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We study the interference of two Bose-Einstein condensates within an elementary model. The
detection of the atoms is modeled by adapting the standard theory of photon detection. Even though
the condensates are taken to be in number states with no phases whatsoever, our stochastic simulations
of atom detection produce interference patterns as would also be predicted on the basis of the phases
of the macroscopic wave functions describing the condensates. In statistical mechanics terms, we have
devised a method to analyze spontaneous symmetry breaking for an arbitrary (not necessarily larger)
number of particles.

PACS numbers: 03.75.Fi, 05.30.—d, 32.80.Pj

The confluence of laser cooling and evaporative coolingositions of the atoms from the well-established theory of
[1] has recently lead to the first observations [2] of aphoton detection. We simulate stochastically the outcome
weakly interacting Bose-Einstein (BE) condensate. Somef an experiment. We find that the atoms display an
of the current theoretical work on the optical propertiesinterference pattern as would be deduced from the phases
of the condensate [3] and on the consequences of thef the wave functions of the condensategen though no
interparticle interactions [4,5] will undoubtedly soon be phases have ever been assumed.effect, we are now
tested experimentally. The analogy to lasers [6] shouldble to discuss the consequences of spontaneously broken
also guarantee that the phase, coherence, and potenfiase symmetry for an arbitrary atom number.
for interference of a BE condensate will attract much We takeN spinless, noninteracting bosons residing on
attention. a unit interval in one dimension. The Heisenberg picture

In fact, it is customary to attribute to the condensate dield operator is
macroscopic wave function [5,7] with a magnituded
phase. Essentially, the same approach lends itself to J(s, 1) = Zei(kx—wkz)bk’ (1)
elementary textbook discussions of the Josephson effect P
[8]. Recognizing this connection, we some time ago ) o
predicted oscillatory exchange of atoms between twdvhere the sum runs over wave numbersis the annihila-
trapped BE condensates that depends on the phases tgih operator for the mode, andw, is the mode frequency.
the macroscopic wave functions [9]. More recently, weThe N atoms are divided into two condensate,2
have discovered that no phase is needed at all: Th@toms each. We assume that the condensates have been
atoms will oscillate even if the condensates are initiallydiven pushes in opposite directions, so that the one-particle
in number states, provided the atom numbers are “largétates=« haveN/2 atoms in them. Other one-particle
enough” [10]. In this Letter we take the next, final, States are empty. We thus write the state vector as
conceptual step. We study the interference of atoms that 0y _
results when two BE condensates are dropped on top 167 = 0/2) s N/D=r) @
of each other. The example is different from that of To simplify the notation further, we arbitrarily set= 7.
Refs. [9] and [10], because in the present case we mayhen all of our results are periodic in position with the pe-
adapt a plausible quantum measurement theory for theod of 1. We also take the characteristic frequenaes
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to be the same, which will remove all time dependencea Heisenberg picture expectation value of a produ@tof
from the results. boson field operatorsK™ is a constant that embodies the

We now need a quantum measurement theory fosensitivity of the detectors. The advantages of this form
the positions of the atoms. The well-known theory ofinclude the fact thaR™ = 0 for m > N; N atoms that are
photon detection [11] furnishes us with a model. Ineach removed upon detection obviously should not trigger
the standard version it is assumed that each photon more thanV detectors.
absorbed (removed) upon detection, and that the matrix Let us assume that all atoms do get recorded. The
element for photon absorption is independent of photofoint probability density for detecting: atoms at positions
energy. The theory then produces the joint countingi,...,x,, p™(x1,...,x,), should then be proportional to
rate at times,..., r, for photon counters positioned at the joint counting rat&R™ (xy,..., x,) from Eq. (3). The
ri,...,r, as annm-time correlation function of the electric constant of proportionality is simply chosen in such a
field operator.Mutatis mutandisywe posit that in our case, way that the integral ofp™ over all position variables
under the same assumptions, the joint counting rate:for is unity, as is appropriate for a probability density. For
atom detectors is our quantum model with (1), (2), and (3), the analysis

A A of probability densities boils down to an exercise in
R™(x1, 115 X, ) = K" G, 10) - 97 G, ) corr?binatorieys. The joint probabilities are
X lZ(xm» tm) e lZ(Xl, t1)> > (3)

(N )

Pt X)) = () P T ) B ) - (1)) (4a)
[m/2] 2
[(N/2 (N —29)! ,
Z Wi WG (X1se e X)) (4b)
Here we defindm/2] = m/2 for evenm and[m/2]= | Our plan is to simulate an experiment by gen-
(m — 1)/2 for oddm. The functionsC;” are erating an N-tuple of random numbersxy,...,xy
with the probability distribution p¥(xy,...,xy). In
C,’Z"(xl,...,xm) = Zcos{zw(xal + o+ X, general, production of random deviates with a pre-
scribed probability density inN-dimensional space
= Xq,, — """~ Xa,)], (5) rapidly becomes a hopeless proposition a&s in-

where the sum runs over all sets of distinct indicescreases. The present task, though, is facilitated by
{ai,...,az,} chosen from the sefl,...,m}, but taking the observation that the conditional probability density
only one permutation of each-tuple {ai,...,a,} and  for x, with xi,....x, fixed, pQxulri,....xn-1) =
{ag+1s..., ar,}; we setCy' = 1. p(x1,. . xm)/p"™ X, .., xm—1), iS also of the form
By construction, the joint probabilities are non-negative(7). First, we havep'(x) =1, so we obtainx; as a
and normalized. An explicit calculation shows that theyuniformly distributed random number in the interval

are also compatible: [0,1]. Next, having already generated — 1 coordinates
X1,...,Xm—1, We simply calculatep(x|xi,...,x,—) for
fpm(m,---,xm—l,xm)dxm = p" M xp, e X)) two different x, determine the parametegd and ¢ of

the function p(x) in Eq. (7) from the results, and use
(6) the ensuingp(x) as the distribution from which to draw

the subsequent positiar,,. As a technical detall, it is
probably unwise to use the combinatoric formulas (4b)
and (5) for numerical purposes. Instead, we obtain the
probabilities p™ directly as quantum expectation values,
as in Eq. (4a). All told, we have an? algorithm for
generatingyy, ..., xy.

An example is given in Fig. 1(a) fa¥ = 1000 atoms.
We sort the positionscy,...,xy into n, = 30 bins of
equal width Ax = 1/n,, and plot the histogram of
the numbers of atoms falling in each bin using the
centers of the bins as the abscissas. We also plot as a

This condition, which is usually not discussed in the
theory of photon detection, is crucial in order that the
conventional theory of probability may be relied on.
Finally, let us consider the probability™ as a function
of a particular individual variable = x; with the other
variables held fixed. It is obvious from Eqgs. (4b) and (5)
that p™ is a linear combination of a constant, (bsx),
and sif27x). Because the probabilities are non-negative
p"™(x1,...,Xi—1,X,Xi+1,...,X,) Must thus be a constant
multiple of a function of the form

plx) =1+ Becod2mx + ¢). (7)  continuous line the histogram derived from the probability
In this caseB and ¢ are parameters that depend on thedistribution (7) that gives the best least-squares fit to the
fixed coordinates; with j # 1. simulation histogram, with3 and ¢ treated as the free
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T T T describing the condensates by classical fields with the
L (a) | random phaseg-. Alternatively, one may retain the
quantum fields, but postulate that the condensates are in
the coherent statds - ) with - = \/N/2 ¢'¢= instead of
the number states. Whichever way one elects to proceed,
conventional arguments lead to the prediction that, as a
result of spontaneously broken phase symmetry, the two
5 condensates combine to give an interference pattern with
soL (b) | the de_nsityn(x) = n_o[l' + qos(erx + by —_¢,)]. We
have illustrated this in Fig. 1(b) by plotting the same
histograms as in Fig. 1(a) foN = 1000 atoms drawn
independently from the probability distributiop(x) =
1+ co2mx + ¢+ — ¢p—) for certain fixed values
of ¢=.
Our measurement theory and the conventional argu-
00 02 04 06 08 10 ments give very similar atom densities [see Figs. 1(a) and
z 1(b)]. However, there is a crucial conceptual difference.
FIG. 1. Numerically simulated histograms (filled circles) for In any derivation based on spontaneous symmetry break-
the detected atom positions witti = 1000 atoms, for (a) the ing, the quantity corresponding to the broken symmetry is
quantum measurement model and (b) the wave function mode{jitimately inserted by handhto the analysis. The phases
Also shown as solid lines are least-squares fit hlstogram%t are a representative example. On the other hand, the

predicted from the probability distribution of the form + h I ¢ - Itf
Bcod2mx + ¢), with B and ¢ as the free parameters. In phasep analogous tap+ — ¢ emerges as eesultfrom

these histograms the positions of the atoms are sorted intgur approach. In this sense we have predicted sponta-
n, = 30 equally wide bins. neous symmetry breaking.

Admittedly it is possible to “predict” spontaneous sym-
metry breaking by assuming the presence of a symme-
parameters. Both histograms in effect depict one periogy breaking field, then going to the thermodynamic limit,
of a cosine wave with a nearly 100% modulation depth. and finally letting the symmetry breaking field vanish
Remarkably, even though the probability density for[7]. A quantity corresponding to the broken symmetry
detecting arindividual atom p'(x) = 1 has no structure survives this particular sequence of limits without vanish-
at all, an experiment that records @l atoms at once ing. However, for a BE condensate the symmetry break-
would nonetheless find an interference pattern with bandgg field is a mathematical fiction and does not correspond
of higher and lower atom density. This is a manifestationg any physical quantity at all. Our earlier approach [10]
of the correlationsbetween atomic positions embodied in did away with the symmetry breaking field, but was still
the probabilitiesp™. In our example the atom density pased on the limit of large particle number. The novelty
is essentially of the formn(x) = no[l + cod27x +  of the present work lies in the fact that, by adopting an ex-
@)]. If the experiment were repeated, the result wouldpjicit measurement theory for the positions of the atoms,

qualitatively be the same; the phage just varies at we have freed our argument from any semblance of the
random from one run to the next. thermodynamic limit as well.

We now contrast our simulations with the conventional The question to what extent our measurement theoreti-
reasoning about the phase of a BE condensate. On&| predictions and the broken-symmetry predictions can
would ordinarily grant each condensate a macroscopige distinguished in detail elsewhere [12]. Here we offer
wave function, and write the total wave function of the only a few qualitative remarks. Fav = 1000 there is
two condensates as no obvious difference between Figs. 1(a) and 1(b). When

N the number of atoms decreases, the quality of histograms
Y(x, 1) = \/:ei‘”“l(ei”x+i¢* + ¢ imTie-)y - (8)  such asthose in Fig. 1 deteriorates, and it becomes hard to
2 pick up any interference pattern in the first place. All told,
The phasegb+ are due to spontaneous breaking of phasdor small N one must fall back on statistical analysis of
or “gauge” symmetry [7]. They are independent, fixed forrepeated experiments. The number of repetitions needed
each experiment, but vary randomly from one experimento gather enough statistics to distinguish between the two
to the other. In a single experiment with fixed phages  theories increases rapidly witfi, and may be expected to
S0 goes the argument, one expects an atom density of the in the thousands fa¥ as small as a few tens.
form | (x)|? = ne[1 + co27x + ¢+ — ¢_)]; i.e., an Our results suggest an intriguing angle to the evolu-
interference pattern. tion of the phase of the wave function of a BE con-

This naive model may be put more rigorously. Fordensate: The condensate behaves as if it had a phase

instance, one may formally replace the quantum field@as soon as there is a large occupation number of an

number of atoms
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individual quantum state. No interactions between thehis distribution for inspection. We have demonstrated
atoms are needed to communicate the phase throughaiiat we may predict an interference pattern convention-
the condensate. Evaporative cooling depends on elaglly attributed to the phase of the condensate without
tic collisions between the atoms, so this point may seemever assuming a phase. We envisage applications of our
moot. However, we emphasize that the phase would apeeas to the study of the contrast of the interference, or of
pear instantaneously even for completely noninteractinghe “condensate fraction,” also in more complicated situ-
atoms if they could be put to the same quantum state withgtions involving spatial profiles and atom interactions in
say, laser cooling. Our views about the role of the intera condensate. Finally, couched in statistical mechanics
actions are somewhat different from those underlying théanguage, we have devised a method to investigate spon-
ongoing work on the dynamics of BE condensation (seg¢aneous symmetry breaking for a finite number of par-
Ref. [13], and references therein). ticles. There is no need to go to the thermodynamic limit.
Our quantum model is clearly simplistic. In recent This work was triggered by a question asked by W.D.
experiments [2] the condensate was confined to fairlyPhillips: Are two light beams in number states able to
small dimensions;~1-10 um. The condensate is mod- interfere? Incidentally, a straightforward variant of the
eled more accurately by a large occupation number odrgument of the present paper shows that the answer is
the ground state of an atom trap than of a momentunyes. We acknowledge support from the National Science
eigenstate. When released in free space, such a conddfsundation.
sate flies apart ballistically. Interference effects are lost
on a time scale for which we do not yet have an esti-
mate. Besides, interactions between the atoms, weak as

they are, may strongly affect the properties of the Conclen'[1] K.B. Davis et al., Phys. Rev. Lett74, 5202 (1995); C.S.
sate [4,5]. Apart from these comp!lcanons, our thought Adamset al., ibid. 74, 3577 (1995); G.V. Shiyapnikoet
experiment could, perhaps, be realized by launching two 5y 'ibid. 73, 3247 (1994): J. M. Doylet al., ibid.67, 603
condensates with small momenta toward one another, and  (1991).

letting the combining atom clouds fall on an array of posi- [2] M.H. Andersonet al., Science269, 198 (1995); C.C.
tion detectors. Interference is essentially one dimensional, Bradleyet al., Phys. Rev. Lett75, 1687 (1995).

taking place in the direction of the momentum differ- [3] J. Javanainen and J. Ruostekoski, Phys. Rev.52
ence between the clouds. Our assumption of one spatial 3033 (1995); O. Moriceet al., ibid. 51, 3896 (1995);
dimension thus has some physical validity, and it could ~ M. Lewenstein et al., ibid. 50, 2207 (1994); H.D.
be avoided straightforwardly if a need arises. Finally, the zﬁ:ggzrr;i'fg\j/- 48%v64|jlfy§193?5112ﬁ B'7 \i (?‘é'gg;”ov and G.V.
u_nl_ts of length and wave number in our presentatlo_n ar(:"[4] V. Bagnato ét al., Phys. Rev. A35, 4354 (1987); V.V.
trivial (and actually somewhat contradictory) conventions.

. . Goldmanet al., Phys. Rev. B24, 2870 (1981).
This could be corrected easily, at the expense of some ad[5] P.A. Ruprechtet al., Phys. Rev. A51, 4704 (1995).

ditional notation. [6] M. Olshanii et al. (unpublished); M. Hollandet al.
We envisage our ideas leading to general practical tools ~ (unpublished).

for the analysis of phase and interference phenomena iff7] K. Huang, Statistical Mechanics(Wiley, New York,

BE condensates and atom lasers. For instance, the effects 1987), 2nd ed., p. 300; D. Forstefydrodynamic Fluc-

of the finite size of the condensate and of the interactions tuations, Broken Symmetry, and Correlation Functions

between the atoms could be studied. A calculation of the  (W.A. Benjamin, New York, 1975).

entire detection statistics for such situations admittedly [8] C. Kittel, Introduction to Solid State Physi¢giley, New

seems to be a tall order, but we anticipate that aIready[g] }Ojgbiggﬁ)éftgﬁ; Rev. LAz, 3164 (1086)

the IO.We.St corr_elatlon functions' "?‘”d pz_mlght give a [10] J. Javanainen,, Phys. Lett. ¥61, ’207 (1991).

quantitative estimate of the potential for interference.

Lll] R.J. Glauber, Phys. RewW.30, 2529 (1963);131, 2766
In summary, we have presented a new method for th (1963): P.L. Kelley and W.H. Kleineribid. 136 A316

analysis of the interference phenomena associated with  (19¢4).
a Bose-Einstein condensate. The idea is to compute thg2] s. M. Yooet al. (unpublished).

joint probability distribution of atom detection for all the [13] Yu.M. Kagan and B. V. Svistunov, Sov. Phys. JET®8,
atoms at once, and then generate random samples from 187 (1994); Yu. M. Kagaret al., ibid. 75, 387 (1992).
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