
QUANTUM MECHANICS

Preliminary Examination

Friday 01/17/2014

09:00–13:00 in P-121

Answer a total of FOUR questions. If you turn in excess solutions, the ones to be
graded will be picked at random.

Each answer must be presented separately in an answer book or on sheets of pa-
per stapled together. Make sure you clearly indicate who you are and what is the
problem you are solving on each book/sheet of paper. Double-check that you include
everything you want graded, and nothing else.

You are allowed to use a result stated in one part of a problem in the subsequent
parts even if you cannot derive it. On the last page you will find some potentially
useful formulas.
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Problem 1. Let H = Hkin + V (~x) be a single-particle Hamilton operator with Hkin =
~p 2/(2M) and M the mass of the particle. Consider the operator D = 1

2
(~x · ~p+

~p · ~x).

(a) Calculate the commutators [D,~x ] and [D, ~p ].

(b) Calculate [D,F (~x) ] and [D,G(~p) ] where F and G are differentiable func-
tions. You may want to work out the commutators in position or momen-
tum space.

(c) Let H|Ei〉 = Ei|Ei〉. Calculate [D,H ] and prove that 2〈Ei|Hkin|Ei〉 =

〈Ei| ~x · ~∇V (~x)|Ei〉, which is the quantum mechanical virial theorem.

Problem 2. Let us study the two-dimensional isotropic oscillator with the potential U(x, y) =
1
2
mω2(x2 + y2).

(a) Find the energy levels of the system with the quantum numbers of the x
and y oscillators equal to nx and ny. What are the degeneracies of the
energy levels?

(b) Show that the Hamiltonian of the system commutes with (what would be
the z component of the three-dimensional) angular momentum

L =
h̄

i

(
x
∂

∂y
− y ∂

∂x

)
.

From the results of parts (a) and (b) we conclude that one can diagonalize both
the Hamiltonian and the angular momentum operator with eigenfunctions ψn`,
where n = 0, 1, . . . labels the solutions of the radial Schrödinger equation so
that En` = h̄ω(n+ 1), and ` labels the angular states so that Lψn` = h̄`ψn`. It
turns out that for a given n, the value of ` runs from −n to n in steps of two.

(c) For the three lowest-energy levels n = 0, 1, 2 write explicitly the eigen-
functions ψn`(x, y), which simultaneously diagonalize H and L, in terms of
the eigenfunctions of the one-dimensional harmonic oscillator states ψnx(x)
and ψny(y).

Recall that the unit-normalized lowest wave functions of the harmonic
oscillator are of the form

ψ0(x) = C e−
σ2x2

2 , ψ1(x) = C
√

2σx e−
σ2x2

2 , ψ2(x) = C
√

2(σ2x2−1
2
) e−

σ2x2

2

with σ =
√
mω/h̄ and C being an irrelevant common normalization con-

stant.
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Problem 3. Consider a two-level system with the Hamiltonian

H

h̄
= λ(|1〉 〈2|+ |2〉 〈1|),

where λ is real and {|1〉 , |2〉} makes an orthonormal basis in the corresponding
Hilbert space.

(a) The system starts at t = 0 in the state |ψ〉 = C1 |1〉+C2 |2〉. Show that at
time t the state is

|ψ(t)〉 = C1(cosλt |1〉 − i sinλt |2〉) + C2(cosλt |2〉 − i sinλt |1〉) .

(b) In particular, suppose the system starts in state |1〉. What is the proba-
bility that it would be found in state |2〉 if a measurement were made at
time t?

(c) Continuing from part (b), suppose that measurements are actually made
at two times t1 and t2, with t2 > t1. What is the probability that the
system is found in state |2〉 at both times?

Problem 4. (a) Show that if for some linear operatorQ the inner product equality (ψ,Qφ) =
0 is valid for all vectors ψ and φ, then Q is the zero operator that maps
all vectors to the zero vector.

(b) Suppose every expectation value of an operator Q is zero, (ψ,Qψ) = 0
for all vectors ψ. Of course, then we also have (ψ + λφ,Q(ψ + λφ)) = 0,
no matter what the vectors ψ and φ and the scalar λ are. By applying
this observation with λ = 1 and λ = i, show that (ψ,Qφ) = 0 for all
ψ and φ. By combining with the result of part (a), we have the result
(ψ,Qψ) = 0∀ψ ⇒ Q = 0.

(c) Every operator Q may be decomposed trivially in the form Q = Q1 + iQ2

with Q1 = 1
2
(Q + Q†) and Q2 = − i

2
(Q − Q†). Show that Q1 and Q2 are

hermitian.

(d) The expectation value of a hermitian operator in every state is real. Show
that the reverse also holds true: An operator such that its expectation
value in every state is real is necessarily hermitian. Combining the results
of parts (b) and (c) is one possible way to proceed.
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Problem 5. Suppose we know the normalized eigenstates |n(0)〉 and the corresponding non-
degenerate energies E(0)

n of the unperturbed Hamiltonian H(0). Let V be a
“small” time-independent perturbation.

(a) It is possible to use perturbation theory to write the eigenstates |n〉 and
the corresponding energies of the Hamiltonian H = H(0) + V as series of
the form |n〉 = |n(0)〉 + |n(1)〉 + . . . and En = E(0)

n + E(1)
n + . . ., where the

quantities with the superscript (j) scale with the jth power of the strength
of the perturbation V . Show that the first- and second-order corrections
to the energies are

E(1)
n = 〈n(0)|V |n(0)〉 , E(2)

n =
∑
m6=n

|〈n(0)|V |m(0)〉|2

E
(0)
n − E(0)

m

.

(b) Consider now the one-dimensional Hamilton operator H(0) = p2/(2m) +
1
2
m2ω2x2 and the perturbation V = −Fx. Using the formalism developed

in part (a), calculate the eigenenergies of the Hamiltonian H = H(0) + V
in first and second order in perturbation theory.

(c) Find the exact eigenenergies of the Hamiltonian H = H(0) +V of part (b),
and check your perturbative results against them.

4



lnN ! ≈ N lnN −N as N →∞∫ +∞

−∞
dx exp(−αx2 + βx) =

√
π

α
exp

(
β2

4α

)
with Re(α) > 0

∫ ∞
0

dx x exp(−αx2) =
1

2α

a =

√
mω

2h̄

(
x+ i

p

mω

)
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