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I. MATHEMATICAL PRELIMINARIES

In his 1807 essay, Theory of the Propagation of Heat in Solid Bodies, the French mathemati-

cian J. B. Fourier showed that any piecewise continuous periodic function can be expressed

as the sum of an infinite series of sines and cosines whose frequencies are integer multiples

of a fundamental frequency ω0. It was later shown that any function could be expressed

as an integral of sines and cosines over all frequencies from 0 to infinity; a relation called

the Fourier transform. This remarkable fact has widespread applications in mathematics,

physics, and engineering. In this lab we will investigate some of the properties of the Fourier

series and Fourier transform and their applications.

Consider first the Fourier series for a periodic function. Let h(t) be a periodic function

with period T , that is, h(t) = h(t + T ). Fourier’s theorem says that h(t) can be expressed

as a sum of sine and cosine waves whose frequencies are multiples or harmonics of f0 = 1/T

or ω0 = 2π/T . Mathematically, this series can be expressed as

h(t) = A0 +
∞∑

n=1

[
An cos

(
2πnt

T

)
+ Bn sin

(
2πnt

T

)]
. (1)

The coefficients An and Bn can be found by multiplying both sides of Eq.(1) by either

cos(2πmt/T ) or sin(2πmt/T ) and integrating over a full period T . The results are

A0 =
1

T

T/2∫
−T/2

h(t) dt, (2)

An =
2

T

T/2∫
−T/2

h(t) cos

(
2πnt

T

)
dt, (3)

Bn =
2

T

T/2∫
−T/2

h(t) sin

(
2πnt

T

)
dt. (4)
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Notice that An and Bn have the same units as h(t). Also A0 in Eq.(2) is equal to the

time-averaged value of h(t). If this average is zero, as is frequently the case, then A0 is zero.

Although the integrals shown have limits from −T/2 to T/2, any limits covering one full

period can be used (e.g. α to α + T ).

This theorem can be simplified if h(t) is a symmetric function so that h(t) = h(−t), or an

antisymmetric function for which h(t) = −h(−t). First note that the cosine is a symmetric

function while the sine is antisymmetric. If h(t) is a symmetric function, then it will be made

up of sums of other symmetric function (cosines) and not symmetric functions (sines). Thus

Bn must be zero for all n if h(t) is a symmetric function. Likewise, if h(t) is antisymmetric,

then the An must be zero for all n ≥ 1. Many functions can be expressed as either symmetric

or anti-symmetric by careful choice of the starting time. Others are inherently asymmetric

and must be expressed using both sines and cosines. The Fourier series for some common

examples of periodic function are illustrated in the appendix.

The Fourier series of Eq.(1) can also be written in a more compact form with amplitude

and phase coefficients Cn and ϕn as

h(t) = C0 +
∞∑

n=1

Cn cos

(
2πnt

T
+ ϕn

)
, (5)

where

C0 = A0, Cn =
√

A2
n + B2

n, and ϕn = tan−1

(
−Bn

An

)
(6)

If we plot a graph with the Fourier amplitudes Cn as the ordinate and the frequencies

fn = nf0 as the abscissa, then the resulting graph is the discrete Fourier amplitude spectrum

of h(t). Using the Euler identity, eiθ = cos θ + i sin θ, the Fourier series of Eq.(5) can also be

expressed in complex notation, providing an even more compact representation.

The Fourier transform is the extension of the Fourier series to a non-periodic function.

The Fourier transform of a function of time in terms of frequency f is given by

H(f) =

∞∫
−∞

h(t) e2πiftdt. (7)

The original function is related to its Fourier transform by the inverse Fourier transform,

h(t) =

∞∫
−∞

H(f)e−2πiftdf. (8)
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For many examples in experimental physics, signals and spectra are processed in a sam-

pled form as discrete data sets and not as analytic functions, so what we really need is the

Discrete Fourier Transform (DFT)2. The DFT is simpler mathematically and more rele-

vant computationally than the Fourier transform, although the basic concepts are the same.

Specifically, consider a series of N data points hn taken at times tn, so that hn ≡ h(tn).

The time interval between samples is δt = tn+1 − tn, and thus the sampling frequency is

fs = 1/δt. The DFT of h(t) is

H(fk) =
N−1∑
n=0

h(tn)e2πifktn . (9)

The inverse transform for h(tn) can be written down by inspection,

h(tn) =
N−1∑
k=0

H(fk)e
−2πifktn . (10)

A method to rapidly and efficiently perform the numerical calculation of the DFT, called

the Fast Fourier Transform (FFT), was discovered by Cooley and Tukey in 19653. We will

use this method to determine the Fourier transform of various waveforms in the lab.

Thus, we now have two mathematically equivalent ways to express any time-dependent

amplitude, either as a function of time or as a function of frequency. You will sometimes

encounter minor variations of these formulas, since various normalization factors are used by

different authors. Variables related by a Fourier transform pair (such as time and frequency

or distance and wavevector) are called conjugate variables. In general, H(f) is complex.

For voltage signals, the power per unit frequency is proportional to |H(f)|2 and is called the

power spectrum or spectral power density of h(t).

A program written in the C-based LabWindows environment for the National Instruments

multifunction DAQ boards, fft lw.exe, will be used to acquire analog data at a sampling

rate up to 100 KHz and to display the Fourier spectrum in real time. The program displays

the magnitude of the Fourier transform (the square root of the power spectrum).

II. PROCEDURE

A. Square wave synthesis: Use a MathCad worksheet to sum the first N terms of the

Fourier series for the square wave illustrated in the Appendix. Set up the worksheet so that
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it is as general as possible, with expressions for An and Bn that can easily be modified.

Study graphs showing the sums of harmonics 1+3, 1+3+5, 1+3+5+7, and 1+3+5+7+9, all

summed with the proper amplitudes and phases. Use an arbitrary time interval, plotting at

least one full period of the square wave. As the approximation to a square wave grows better

at higher orders, note the overshoot and ringing that occurs at each of the discontinuities.

This is called the Gibbs phenomenon1.

B. Sawtooth wave synthesis: Derive the Fourier components for a sawtooth wave,

h(t) =
2t

T
for − T

2
< t <

T

2
(11)

and include the derivation in your lab report. Use your worksheet to add up these Fourier

components up to at least n=5 and prepare a graph comparing the sum with the exact value

of the corresponding sawtooth waveform.

C. Analyzing simple periodic waveforms: To get started with analyzing Fourier

spectra, investigate a few simple waveforms using fft lw. Set up a square-wave with a

function generator. Adjust the FFT sampling rate to 50,000/s and the number of data

sets to either 512 or 1024 (it must always be a power of two). Set the FFT trigger to SW

ANALOG. Record the Fourier spectrum, using a fundamental frequency f0 for the square-wave

to give an appealing and easily interpreted display, and export it to MathCad. Make a plot

(bar-graph) to compare the FFT amplitudes to the calculated Fourier coefficients. Plot only

the magnitudes and scale the data such that the first order peak in the FFT is equal in

magnitude to the first order Fourier coefficient. How well do they agree? Change the duty

cycle from ton/toff = 1 for a square-wave to ton/toff = 2 for a rectangular wave. Discuss

what happens to the harmonic content in the FFT. Repeat for a triangular wave.

D. Tuning Forks: A tuning fork is supposed to provide a (reasonably) pure tone of a

specified frequency. Connect a microphone to the input. Analyze the frequency components

of two or three tuning forks. How pure are the tones? Does this vary depending on how you

strike the fork? Do any of the frequency components damp out more quickly after the tuning

fork is struck? Repeat using your own voice. Examine the frequency components as you

attempt to sing a single tone. How does the frequency distribution differ for spoken sounds?

Make some qualitative comments on the distribution for vowels compared to consonants.
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E. Single pulse: Adjust the frequency of a rectangular wave so that its period is about

50 ms. Adjust its duty cycle so that its ON state is about 2 ms. The spectrum you observe

should have a large peak at 0 followed by little rounded peaks. Compare the minima of this

distribution with the zeros of the following formula for the Fourier coefficients for a pulse of

amplitude V0, width τ , repeated at a (slow) period T :

|Cn| =
V0τ

T

∣∣∣∣sin(nπτ/T )

nπτ/T

∣∣∣∣ (12)

Do the peak heights match the predictions as well? What happens as τ goes to zero?

F. Beats and weak signal extraction: Connect two function generators and set both

to give a sine wave of approximately equal amplitude of about 0.5 V and a frequency about

3 kHz. Depending on the function generators used, you may need to add series resistors

in order to successfully combine the outputs. Describe qualitatively the output as seen

on the oscilloscope. Have you seen anything like this before? Change one frequency and

observe the effect. Watch the FFT output at the same time and describe what happens.

One great advantage of FFT spectral analysis is its ability to isolate a small signal from a

large background. Try this by setting one function generator to an amplitude of 1 V and a

frequency of 10 kHz (this will be the background), and the other to as small an amplitude as

the generator will provide and a frequency of about 5 kHz (this will be the signal). On the

oscilloscope, the second signal will be barely detectable, if at all. Now look at the Fourier

spectrum. What do you see? Estimate how small a signal could be detected.

FIG. 1: Two function generators are used to observe beats.
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APPENDIX

A1. Square Wave: The square wave illustrate on Fig. A-1 has a duty cycle of ton/toff = 1.

The wave form is symmetric about t=0, so that one expects that there are no sine terms.

By inspection of the figure, the time-average of the wave form is 0, so that A0 = 0. The

Fourier series expansion of this wave form, which has only odd harmonics, is

h(t) = − 4

π

∞∑
n=1,3,5,...

(−1)
n+1

2

n
cos

(
2πnt

T

)
. (A-1)

FIG. A-1: A square wave of period T = 1.0sec.

A2. Triangle Wave: The triangle-wave illustrate on Fig. A-2 has a duty cycle of

tup/tdown = 1. It is antisymmetric about t = 0 and thus contains only sine terms in its

Fourier expansion. Also note that the d.c. term (A0) is zero. The Fourier series for this

waveform is

h(t) =
8

π2

∞∑
n=1,3,5,...

(−1)
n+1

2

n2
sin

(
2πnt

T

)
. (A-2)

FIG. A-2: A triangle wave.

A3. Sawtooth Wave: The sawtooth wave defined in Eq. 11 is shown in the Fig. A-

3 below. It is clearly an antisymmetric function whose time-average value is zero. The

derivation of the Fourier series is assigned in part B.
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FIG. A-3: A sawtooth wave is a modified triangle wave with an infinite (or zero) duty cycle.

A4. Half-wave rectified sine wave: The half-wave rectified sine wave shown in Fig. A-4

is neither symmetric or antisymmetric and thus we expect both cosine and sine contributions

to the Fourier series. Also note that waveform has a non-zero average value. The Fourier

series representation is

h(t) =
1

π
+

1

2
sin

(
2πnt

T

)
− 2

π

∞∑
n=2,4,6,...

1

n2 − 1
cos

(
2πnt

T

)
. (A-3)

FIG. A-4: The half-wave rectified sine wave.

In comparison, a half-wave rectified cosine wave is symmetric about t = 0 and thus contains

only cosine terms in addition to the dc term.
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