
Preliminary Exam: Quantum Mechanics, Friday January 15, 2016. 9:00-1:00

Answer a total of any FOUR out of the five questions. For your answers you can use either
the blue books or individual sheets of paper. If you use the blue books, put the solution to
each problem in a separate book. If you use the sheets of paper, use different sets of sheets
for each problem and sequentially number each page of each set. Be sure to put your name
on each book and on each sheet of paper that you submit. If you submit solutions to more
than four problems, only the first four problems as listed on the exam will be graded.
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Problem 1

(a) For the harmonic oscillator in one-dimension, write down the Hamiltonian in terms of
raising (a†) and lowering (a) operators. What is the physical origin of the “zero point”
energy? Evaluate the matrix element < n|x2|n > and relate it to En, the energy of
the nth eigenstate |n〉 of the oscillator Hamiltonian. (Here x refers to the position
operator.)

(b) For a non-Hermitian operator A, are eigenstates corresponding to different eigenvalues
necessarily orthogonal?

Use the eigenstates |α〉 of the lowering operator a, given by a Poisson-weighted sum of
the eigenstates |n〉 of energy of the harmonic oscillator, to examine the above question
where

|α〉 = exp(−|α|2/2)
∑
n

αn√
n!
|n〉 .

(Hint: First verify that the operator a is non-Hermitian and that the states |α〉 are its
eigenstates. Then evaluate 〈α′ |α〉 for α 6= α

′
.)

Problem 2

Consider two spin 1/2 particles with spin operators S1 and S2.

(a) Write down possible (singlet and triplet) eigenstates of the total spin,

S = S1 + S2,

using |++〉 , |+−〉 , |−+〉, and |−−〉, where + and − refer to up and down spin projec-
tions along a chosen z-axis. Verify that they yield the eigenvalues you expect for S2

and Sz = S1z + S2z.

(b) Find the eigenvalues of the operator H = λ(S1 · S2) where λ is a constant.

(c) If the interaction in part (b) is turned on at time t = 0 when the two electron system
is in the state |+−〉, find the probabilities of finding the system in |++〉 , |+−〉 , |−+〉
and |−−〉 at time t > 0.



Problem 3

(a) Consider an incident wave with momentum k scattering off a potential V (r) to produce
an outgoing wave with momentum k′. Take V (r) to vanish as r → ∞. In an elastic
scattering where k′ = k the outgoing wave function behaves as

ψ(r)→ eik·r +
eikr

r
f(k,k′)

where f(k,k′) is the scattering amplitude. Derive the first Born approximation for
f(k,k′). Note: the Green’s function that obeys (∇2 + k2)G(x,y) = δ(x− y) is

G(x,y) = − eik|x−y|

4π|x− y|
.

(b) Suppose the scattering potential is radially symmetric: V = V (r). Show that the
corresponding first Born approximation for the elastic scattering amplitude is

fBorn(θ) = −2m

h̄κ

∫ ∞
0

dr r V (r) sin(κr),

where θ is the angle between the scattered wave vector k′ and the incident wave vector
k, and κ = |k′ − k|. Express κ in terms of θ and the magnitude k of k. Note that in
an elastic scattering k is also the magnitude of k′.

(c) Consider the screened Coulomb potential

V (r) = −λe
−r/a

r
,

where a is the screening radius and λ is a constant. Compute fBorn(θ) for this potential,
and compute the first Born approximation for the total scattering cross section σBorn(k).
If we let a go to infinity while holding k fixed, determine what happens to σBorn(k).
Justify the answer you get on physical grounds.

Hint: the differential cross section per unit solid angle is given by dσ(θ, φ)/dΩ =
|f(θ, φ)|2, and the total cross-section is the integral of dσ(θ, φ)/dΩ over all angles.



Problem 4

A particle with electric charge q and mass m moves in both a uniform magnetic field B = Bez
pointing along the z direction and a central harmonic field with a constant frequency ω. In
terms of the vector potential A associated with B the Hamiltonian is given by

H(A, ω) =
1

2m
(p− qA)2 +

mω2r2

2
.

In a cylindrical coordinate system the vector potential is given by A = (Aρ, Az, Aφ), where
Aρ = 0, Az = 0, Aφ = Bρ/2.

(a) In the case where ω = 0, write down the Schrodinger equation for the wave function
ψ(z, ρ, φ), and separate it into equations for the cylindrically radial (ρ), z-directional,
and azimuthal (φ) components, and determine the eigenvalues for each separated com-
ponent. Determine the eigenvalues of H(A, 0).

(b) Determine the change in the ground state energy of H(0, ω) to lowest order in B.

(c) Determine the energy eigenvalues of the full Hamiltonian H(A, ω).

Problem 5

A ground-state hydrogen atom is at rest in the Laboratory frame. The nucleus of this atom
receives a velocity V in a sudden collision with a fast neutron at the time t = 0. The duration
of this collision can be approximated by a delta-function in time and the nuclear mass can
be considered to be infinite. Under these conditions, the probabilities Wi,f for electron
transitions into the new stationary states are determined by the coefficients of the expansion
of the initial Laboratory frame wave function Ψi(r, t) into the electron eigenfunctions Ψf (r

′, t)
in the Center of Mass frame:

Wi,f = |〈Ψi(r, t = 0)|Ψf (r
′, t = 0)〉|2

(a) Derive the formula for Galilean transformation of the electron wave function from the
Laboratory frame to the Center of Mass frame :

Ψ′(r′, t) = Ψ(r, t) exp

[
− i
h̄

(
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2

)]

where r = r′+Vt and me is the electron mass. Hint: find the transformation for plane
waves and generalize it to any electron wave function.

(b) Calculate, using the equation derived in (a), the excitation probability W1s,2s when
an atomic electron in the 1s ground state is excited by the sudden collision into a 2s
atomic electron state with electronic wave function

Ψ2s(r, θ, φ) =
1

(2a30)
1/2

(
1− r
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)
e−r/2a0Y00(θ, φ),

where Y`m(θ, φ) are the spherical harmonics and a0 is the Bohr radius. The axis of
quantization of the angular momentum of the electron is along the direction of V.

(c) Calculate the total probability of atomic ionization and excitation.


