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Optical Detection of Fractional Particle Number in an Atomic Fermi-Dirac Gas
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We study theoretically a Fermi-Dirac atomic gas in a one-dimensional optical lattice coupled to a
coherent electromagnetic field with a topologically nontrivial soliton phase profile. We argue that the
resulting fractional eigenvalues of the particle number operator can be detected via light scattering.
This could be a truly quantum mechanical measurement of particle number fractionalization in a dilute
atomic gas.
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Here ck is the annihilation operator for the fermionic odd number of the eigenvalues must equal zero. Except
It has been known for a while that, in the presence
of a topologically nontrivial bosonic background field,
fermionic particles may carry a fractional part of an
elementary quantum number [1,2]. In the condensed
matter regime this phenomenon was introduced [3] to
describe conjugated polymers. The existence of frac-
tionally charged excitations in the polymers is typically
demonstrated indirectly by detecting the reversed spin-
charge relation [4]. The fractional quantum Hall effect
(FQHE) can also be explained by invoking quasiparticles,
each with a fraction of an electron’s charge [5]. The fluc-
tuations of the tunneling current in the low-temperature
FQHE regime have been measured [6]. Interpreting the
current shot noise according to the Johnson-Nyquist for-
mula duly suggests that the current is carried by the frac-
tional Laughlin quasiparticles. Analogous experiments
have determined the fractional expectation value of the
charge in FQHE in the Coulomb blockade regime [7].

We have earlier proposed a system of Fermi-Dirac
(FD) atoms in an optical lattice that should display frac-
tional atom numbers [8]. In the present Letter we argue
that usual optical methods such as phase contrast imaging
and measurements of the intensity of light scattered by
the atoms extract information about the fractional fer-
mion number. The technical challenges are severe, but in
principle both the expectation value and the fluctuations
of the atom number are accessible to experiments.

Briefly, we consider a FD atom with a � scheme for
two active states (say, Zeeman states in different hyper-
fine levels) that can be coupled by one- or two-photon
electromagnetic (EM) transitions [8]. The atoms reside in
a 1D optical lattice [9] that holds the two states at alter-
nating sites �=4 apart, where � denotes the wavelength of
lattice light. By making use of the EM transitions, we
assume, it is possible to make the atoms hop between the
adjacent sites so that they at the same time change their
internal state. The lattice Hamiltonian is

H
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�

X
k

��kc
y
k ck � �k�c
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k�1ck � cyk ck�1��: (1)
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atoms at site k, �h�k is the energy of the atoms at k, and
�k are the hopping matrix elements tailored to suit our
purposes. The literature is replete with studies of similar
systems [10–12], but our treatment is unusual in that we
never resort to the continuum limit.

It is easy to see that the matrix Ukp whose columns are
the orthonormal eigenvectors of the eigenvalue problem

��k �!�ak � �kak�1 � �k�1ak�1 � 0 (2)

may be employed to diagonalize the Hamiltonian (1). In
terms of the new fermion operators �p 	

P
kUkpck, we

haveH= �h �
P
p!p�

y
p�p.Without a loss of generality, the

couplings �k are assumed real, and so we take U real and
orthogonal; U�1

kp � Upk. In this paper all calculations are
done directly numerically.

Even though the optical lattice may be part of a larger
trap which could generate interesting physics in its own
right, we simplify by putting �k � 0. The fractional
charge arises from certain types of defects in the cou-
plings �k. We illustrate by assuming a dimerized lattice
generated by the coupling matrix element that alternates
from site to site between two values a�� and a��,
except that at the center of the lattice there is a defect such
that the same coupling matrix element appears twice. We
take the number of lattice sites to be Ns 	 2Nh � 1 	
4n� 1, where n is an integer itself, and number the sites
with integers ranging from �Nh to Nh. For illustration,
pick n � 2, use an x to denote a lattice site, and 
 the
couplings a
�, then our lattice with the couplings reads

x� x� x� x� x� x� x� x� x: (3)

It is then easy to see from the structure of Eq. (2) that if
! is an eigenvalue, then so is �!; and the eigenvectors
transform into one another by inverting the sign of every
second component. We will label the eigenvectors as
�Nh � � �Nh in ascending order of frequency, and assign
the labels 
p to such 
 pair of states. Correspondingly,
the transformation matrix U satisfies jUkpj � jUk;�pj.

But under our assumptions, the number of eigenvalues
and eigenstates is odd. The 
 symmetry implies that an
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for special values of the couplings a and �, there is one
zero eigenvalue. We call the corresponding eigenstate the
zero state. Provided a and� have the same sign and jaj >
j�j, all odd components in the zero state equal zero and
the even components are of the form

xk � x0

�
�
a��
a��

�
jkj=2

: (4)

The zero state becomes the narrower, the closer in abso-
lute value a and � are.

The dimerized optical lattice resulting from the alter-
nating pattern of the hopping matrix elements causes the
single-particle density of states to acquire an energy gap,
which in the limit Ns ! 1 equals 4 �hj�j. The zero state is
located at the center of the gap. The resulting excitations
at half the gap energy could be detected by resonance
spectroscopy. This provides indirect evidence of fraction-
alization, as in the polymer systems [4]. Because in our
scheme [8] the gap is proportional to the amplitude of the
EM field inducing the hopping, the size of the energy gap
can be varied experimentally. The effective zero tempera-
ture limit, j�j � kBT= �h, might then be reached under a
variety of experimental conditions.

Suppose next that the system is at zero temperature,
and contains Nf � Nh � 1 fermions. The exact eigen-
states p are then filled up to zero state and empty at
higher energies, with occupation numbers np � 0 or 1.
The number operator for the fermions at site k corre-
spondingly reads cyk ck �

P
pqUkpUkq�

y
p�q, so the expec-

tation value of the fermion number at site k is

hcyk cki �
X0

p��Nh

jUkpj2 �
1

2

XNh
p��Nh

jUkpj2 �
1

2
jUk0j2

�
1

2
�

1

2
jUk0j2: (5)

The second equality is based on the symmetry jUkpj �
jUk;�pj, and the third on the orthogonality of the matrix
U. By virtue of the same orthogonality, localized with
the zero state there is a lump with 1

2

P
kjUk0j

2 � 1
2 fermi-

ons on top of a uniform background of half a fermion per
site. This lump is the celebrated half of a fermion. So far
we deal only with the expectation values of the atom
numbers, but we will demonstrate shortly that the fluctu-
ations in atom number can be small as well.

Fractionalization is a more robust phenomenon than
our discussion may let on. Something akin to a localized
zero state occurs as soon as the regular alternation of the
couplings between adjacent states gets out of rhythm
around a defect. In particular, the defect does not have
to be confined to one lattice site, which might make the
experiments easier. The half fermion is localized, so it
does not critically depend on the number or parity of sites,
and not even on the exact number of the fermions.We will
enumerate such variations of the theme elsewhere.
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We next turn to the optical detection of the FD gas. We
assume that far off-resonant light excites the atoms,
whereupon the 1D optical lattice may be considered opti-
cally thin. We take the sources residing at each site to be
much smaller than the wavelength of light. Then the
(positive frequency part of the) field operator for scat-
tered light is [13] ÊE� � C

P
k�kc

y
k ck, where C is a con-

stant containing the overall intensity scale of the driving
light. Henceforth we scale so that C � 1. The factors �k
include aspects such as intensity and phase profile of the
driving light, effects of the spin state at each site k on the
light-atom coupling, and propagation phases of light from
the lattice site to the point of observation.

In forward scattering and variations thereof such as
phase contrast imaging, the scattered and the incoming
light interfere. The ultimate measurement of the intensity
in effect records the expectation value of the electric field
E � hÊE�i. The observable at the detector is

E �
X
k

�khc
y
k cki �

X
kp

�kU2
kpnp: (6)

This is a linear combination of the expectation values of
the numbers of fermions at each lattice site with the
coefficients �k, which are to some extent under the con-
trol of the experimenter. In the absence of interference
with the incoming light, the simplest observable is light
intensity I � hÊE�ÊE�i. The detector then probes the quan-
tity characteristic of the FD statistic

I �
X
kl

��
k�lhc

y
k ckc

y
l cli � jEj2 � �I; (7)

�I �
X
klpq

��
k�lUkpUkqUlpUlqnp�1� nq�: (8)

We now construct a numerical example about the use of
forward scattering to detect the fractional particle. We
make use of the fact that the fermion species at the
alternating lattice sites are likely to be different. We
assume that the driving light is far blue detuned in one
species and far red detuned in the other, and that the two
dipole matrix elements are comparable. One may then
find a laser tuning such that the intensity of scattered light
is the same for both species. Moreover, the lights scat-
tered by the two species are out of phase by �, and out of
phase with the incident light by�=2. With the usual tricks
of phase contrast imaging, the relative phase of incident
and scattered light is then adjusted so that in interference
light from one species directly adds to the incident light,
and light from the other species subtracts.

The second element of the argument is a rudimentary
model for an imaging system with a finite aperture. Let us
assume the geometry has been arranged in such a way
that all Fourier components of light in the plane of the
aperture up to the absolute value K are passed, the rest
blocked. The effect on imaging from the object plane to
150404-2
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the image plane can be analyzed by taking the Fourier
transform of the object, filtering with the multiplier
!�K � jk?j�, and transforming back. The filtered image
of the lattice is then proportional to

E�r� �
X
k

��1�khcyk cki
2J1�Kjr� rkj�
Kjr� rkj

: (9)

We choose the parameters � � 0:1a, and the numbers
of sites and fermions Ns � 129 and Nf � 65. We take the
numerical aperture F � 1 for the imaging system, and
the corresponding maximum possible cutoff wave num-
ber K � 2�=�

���
5

p
��. In Fig. 1 we plot the optically imaged

fermion lattice along the line of the atoms (dashed line),
and the number of fermionic atoms in excess of the
average occupation number 1

2 for the even-numbered sites
that carry the zero state (solid line), as obtained from
Eq. (5). The curves are normalized so that the maxima
overlap. The imaging system picks up a resolution
rounded version of the half-fermion hump.

In fact, phase contrast imaging has been used for non-
destructive monitoring of a Bose-Einstein condensate
[14], and the absorption of a single trapped ion has been
detected experimentally [15]. While a lot of assumptions
went into our specific example, an optical system along
these lines should be feasible with the technology avail-
able today.

With illumination of the optical lattice by a focused
light beam and detection of scattered intensity in a di-
rection of constructive interference, it is in principle also
possible to realize a situation in which the weights ap-
proximately make a Gaussian distribution around the zero
state, �k � e��k=w�2 . In such a case the observable N̂N �
ÊE� is just a linear combination of the occupation numbers
of the lattice sites, the quantity E is the expectation value
thereof, and �I is nothing but the squared fluctuations of
N̂N, �I � ��N�2 � hN̂N2i � hN̂Ni2.

To illustrate, we take a lattice with Ns � 1025 sites,
pick the parameters � � 0:1a, put in Nf � 513 fermions
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FIG. 1. Optical image (dashed line) of a zero state carrying
half of a fermion (solid line) for a specific imaging system as
discussed in the text. The size of the soliton is set by the choices
Ns � 129, Nf � 65, and � � 0:1a.
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so that the zero state is the last filled state, and find the
rms fluctuation of the fermion number �N as a function
of the width of the weight function w. The result is shown
in Fig. 2 on a log-log plot. The notch around w � 1
indicates that at this point the weight factors �k start to
cover several lattice sites. Another break in the curve is
seen at aboutw � 10, when the weight function covers the
whole zero state. Thereafter the fluctuations behave as
�N / w�1=2. The fermion number N̂N under the weight
function becomes more sharply defined as the region for
averaging grows broader. Finally, at w of a few hundred,
the weights �k effectively cover the entire lattice. The
fluctuations then decrease even faster with increasing w,
as is appropriate for the fixed total number of fermions.

In the standard half-integer fermion number argu-
ments one subtracts a neutralizing background of pre-
cisely 1

2 charge per lattice site, whereupon hN̂Ni ! 1
2 and

�N ! 0 with an increasing width w. The intermediate
regime that occurs once the zero state is covered is the
crux of the matter. Not only does the expectation value of
the fermion number equal 1

2 , but fluctuations are also
small. After the subtraction, the fermion number has
the eigenvalue 1

2 . From the quantum optics viewpoint,
this is something of a conjuror’s trick. Correlated fluctua-
tions in the fermion number between adjacent sites create
an impression of a sharp eigenvalue in a smoothly
weighted sum of the occupation number operators for
the lattice sites.

The scattered light carries a signature of the fluctua-
tions in the scattered intensity. We demonstrate by plot-
ting in Fig. 3 separately the contribution jEj2, as if the
fermion numbers were precisely fixed, and the fluctuation
term ��N�2. We also show the quantity ��N�2i that re-
mains from the fluctuation term if we keep only the
contributions with k � l in Eq. (8), as if the fermion
number fluctuations at adjacent sites were uncorrelated.
These are given as functions of the width of the focusw of
the laser beam. Here Ns � 129, Nf � 65, and we choose
� � 0:9a to make a sharply localized zero state.

Even with a very narrow focus of the laser, w � 4
or about one wavelength, the contribution from the
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FIG. 2. Fermion number fluctuations �N under a Gaussian
envelope of width w, for Ns � 1025, Nf � 65, and � � 0:1a.
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FIG. 3. The intensity of light scattered from the optical
lattice if the fermion numbers did not fluctuate (jEj2), and
the additional intensity due to fermion number fluctuations
[��N�2], as a function of the size of the focus w of the driving
light given in the lattice units of �=4. We also display the added
intensity ��N�2i that would result if fermion number fluctua-
tions were uncorrelated between adjacent lattice sites. The
soliton parameters are Ns � 129, Nf � 65, and � � 0:9a.
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fluctuations is 2 orders of magnitude below the coherent
intensity, whereas the fluctuations from uncorrelated fer-
mion numbers would make a contribution an order of
magnitude smaller than the coherent intensity. As our
detection light was assumed to be far-off resonance, the
photon number fluctuations are Poissonian. Under other-
wise ideal conditions, the detection of about a hundred
photons could therefore reveal the difference between
correlated and uncorrelated fermion numbers at adjacent
sites, whereas a quantitative study of the actual correlated
fermion numbers requires the detection of about 10 000
photons. Unfortunately, a large number of scattered pho-
tons means a large number of recoil kicks on the fermi-
ons. Currently available optical lattices likely cannot
absorb the assault of hundreds of photon recoils without
developing some form of a dynamics that complicates the
phenomena we are analyzing.

It is instructive to note that, at the level we have
discussed (amplitude or intensity measurements), opti-
cal detection of the anomalously small fermion number
fluctuations responsible for fractionalization has to be
coherent and rely on interference of light scattered
from different lattice sites. If a too broad angular aver-
age or other such cause wipes out the interferences
���

k�l ! �kl��
k�k�, we are back to adding fermion num-

ber fluctuations from different lattice sites as if they
were independent.

Although we, of course, do not aim at a specific ex-
perimental design, a few variations to potentially over-
come the technical limitations we have noted bear a
mention. First, we have implicitly assumed that the lattice
light and the detection light have the same wavelengths.
By angling the beams used to make the optical lattice, or
possibly by using microlens arrays [16], the optical lattice
150404-4
can be stretched. The resolution limit imposed by the
wavelength of the detection light could be circumvented.
Second, so far we have dealt with what in essence is
spontaneous Bragg scattering. Recently, induced Bragg
scattering has been introduced as a method to study the
condensates in detail [17]. How induced scattering works
in the case of a 1D lattice under inhomogeneous illumi-
nation is not clear at the moment, but conceivably the
Bragg pulses could be made so short that the harmful
effects of photon recoil do not have time to build up
during the measurement. As an alternative, photon re-
coils could possibly be suppressed by making the energy
gap around the zero state much wider than the photon
recoil energy.

We have discussed optical detection of the half-
fermion that can arise from a topological defect in an
optical lattice holding a FD gas. Even though both the
average fermion number and its fluctuations are in prin-
ciple amenable to optical measurements, experiments
will evidently have to await further development of tech-
nology. In the interim, the most valuable outcome of the
kind of an analysis we have presented would probably be
the insights it brings into the phenomenon of a fractional
fermion number and its prospective applications.
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