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THE CURRENT BALANCE

Physics 258/259

The time average force between two parallel conductors carrying an alternating current is

measured by balancing this force against the gravitational force on a set of known masses.

The relationship between the time-average force and the root-mean-square current is inves-

tigated using several methods of analysis.

I. INTRODUCTION

The MKS system of units defines the ampere in terms of the force between two parallel

conductors both carrying a current: “One ampere is that unvarying current which, if present

in each of two parallel conductors of infinite length and one meter apart in empty space,

causes each conductor to experience of force of exactly 2×10−7 newton per meter of length.”

The current to be measured in this experiment is passed in opposite directions through

two parallel horizontal bars that are connected in series. The lower bar is fixed and the

upper bar is balanced a few millimeters above it on a pair of knife-edges. The upper bar has

a small pan into which analytical weights are placed, thereby causing the upper bar to drop

down toward the lower one. When the current is turned on and increased sufficiently, the

repulsive force between the two bars causes the upper bar to rise back up to its equilibrium

position. At this point, the repulsive force is equal and opposite to the gravitational force

on the analytical mass. The position of the bar is observed by means of a mirror mounted

on the balance beam and a He-Ne laser and meter stick placed a few meters from the mirror.

II. THEORY

Consider two parallel straight rods, each of length L and separated by a distance d as shown

in Fig. 1. The current I along the z axis in the lower rod produces a magnetic field ~B at the

upper rod of

~B = −kI

d
x̂, (1)
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FIG. 1: The current in the lower rod is in the +ẑ direction, whereas it is along −ẑ in the upper

rod.

where k = µo/2π = 2 × 10−7 N/A2. This field creates a force on the upper rod that is

carrying a current I in the −ẑ direction. This force is

~F = IL(−ẑ × ~B) =
kIL

d
ŷ. (2)

For a sinusoidal time dependence of the currents, i.e. I(t) = I0 sin(ωt), the time average

force is

〈F 〉 =
kL

d

1

τ

τ∫
0

I2
0 sin2

(
2πt

τ

)
dt

 , (3)

where we have integrated over one period τ = 2π/ω. The term in the brackets is I2
rms and

thus Eq. (3) can be written as
〈F 〉
I2
rms

=
kL

d
. (4)

The total magnetic field at the upper rod is comprised of the harmonic field as described

above plus any static stray fields, such as the earth’s magnetic field. Expand the analysis

to include a static field Bs and show that Eq. (4) is also valid in this case. This is why we

use an AC current instead of a DC current for this experiment.

III. PROCEDURE

The current balance is a delicate instrument and should be handled carefully. Particularly

sensitive to damage are the two knife edge suspension points and the surfaces upon which

they rest. The upper balance assembly can be raised off of the knife edges by a lift mecha-

nism. The electrical wiring schematic is diagramed below. The transformers T1 and T2 have

an adjustable output from 0 to 135 volts AC for a 115-volt AC input and T3 is a fixed step-

down transformer with a 6.3/115 ratio. The ammeter is a calibrated for a root-mean-square

reading. Also note that it has a reflective strip that is used to prevent parallax errors in
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FIG. 2: The wiring diagram for the current balance.

reading the needle position. Before you take any measurements, be sure to level the base by

using the two thumb screws at front of the unit.

Use the lift arms to reposition the balance assembly on the posts. Practice this a few

times so that you can do this smoothly. With no mass in the pan and no current flowing,

the gap between the two rods should be a few millimeters. If it is not, carefully adjust the

counter-weight behind the mirror. Then use the lift arms to reposition the balance assembly.

Be careful to never touch the unit or make any mechanical adjustments to the apparatus

while the current is flowing.

Place the 500mg mass in the pan, which should bring the rods into contact. Record the

position on the He-Ne laser beam on the meter stick. Carefully remove the mass and record

the new position of the laser beam when the balance assembly is in equilibrium. Practice

placing and removing the mass until you can do it smoothly, without jarring the balance. If

you do bump it, use the lift arms to reposition the knife-edges. Also note that the balance

is susceptible to small air currents.

With the power to the transformers turned off, set T2 to its minimum value and T1 to

about full scale. Turn the power on and slowly increase T2 until the ammeter reaches 20A.

(If the fluctuations in the current reading are more than 0.1A out of 20A, notify your

instructor. These fluctuations can be caused by Ohmic heating coupled to a temperature

dependent electrical resistance.) You should observe the result of the repulsive force between

the parallel rods as indicated by the movement of the He-Ne laser spot. Use T1 to adjust

the current (never exceed 20A ) leaving T2 fixed.

Set the current to zero and carefully place the 50 mg mass in the pan. Slowly increase the

current until the laser beam points to the equilibrium spot. Record the value of the current.

Remove the mass and turn the current down to zero. Verify that the laser spot returns to

the same equilibrium position. If not, use the lift assembly to reposition the knife-edges
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and record the new positions for when the rods are touching and when the balance is in

equilibrium and repeat this step.

You should measure the current required to bring the balance to its equilibrium position

for masses of 50, 100, 150, 200 and 250mg. Verify that the zero-current and zero-mass

equilibrium position of the laser spot has not shifted during the placement or removal of the

masses. It is good experimental technique to calculate mg/I2
rms (which should stay nearly

constant) as you go along. When you have a good set of data points, adjust the counter-

weight slightly to give you a different equilibrium position and then take a second set of

data.

Record the following distances: (i) L, the length of the upper rod as measured from center

to center of its two supporting rods. (ii) a, the lever arm, from the center of the front bar

to the knife edge. (Do this for both sides and use the average.) (iii) b, the distance from the

mirror to the meter stick scale. (Note that the mirror is silvered on its back surface.) (iv)

du, the diameter of the upper rod. (v) dl, the diameter of the lower rod.

IV. DATA ANALYSIS

From your data calculate the mean value of 〈F 〉 /I2
rms and its uncertainty. Plot 〈F 〉 as a

function of I2
rms. Draw a straight line on your graph that passes through the origin and has

a slope m equal to the mean value calculated above. Use dashed lines to draw additional

lines whose slopes are m + ∆m and m−∆m.

A simple geometric argument shows that the distance d can be calculated from

d ≈ Da

2b
+

du + dl

2
, (5)

where D is the difference between the just touching and the equilibrium readings for the

position of the He-Ne laser beam spot on the meter stick. Use this value of d and the

measured value of L to calculate the right hand side of Eq. (4). Compare with your mean

value of 〈F 〉 /I2
rms from above.

Another way to analyze your measurements of 〈F 〉 as a function of I2
rms is to do a least

squares fit of the data to a straight line of the form y = a + bx. The value of a that

you calculate should be small, but may not be exactly zero. Since Eq.(4) predicts a linear

relationship between 〈F 〉 and I2
rms with an intercept of zero, you should try a least squares
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fit to an equation of the form y = cx. First you must minimize the variance,

σ2 =
1

N

∑
i

(yi − cxi)
2 (6)

with respect to c and show that1 the best fit value of c is

c =

∑
xiyi∑
x2

i

, (7)

and that the uncertainty in c is

σc = σ

√
1∑
x2

i

. (8)

Use these results to fit 〈F 〉 against I2
rms. Compare to your previous values from above.

1 These results are excercise problems 8.5 and 8.18 in: John R. Taylor, An Introduction to Error

Analysis, 2nd Ed. (University Science Books, 1997).
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