11 1 .00

2433075.4304000 0.91625196182E−05
364160.4301500 0.71271617974E−04

82898.7476370 0.37433706369E−03
23499.7305400 0.15762862250E−02

7671.2245985 0.57026102580E−02
2770.2330687 0.18255738108E−01
1080.6807550 0.51906421035E−01

448.04894531 0.12791238579
194.92007727 0.25586635231

88.039793338 0.36028678275
40.645696719 0.26838462020

S 4 1 .00
779.53331918 −0.18403005509E−01
241.18856300 −0.17649440544

92.403869324 −0.77662799584
39.786090342 −1.3352155444

S 1 1 .00
18.195864278 1.0000000

S 1 1 .00
8.3321457067 1.0000000

S 1 1 .00
3.9190196209 1.0000000

S 1 1 .00
1.6667099493 1.0000000

S 1 1 .00
0.80891084908 1.0000000

S 1 1 .00
0.36174199934 1.0000000

S 1 1 .00
0.82379874526E−01 1.0000000

S 1 1 .00
0.47947864375E−01 1.0000000

S 1 1 .00
0.22308112408E−01 1.0000000

P 9 1 .00
4064.2232796 0.19780891021E−03

962.91550624 0.17307465902E−02
312.34501046 0.95298721105E−02
118.76056036 0.38387459783E−01

49.816153133 0.11679256218
22.259679401 0.25637225097
10.286094124 0.37986193747

4.8606982416 0.30805760637
2.2525682942 0.85755999942E−01

P 5 1 .00
31.467555443 −0.42441487483E−02
10.657589056 −0.19579425947E−01

2.0505555426 0.21237507422
0.94362089228 0.46277871121
0.42709067504 0.39177495728
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P 1 1 .00
0.17788187209 1.0000000

P 1 1 .00
0.86000000000E−01 1.0000000

P 1 1 .00
0.41500000000E−01 1.0000000

P 1 1 .00
0.20000000000E−01 1.0000000

D 3 1 .00
16.924012098 0.35543971560E−01

4.4655403330 0.18133698335
1.4347576200 0.48002060116

D 1 1 .00
0.46552376784 1.0000000

D 1 1 .00
0.14097711082 1.0000000

D 1 1 .00
0.41467009281E−01 1.0000000

F 1 1 .00
2.6500000000 1.0000000

F 1 1 .00
0.79400000000 1.0000000

F 1 1 .00
0.13000000000 1.0000000

∗∗∗∗
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% Sample DALTON input f o r g e t t i n g Rotat iona l g−f a c t o r
%
% .DAL input
∗∗DALTON INPUT
.RUN WAVE FUNCTION
.PROPERTIES
∗∗WAVE FUNCTIONS
.DFT
B3LYP
∗∗PROPERTIES
.MAGNET
.QUADRU
.NQCC
. SHIELD
.MOLGFA
. SPIN−SPIN
. SPIN−R
∗∗END OF DALTON INPUT
%
% .MOL input f o r Na2 molecule
%
BASIS
def2 qzvpp
Na2
B3LYP/ def2 qzvpp

2 0
11 1

Na .0000000000 .0000000000 −2.91017
11 1

Na .0000000000 .0000000000 2.91017
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D.2 Hyperfine program sample input/output

D.2.1 Source files

Most of the code development and implementation was done in the Fermi work-

station of UConn Physics computer network. An initial version of this code was

developed by Phillippe Pellegrini, a former postdoc of the group. This has been mod-

ified and redesigned for our specific systems discussed in this thesis. File “hfs.f90” is

the main program. It uses the module anglib.f for the calculation of Clebsch-Gordon

coefficients. File dwig3j6j9j.f also contains routines used for angular momentum alge-

bra. The program uses the dsyev lapack matrix diagonalization routine. The following

simple compilation command (written in makefile) can be used to compile the code,

i f o r t h f s . f 90 d w i g 3 j 6 j 9 j . f ang l ib . f
−L/ sc ra t ch / i n t e l /Compiler /11.0/081/ mkl/ l i b /em64t
−lmk l lapack −lmkl −l g u i d e −l p thread
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D.2.2 Input

The standard input file which incorporates all parameters and coupling constants

is called “hfs.in”. The following is a sample input file for calculating the hyperfine

spectra, of the 23Na40Ca+ molecular ion, for the a3Σ+ state in v = 0, N = 0 level.

Note that for 40Ca, the nuclear spin is 0.

’23Na40Ca T r i p l e t State ’

1 . 5 d0 , 0 . 0 d0 ! i1 , i 2
2 .8514251 ! Bv , in GHz
−1.8434 , 0 . 0 ! eQq1 , eQq2 , in MHz
378 .901 , −523.27 , −272.936 , −670.252 ,
381394600 , 503946100 ! c1 , c2 , c3 , c4 , c5 , c6 in Hz
1.7482403 !mu in Debye

2 .21752 , 0 . 0 , 0 .01 ! g1 , g2 , gr
591.3733 d0 ,1335 . 627 d0 ! s ig1 , s i g 2

4 . d0 !Nmax

0 .0 d0 , 0 . 0 d0 , 1d0 ! efmin , efmax , e fpa s in kV/cm
0d0 ,100 d0 , 5 d0 ! Bmin ,Bmax, Bpas in Gauss

The corresponding section in the code which reads the input and brief meaning

of the various input parameters is shown below. Detailed discussion of the different

terms of the hyperfine Hamiltonian is made in Chapter 6.

read (21 ,∗ ) molec
read (21 ,∗ )
read (21 ,∗ ) i1 , i 2
read (21 ,∗ )Bv
read (21 ,∗ ) eQq1 , eQq2
read (21 ,∗ ) c1 , c2 , c3 , c4 , c5 , c6
read (21 ,∗ )mu
read (21 ,∗ )
read (21 ,∗ ) g1 , g2 , gr
read (21 ,∗ ) s ig1 , s i g 2
read (21 ,∗ )
read (21 ,∗ )Nmax
read (21 ,∗ )
read (21 ,∗ ) efmin , efmax , e fpa s
read (21 ,∗ )Bmin ,Bmax, Bpas
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The various input parameters being,

• ’molec’ indicates the molecular system studied.

• i1, i2 are nuclear spins for atom 1 and 2.

• Rotational constant Bv must be in GHz.

• Electric quadrupolar interaction constants eQq1, eQq2 must be in MHz.

• Hyperfine coupling constants (nuclear spin-rotations, scalar spin-spin, tensorial

spin-spin, fermi-contact, electronic spin-rotation) c1, c2, c3, c4, c5, c6 must be

in Hz.

• Permanent dipole moment ’mu’ must be in Debye.

• Rotational coupling constants g1, g2, gr, sig1, sig2 are dimensionless.

• ’Nmax’ is the number of rotational levels included in the basis.

• efmin, efmax, efpas are the minimum, maximum, and step values for the static

electric field. Must be in kV.cm−1. efmin=efmax for a fixed value.

• Bmin, Bmax, Bpas are the minimum, maximum, and step values for the static

magnetic field. Must be in Gauss. Bmin=Bmax for a fixed value.
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D.2.3 Output

The total energy eigenvalue of the hyperfine Hamiltonian, as a function of given

magnetic field is recorded in the file “fort.34”. The section of the code where this is

written is shown below.

! e i g e n e n e r g i e s in func t i on o f the magnetic f i e l d

dum=0
do j=dimI+1 ,3∗dimI
dum=dum+v diag ( j )
enddo
dum=dum/(3∗ dimI )

wr i t e ( 34 , ’ ( 400 ( e20 . 1 0 ) ) ’ )B, ( ( v d iag ( j )−dum) , j=dimI+1 ,3∗dimI )

The Zeeman map of the hyperfine spectra, is simply obtained, by any standard

plotting program. I prefer to use XMGRACE. The command for plotting the spectra in

XMGRACE would simply be,

xmgrace − f r e e −nxy f o r t . 34 &

which would produce the following figure (Fig. D.1),

D.3 Additional curves

We provide here, additional hyperfine spectra of the X 1Σ+ state for N = 1, for

both 23Na43Ca+ and 23Na40Ca+. We also show the hyperfine spectra of the a 3Σ+

state for N = 0, for 23Na43Ca+.
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Figure D.1. Hyperfine spectra of 23Na40Ca+ molecular ion for the a3Σ+ state in
v = 0, N = 0 level at re = 4.05 Å.
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Figure D.2. The figure shows the hyperfine spectrum of 23Na43Ca+ in its ground
X 1Σ+ state at equilibrium internuclear separation for N = 1 at re = 3.43 Å. The
inset scale is in MHz; the zero field splitting is dominated by electric quadrupole
interaction. Fig. D.3 (in the following page) shows a magnified view of this inset and
the more intricate field splittings.
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Figure D.3. The figure shows the hyperfine spectrum of 23Na43Ca+ in its ground
X 1Σ+ state at equilibrium internuclear separation for N = 1. The three insets show
the different hyperfine states arising from the zero-field splittings (a), (b) and (c).
Each level with total angular momentum F splits into (2F + 1) levels in the presence
of magnetic field, as shown in (a). Similar labeling of MF values are expected for (b)
and (c), but are not shown for simplicity. The energy scale is in kHz.
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Figure D.4. The figure shows the hyperfine spectrum of 23Na40Ca+ in its ground
X 1Σ+ state at equilibrium internuclear separation for N = 1. The inset scale is in
MHz.
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Figure D.5. The figure shows the magnetic hyperfine spectrum of 23Na43Ca+ in the
a 3Σ+ state at equilibrium internuclear separation for N = 0. We see that even for
low magnetic field strengths of ∼ 60 G, there is mixing between the hyperfine levels
which make the spectra more complex.
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[50] P. Pellegrini and R. Côté, New Journal of Physics 11, 055047 (2009).
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