
Statistical Mechanics / Quantum Mechanics

General Exam Questions for August 26, 2005

Instructions

Answer two questions from the Statistical Mechanics section and four questions from the
Quantum Mechanics section, for a total of six problems. Put each of your solutions in a
separate answer book. Make sure that you label and sign your name on the cover of each
book.

Some Useful Relations
lnN! → N lnN−N as N→ ∞

Coherent state
|α〉= e−α(a†−a)|0〉, eα(a†−a)ae−α(a†−a) = a+α

spherical Bessels:
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and with asymptotic behavior j`(r)→
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Plane wave:
eikz = Σ∞

l=0(2l +1)i l j l (kr)Pl (cosθ)



I. Statistical Mechanics
1. Consider four identical particles which must be distributed over four motional

energy levels.

a) How many distinct quantum states exist for this system if the particles have
spin I = 5/2?

b) How many distinct quantum states exist for this system if the particles have
spin I = 2?

2. Consider a one-dimensional gas of N particles that are confined to move on a
closed loop of length L. The particles interact pairwise with a potential

ui j (r) =

∞, r < σ

− ε
r6 , σ≤ r < L/2,

where r is the distance between two particles measured along the loop. The num-
ber of particles N in the system is large but finite, such that 1� N < L/2σ.

a) Evaluate the total potential energy U of this system. You may assume that
the particles move in an uncorrelated fashion, i.e. each particle interacts with
all others as if they were evenly distributed over the range σ < |r| < L/2 (the
“mean field” approximation).

b) Derive the canonical partition function Z for this system, assuming a density
N/L < 1/2σ.

(b) What is the chemical potential of the particles as a function of particle den-
sity? Note that the chemical potential is defined as

µ=
(

∂A
∂N

)
T,V

in terms of the Helmholtz free energy A =−kT lnZ.
(c) Derive the equation of state within the mean field approximation. Note that

in one dimension, the pressure is defined as

P =−
(

∂A
∂L

)
N,T

,

where A is the free energy. Do you expect this system to exhibit a phase
transition at some densities and temperatures? Why?



3. Consider a system of identical bosonic particles. Each boson is a bound state of
two identical spin-1/2 fermions with total spin 0. The bosons sit on a regular
lattice of sites with a uniform density of 1/vb with total volume V. Once they are
ionized, the free fermions sit on a different lattice of sites with a larger density
1/vf but the same total volume V. The system is in equilibrium temperature T. At
low temperatures the binding is very strong so that there are no free fermions in
the ensemble. As the temperature is raised, at T = Tc the boson gas undergoes a
phase transition due to ionization and the constituent fermions become free. This
transition is of the first order. You may assume that the fermions and bosons are
both heavy, so that at the relevant temperatures their kinetic energy vanishes.

a) What is the entropy Sb of the boson gas at temperature Tc? What is the entropy
Sf of the fermion gas at Tc?

b) Calculate the latent heat of the transition in terms of the particle density of
the fermions ρ, the critical temperature Tc, and the volumes vb and vf .

c) What is the binding energy B of the bosons?

4. Consider a system of carbon nanotubes that are suspended in water. A carbon
nanotube can be regarded as a uniform hollow cylinder with a moment of inertia
I about its symmetry axis. The axial Brownian rotation of the nanotubes can be
described by the differential equation

∂ω
∂t

+ γω =
Ts(t)

I
,

where ω is the angular velocity, γ the friction coefficient, and I the moment of in-
ertia of the nanotubes. Ts(t) is a stochastic torque generated by random collisions
of water molecules, with 〈Ts〉= 0.

a) Show that, for long observation times, the mean square angular displacement
is given by the expression

〈φ2〉=
2
γ
〈ω2〉t.

(Hint: You may consider the tubes to be large enough that the average 〈φTs〉=
0 but small enough that

d2

dt2
φ2 � γ

d
dt

φ2

b) Find the value of 〈ω2〉 if the nanotubes are in thermal equilibrium with the
water at temperature T.



II. Quantum Mechanics
1. An experimental setup consists of three Stern-Gerlach beam splitters, as shown

in the illustration. Particles of spin 1/2 emanate from the two sources, and are
split into two beams in the z direction at point A, and in the y direction at point B.
The

∣∣−1
2

〉
z and the

∣∣−1
2

〉
y beam are combined at point C. There the particles form a

s-wave bound state through an interaction that preserves their individual spins.
The beam of molecules is then passed through a third Stern-Gerlach splitter at
point D, oriented in the y direction.

a) Sketch the resulting pattern on the screen after point D. Label each trace with
the appropriate quantum numbers.

b) What are the relative intensities of the traces?

2. Consider a system containing N states of energy Ei (i = 1, . . . ,N, with E1 < E2 < · · ·<
EN) described by the time-independent Hamiltonian

H0 =
N

∑
i=1

Ei |i〉〈i| .

A sinusoidal excitation (laser light with frequency ω) perturbs the system initially
in the state |1〉. This interaction has the form

W(t) =
N

∑
i, j = 1
i 6= j

γ
1+(B−Bi j )2/B2

12

eiωt |i〉〈 j|+h.c. ,



where γ and Bi j ’s are real. Here B is an external magnetic field that can be tuned
independently of the laser frequency. The system is in state 1 at t = 0.

a) Write down the equations that govern the evolution of the state for the coeffi-
cents ci(t) = eiEit/h̄〈i|ψ(t)〉

b) We want to couple only state |1〉 and |2〉 so we select B = B12 to maximize W12

while suppressing the other states (assume B12 � Bi j for all other i and j).
Write down the resulting approximate two-level system equations to solve.

c) Solve for the probability of exciting |2〉, i.e. |c2(t)|2. Show that you recover the
Rabi formula |c2(t)|2 = sin2(γt/h̄) on resonance.

3. Consider an atom of hydrogen in a constant external electric field oriented along
the z-axis.

a) Write down the perturbation W due to the field ~F .
b) Find the first-order correction to the energy of the 1s level.
c) What is the polarizability α of the 1s state to first order in W? Give the ex-

pression, assuming that E1−En ≈ E1−E2. [Hint: (i) Use the closure relation;
(ii)〈r2〉= 3a2

0 where a0 is the Bohr radius.]

4. Consider scattering of a quantum mechanical particle of mass m from a spherical
square well potential

V(r) =

0, r > a

−V0, r < a

. A general solution of the Schroedinger equation for r > a is

u(r,θ) =
∞

∑
l=0

Rl (r)Pl (cosθ)

with
Rl (r) = Al [cosδl j l (kr)−sinδl nl (kr)]

with j l and nl - spherical Bessel functions.
In a scattering problem we are looking for a solution which asymptotically (at
large distances) has the form of an incoming plane wave plus a radially outgoing
scattered wave

u(r,θ)→r→∞ C

[
eikz+

1
r

f (θ)eikr
]



The differential scattering cross section σ(θ) is related to f by

σ(θ) = | f (θ)|2

a) Show that the two expressions for the wave function are compatible if the
amplitudes of the partial waves are related to the phase shifts by

Al = (2l +1)i l eiδl

and the amplitude of the scattered wave is

f (θ) =
1

2ik
Σ∞

l=0(2l +1)(e2iδl −1)Pl (cosθ)

b) The phase shifts for our scattering problem are found by requiring that the
ratio of slope to value of the wave function 1

Rl (r)
dRl
dr is continous across the

boundary x2 = a2. This gives

k
[

j ′l (ka)cosδl −n′l (ka)sinδl
]

j l (ka)cosδl −nl (ka)sinδl
= γl , → tanδl =

k j′l (ka)− γl j l (ka)
kn′l (ka)− γl nl (ka)

where γl is the ratio of slope to value of the interior wave function at r = a.
Using the general form of the solution in the interior and the requirement
that the wave function is finite at the origin, show that

γl =
α j ′l (αa)
j l (αa)

, α =
[
k2 +

2mV0

h̄2

]1/2

c) Assume that at low energies (ka� 1) the cross section is dominated by the
l = 0 partial wave,

σ(θ) =
1
k2 sin2δ0

Fixing k at some value with h̄k� (2mV0)1/2, show that the cross section reaches
a maximum value when the following relation is satisfied.

V0 =
π2h̄2

8ma2

5. A spherically symmetric quantum rotator is described by the Hamiltonian H0 =
1
2I L

2
i , where I is the moment of inertia and Li is the component of angular momen-

tum in the i’th direction. Consider such a rotator in a magnetic field in the third
direction. The Hamiltonian of the system is

H =
1
2I

L2 +µL3



a) Find the spectrum of the Hamiltonian (warning: the value of the total angular
momentum is not fixed for this rotator).

b) Calculate the commutation relations of L3 with L+ = L1+ iL2 and L− = L1− iL2.
Prove that L+ acts as a raising operator (raises the eigenvalue of L3 by one)
and L− acts as a lowering operator (lowers the eigenvalue of L3 by one.

c) Show that in a high angular momentum representation L2 = l(l +1), l � 1 the
operators 1√

2l h̄
L± (to within accuracy O(1/l)) can be considered as harmonic

oscillator raising and lowering operators a and a† when they act on states
close to the lowest m-state l3 =−l . [Hint: Consider the commutation relations
you have calculated in b.]

d) Suppose the magnetic field is large (µI � h̄) and it also has a small horizontal
component, so that the rotator Hamilton is

H ′ =
1
2I

L2 +µL3 +αµL1

with α� 1. What is the ground state of H ′?

6. To find stationary states of a quantum mechanical Hamiltonian H we minimize
the expectation value of H over the space of all normalized eigenfunctions ψ(x).
That is we need to minimize

δJ = 0 with J≡
∫

d3rψ∗(~r)H(~r,~∇)ψ(~r) , (1)

under the constraint ∫
d3rψ∗(~r)ψ(~r) = 1 . (2)

Note: Eq.(1) is a statement that the energy of the system is stationary, and Eq.(2)
is the constraint that there exists only one particle in the system.

a) For a general case of a functional g(yi(x),
∂yi(x)
∂xα

,xα) of the degrees of freedom yi

which depend on the variables xα the Euler-Lagrange equations are obtained
by solving

δ
∫

g

(
yi ,

∂yi

∂xα
,xα

)
d3x = 0 ,

where g may include constraints, which leads to

∂g
∂yi

−∑
j

∂
∂xα

(
∂g

∂(∂yi/∂xα)

)
= 0 .

Give an explicit form for g that enables the Euler-Lagrange equations to be
used to find the extremum of J above, subject to the normalization constraint.



b) Consider that H is the Hamiltonian for a particle of mass m

H =− h̄2

2m
∇2 +V(~r) .

Assume that ψ and ψ∗ vanish fast enough at ∞. Show that the Euler-Lagrange
equations lead to the Schrödinger equation. What does the Lagrange multi-
plier that incorporates the normalization constraint in part (a) correspond to
in this case?


