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Bose-Stimulated Raman Adiabatic Passage in Photoassociation

Matt Mackie, Ryan Kowalski, and Juha Javanainen
Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046

(Received 28 September 1999)

We analyze coherent two-color photoassociation of a Bose-Einstein condensate, focusing on stimulated
Raman adiabatic passage (STIRAP) in free-bound-bound transitions from atoms to molecules. This
problem raises an interest because STIRAP has been predicted to be absent in the nondegenerate case
[Javanainen and Mackie, Phys. Rev. A 58, R789 (1998)]. Nevertheless, we find that Bose stimulation
enhances the free-bound dipole matrix element for an atomic condensate, and photoassociative STIRAP
turns out to be a viable mechanism for converting an atomic condensate to a molecular condensate with
near-unit efficiency.

PACS numbers: 32.80.Wr, 03.75.Fi
As Bose-Einstein condensation (BEC) in dilute gases
continues to develop, candidate systems for BEC are ap-
pearing on a regular basis. Besides the original alkalis
[1], there is the observation [2] of BEC in hydrogen [3].
Meanwhile, a spin-polarized helium condensate is not out
of the question, and the latest theoretical work has also
shown that coherent photoassociation might be used to pro-
duce a degenerate molecular gas (MBEC) from an already
Bose-condensed sample of atoms [4–6].

Photoassociation (PA) occurs when an atom pair inter-
acts with a photon, thereby making a transition from the
two-atom continuum to a bound state of the molecule.
Quantizing the molecular dissociation continuum allows
one to describe such free-bound transitions using standard
few-level quantum optics [7–9]. Beyond providing a few-
level framework, the quasicontinuum approach has also
led to a matter-quantized formulation of photoassociation
analogous to the theory of second-harmonic generation of
light [5,10]. In this context of nonlinear matter optics [11],
atom-molecule conversion displays coherent BEC-MBEC
oscillations, adiabatic following, and nonclassical collapse
and revivals [5,9].

Nonetheless, one-color free-bound photoassociation
generally occurs to an excited electronic state of the mole-
cule, and the subsequent irreversible losses, whether due to
photodissociation or spontaneous decay, tend to negate
the benefits of the coherence. In this Letter we therefore
develop coherent two-color free-bound-bound photoasso-
ciation, where the primary photoassociated molecules are
transferred with another laser field to a stable molecular
state. We consider pulsed free-bound and bound-bound
couplings that occur in the counterintuitive order [12],
and so correspond to stimulated Raman adiabatic passage
(STIRAP) from atoms to molecules. The hope is to draw
from the feature of STIRAP that, ideally, there is never
any population in the intermediate state to suffer from
irreversible losses.

Besides its nonlinear character, this problem is of particu-
lar interest since we have previously argued for the absence
of free-bound-bound STIRAP [7]. There is, of course, no
doubt as to the production of ultracold molecules with such
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near-resonant two-color schemes [13]. However, at this
time there is no evidence that in a nondegenerate thermal
gas the experimental hallmark of STIRAP, counterintuitive
pulse order, will either protect the primary photoassociated
molecules from decay or enhance the yield of stable mole-
cules. In contrast, the present work illustrates that, in the
case of a condensate, STIRAP is feasible and works an-
alogously to the usual three-level scheme. All told, Bose
enhancement of the dipole matrix element, owing to many
atoms in the condensate state, is what allows for the
difference.

The development herein is outlined as follows. First, we
review the many-body enhancement for the PA dipole ma-
trix element of a condensate, and discuss the implications
for coherent free-bound-bound STIRAP. Next we take a
semiclassical approach to identify the nonlinear counter-
part of the dark state [14] that contains no primary photoas-
sociated molecules. Given that Bose enhancement enables
a counterintuitive scheme, the limit t ! 2` finds the dark
state with all atoms, while in the limit t ! 1` the dark
state contains only stable molecules. It then appears pos-
sible that free-bound-bound STIRAP of an atomic conden-
sate will produce a similarly degenerate gas of molecules.
The remaining work establishes conditions that allow such
adiabatic following to occur.

Turning to the situation of Fig. 1, we assume that N
identical atoms have condensed into the same one-particle
state, say, a plane wave with wave vector k � 0. Photo-
association then removes two atoms from this state j1�, cre-
ating a molecule in the excited state j2�. Including a second
laser, bound-bound transitions remove excited molecules
from state j2� and create stable molecules in state j3�. In
second-quantized notation, we denote the boson annihila-
tion operators for atoms, primarily photoassociated mole-
cules, and stable molecules, respectively, by a, b, and g.
Although we do not discuss them explicitly, all effects of
photon recoil are correctly incorporated into our formalism
[5,9,15].

The laser-matter interactions that drive the atom-
molecule and molecule-molecule transitions are written in
terms of their respective Rabi frequencies, k � d1E1�2h̄
© 2000 The American Physical Society 3803
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FIG. 1. Three-level illustration of coherent free-bound-bound
photoassociation, where N atoms have assumedly Bose con-
densed into state j1�. The free-bound and bound-bound Rabi
frequencies are k and V, respectively. Similarly, the two-
photon and intermediate detunings are D and d. The wavy line
denotes the irreversible losses that STIRAP is expected to com-
bat. The difference from the usual three-level scheme is that the
Hamiltonian for photoassociation is trilinear; thus, in the same
sense as for “chi-two” processes in nonlinear optics, two atoms
are needed to produce one molecule.

and V � d2E2�h̄. Here the amplitude of the electric field
driving a given transition is Ei , and di is the correspond-
ing dipole matrix element (i � 1, 2). Lastly, we define
the two-photon and intermediate detunings, D and d.
Analogously to Ref. [5], the Hamiltonian for the system is

H
h̄

�
H0

h̄
2

1
2k�aaby 1 ayayb� 2

1
2V�bgy 1 byg� ,

(1)

where H0�h̄ � �D�2�aya 1 dbyb.
The Bose enhancement of the free-bound dipole matrix

element is demonstrated as follows. First, we consider the
Heisenberg equations of motion, which determine the time
evolution of the system according to

i �a �
1
2Da 2 kayb , (2a)

i �b � db 2
1
2 �kaa 1 Vg� , (2b)

i �g � 2
1
2Vb . (2c)

Now, since the number of particles is conserved,

aya 1 2�byb 1 gyg� � N , (3)

it is clear that a, b, g �
p

N . Hence, we define scaled
boson operators of order unity as x ! x0 � x�

p
N , with

x � a, b, g. Dropping the primes, the conserved quantity
(3) is normalized to unity, and the equations of motion are
given by

i �a �
1
2Da 2 xayb , (4a)

i �b � db 2
1
2 �xaa 1 Vg� , (4b)

i �g � 2
1
2Vb . (4c)

From Eqs. (4), the many-body Bose enhancement of the
free-bound dipole matrix element is evident in the scaled
Rabi frequency x �

p
N k.

As it happens, the present STIRAP analysis depends
crucially on the fact that the bare free-bound coupling k is
scaled by the factor

p
N , while that for the bound-bound

transition, V, is unchanged. To see why, we recall photo-
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association in terms of our quasicontinuum model [7–9].
We introduced a quantization volume V , which rendered
the two-atom states discrete. In fact, the dipole matrix el-
ement d1 is computed between such a (box normalized)
dissociation state and a bound molecular state [15], with
the result that both the matrix element and the Rabi fre-
quency k scale with the quantization volume as 1�

p
V .

The continuum limit V ! ` then finds that k ! 0. In
contrast, d2 is the ordinary bound-bound matrix element
for a molecule, and the Rabi frequency V is indepen-
dent of the quantization volume V . While k ! 0 does
not condemn photoassociation of a nondegenerate gas in
the thermodynamic limit [7–9], V ! ` and N ! ` with
r � N�V constant, it does imply that k�t� ø V�t� for
all t. Hence, a counterintuitive reversal of the coupling
strengths of the pulses [12], V�t� ¿ k�t� for t ! 2` and
k�t� ¿ V�t� for t ! 1`, cannot be achieved.

This is the essence of our argument for the absence of
STIRAP in free-bound-bound photoassociation of a non-
degenerate thermal gas [7,9]. More specifically, the indica-
tion is that, a priori, a counterintuitive pulse sequence will
present no benefit over an ordinary scheme. However, as
shown above, in a condensate the bare Rabi frequency of
a nondegenerate gas k is scaled by the Bose-enhancement
factor

p
N , which leads to a finite value even in the thermo-

dynamic limit [5,9]; x �
p

N�V � p
r. This observation

will open the door to using STIRAP as a means to create
a stable molecular condensate.

In order to facilitate an analytical solution, we define the
“Kamiltonian” for the system by adding a multiple of the
conserved particle number to the Hamiltonian

K � H 2 h̄m�aya 1 2�byb 1 gyg�� , (5)

where the real constant h̄m is identified as the chemical
potential per atom. The Heisenberg equations of motion
for the unit-scaled operators become

i �a � � 1
2D 2 m�a 2 kayb , (6a)

i �b � �d 2 2m�b 2
1
2 �kaa 1 Vg� , (6b)

i �g � 2�2mg 1
1
2Vb� . (6c)

From this point onward we also resort to the semiclassical
approach analogous to the Gross-Pitaevskii approximation
used to describe an alkali condensate [16]. Accordingly,
the symbols a, b, and g in Eqs. (6) hereafter refer to c
numbers, rather than operators.

We are looking for adiabatic solutions to the time-
evolution equations (6) for transient couplings x�t� and
V�t�. Denoting the characteristic Rabi frequency for the
light pulses by R and the characteristic pulse width by T ,
the adiabatic approximation ( �x � 0, x � a, b, g) should
be valid when the evolution time scale of the system is
short compared to the time scale of the pulses, for instance,
when RT ¿ 1. We return to the adiabatic condition in
a moment, and for the time being simply assume time
scales for the problem such that �x � 0 is valid.
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Besides the steady state, we now specify exact two-
photon resonance (D � 0). To economize the ensuing
expressions, we also choose the Bose-enhanced Rabi cou-
pling x as the frequency scale by writing V � V̄x , d �
d̄x. Now, we have already assumed the Rabi frequen-
cies to be real. Without sacrificing generality, this will
allow us to consider the amplitudes a, b, and g as strictly
real. In particular, for counterintuitive pulses the limits
t ! �2`, 1`� correspond to the limits V̄ ! �`, 0�; thus,
we neglect any solution which is not real for all values
of V̄ from 0 to `. Discarding also solutions differing
only by redundant signs, there remain three properly nor-
malized [jaj2 1 2�jbj2 1 jgj2� � 1] stationary solutions
to Eqs. (6):

m0 � 0 , (7a)

a0 �

q
V̄�

p
2 1 V̄2 2 V̄� , (7b)

b0 � 0 , (7c)

g0 � 2
1
2

�
p

2 1 V̄2 2 V̄� ; (7d)

m6 � 6
V̄2 1 d̄�d̄ 6

p
V̄2 1 d̄2 �

2
p

V̄2 1 d̄2
x , (8a)

a6 � 0 , (8b)

b6 �
1
2

s
1 6

d̄
p

V̄2 1 d̄2
, (8c)

g6 � 2b6

"
V̄2 1 d̄�2d̄ 6

p
V̄2 1 d̄2�

V̄
p

V̄2 1 d̄2

#
. (8d)

It is easy to see that the above results are the non-
linear counterparts of those obtained from the standard
STIRAP analysis; see Ref. [12], whose notation we have
adopted. The solution (7) is the dark state [14]. For a
counterintuitive pulse sequence, V̄ ¿ 1 for t ! 2` and
V̄ ø 1 for t ! 1`, the dark state (7) initially consists of
atoms (a0 ! 1, g0 ! 0), while the final dark state is all
molecules (a0 ! 0, g0 ! 1�

p
2). At no intervening time

is there any population in the intermediate molecular state
(b0 	 0). If the laser pulses allow for adiabatic evolution,
an atomic condensate is converted to a stable molecular
condensate without any loss from the intermediate state.

These results are checked with an exact numerical so-
lution to the equations of motion (6). In Fig. 2, Gauss-
ian pulses of the form x�t� � R exp�2�t 2 D1�2�T2� and
V�t� � R exp�2�t 2 D2�2�T 2� illustrate that pulses with
areas (RT ) much greater than unity readily decouple the
nonadiabatic states (8), allowing the system to adiabati-
cally follow the dark state as it moves from the initial BEC
to MBEC. In particular, Fig. 2 gives the probability of cre-
ating excited molecules as jbj2 � 1027, so that irreversible
losses from either photodissociation or spontaneous decay
should be negligible. Coherent free-bound-bound STIRAP
is thereby confirmed.
FIG. 2. Bose-stimulated Raman adiabatic passage in photoas-
sociation. The pulses are of equal height, x0 � V0 � R, so
that R � 1 sets the unit of frequency. The intermediate detun-
ing is d � 1, the pulse delays are D1 � 4.5 T and D2 � 2.5 T ,
and the pulse width is T � 104. Noting that N atoms give N�2
molecules at best, we see that jgj2 ! 1�2 and the initial BEC
is converted into a stable MBEC.

To improve upon our discussion of the adiabatic approxi-
mation, we focus specifically on the effect of pulse overlap.
We apply the textbook criterion [17] for adiabaticity to the
(real) eigenvector c � �a, b, g�T . From Eqs. (7) and (8),
the coupling between the nonadiabatic states, c6, and the
rate of change of the adiabatic state, �c0, must therefore be
much less than the spacing between the respective chemi-
cal potentials, jcT

6c0j ø jm0 2 m6j. Furthermore, we
restrict our analysis to zero intermediate detuning (d̄ � 0),
and introduce the arbitrary pulse shapes x�t� � Rf1�t�
and V�t� � Rf2�t�, where t � t�T is a dimensionless
time. The adiabatic condition is then F ø RT , where the
(dimensionless) nonlinear adiabatic factor, F, is given as

F �
j �f1�t��f1�t� 2 �f2�t��f2�t�j

2
q

2f2
1 �t� 1 f2

2 �t�

3 j f2�t��f1�t� 2

q
2 1 f2

2 �t��f2
1 �t�j . (9)

We find a dependence on pulse overlap that is quali-
tatively similar to the results in Ref. [12] for ordinary
STIRAP. In particular, if the two pulses vanish concur-
rently (such that their ratio is finite), the fraction in Eq. (9)
diverges, and the adiabatic condition, F ø RT , is vio-
lated. Additionally, an increase in pulse area RT may pro-
vide adiabaticity despite a poor pulse overlap. Using
Gaussian pulse shapes, these observations may be quanti-
fied as follows. In the vicinity of pulse overlap, at dimen-
sionless times t 
 �D1 1 D2��2T , we determine the
maximum value of F�t�, Fm, as a function of the delay
between the pulses, D � D1 2 D2. Numerically, break-
down of adiabaticity occurs at a specific pulse separation
when the fractional efficiency, 2jgj2, is no longer of order
unity; hence, the value of Fm at this point defines the
3805
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FIG. 3. Efficiency of Bose STIRAP in photoassociation and the
nonlinear adiabatic factor as a function of the pulse separation,
D � D1 2 D2. In the region of pulse overlap, t 
 �D1 1 D2��2T ,
we determine the maximum value of F�t�, Fm, and compare it
to the numerical results for the fractional efficiency, 2jgj2. For
RT � �102, 103, 104�, it is clear that Fm��0.25 RT � � 1 exactly
marks the fall of adiabaticity.

adiabatic condition in terms of D. The results for RT �
�102, 103, 104� are shown in Fig. 3. We find that the
adiabatic approximation is valid for pulse overlaps satis-
fying Fm�D� & 0.25RT . Incidentally, the same result
applies to peaked-exponential pulse shapes, f1,2�t� �
exp�2jt 2 D1,2j�T �.

It remains to discuss a few items that we are neglecting.
First, we emphasize that our approach is, without ab initio
justification, semiclassical. However, in the analogous
case of rapid adiabatic passage [5], a comparison to the
full quantum theory shows that the semiclassical result is
already accurate on a 1% level for an atom number as small
as 100 [15], and agreement is therefore also expected for
STIRAP. The second item regards the explicit role of pho-
todissociation, which amounts to irreversible decay from
the intermediate state to the atomic continuum [7–9]. As
such, if there is no intermediate-state population, there is
no photodissociation. Third, our results are, of course,
valid regardless of whether the atoms and molecules are
trapped, provided that the time scale for coherent free-
bound-bound STIRAP is shorter than the time scale for the
motion of the atoms and/or molecules in the trap. Lastly,
if laser intensities permit STIRAP during a time much
shorter than the time scales for collisions between atoms
and molecules, collisions are negligible as well.
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In conclusion, we hold the line on the absence of
STIRAP in nondegenerate free-bound-bound transitions,
while at the same time proposing the counterintuitive
pulse scheme as a possible mechanism for creating a stable
molecular condensate from an initial BEC. This dichot-
omy arises because, for a condensate, all N atoms are in the
same quantum state, and the subsequent Bose enhance-
ment of the free-bound dipole matrix element enables the
benefits of the counterintuitive scheme. Our numerical tri-
als have confirmed that Bose STIRAP should take place in
two-color photoassociation, and validated a simple quan-
titative criterion for adiabatic BEC-MBEC conversion.
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