For Si (Ge, GaAs similar) there is a bandgap \(\gtrsim kT \):

- **Conduction band**
- **Valence band**

\[
\frac{kT}{e} \approx 0.025 \text{ V at room temp.}
\]

There are just a few thermal conduction electrons, \(\approx 10^{16} \text{ m}^{-3} \) at room temp.

Things change drastically if trace impurities are added:

n-type: Add P, As, or Sb dopant, Valence 5

- little energy is required to liberate the extra electron
- \(\text{immobile} + \text{ion, "donor"}, \text{fixed in lattice} \)

p-type: Add B, Valence 3, or similar

- The "hole" can move freely if the electron is attached to the Immobile (-) ion, or "acceptor"

So in effect, p-type charge carriers are (+).

Diode junction

- Holes and electrons recombine at boundary until the potential inhibits further net motion.
- For Si, \(V_0 \approx 0.5 \text{ V} \) (on the order of the bandgap)
Equilibrium: Let \(N_p \) = hole density, \(N_e \) = electron density. For holes on n side, no barrier, but very few holes are available. For holes on p side, fraction able to cross is given by a Boltzmann factor:
\[
e^{-eV_0/k_BT}
\]
where \(k_B T \approx 40 \text{ ev at } 300 \text{K} \).
So in equilibrium:
\[
N_p (\text{n side}) = N_p (\text{p side}) e^{-eV_0/k_BT}
\]
Likewise, \(N_e (\text{p side}) = N_e (\text{n side}) e^{-eV_0/k_BT} \)

Externally biased diode

V will appear across depletion region, reducing potential to \(V_0 - V \) (or increasing, if \(V \) is negative).

Net flow of e\(^-\) from n side is now
\[
I_e \propto N_e (\text{n side}) e^{-e(V_0-V)/k_BT} - N_e (\text{p side}) e^{eV_0/k_BT}
\]
\[
= C N_e (\text{p side}) (e^{eV/k_BT} - 1)
\]
\[
\equiv I_{po}, \text{ electron saturation current}
\]
So \(I_e = I_{po} (e^{eV/k_BT} - 1) \)

Similarly, \(I_p = I_{po} (e^{eV/k_BT} - 1) \), so altogether:
\[
I \propto I_0 (e^{eV/k_BT} - 1). \text{ Also OK for reverse bias!}
\]

A slightly modified version works better,
\[
I_{diodo} \sim I_0 \left(e^{\frac{eV}{nk_BT}} - 1 \right)
\]

Here \(n \) is between 1 and 2, and accounts for recombination and other device-dependent effects.

This works well unless \(V \) is so negative that reverse avalanche breakdown occurs (failure) or, in special "Zener diodes," a sharp breakdown is reached due to quantum tunneling. These are used as voltage references.
Where \(\frac{e}{lT} = 1000 \)V as before assuming T=300K.
and \(I_o = \text{reverse saturation current} \), typ. \(\sim 1 \)mA or less.
and \(n \) contains device physics; it's about 1-2.

\(I_o \) is set by flow of "minority" carriers.

Reverse breakdown occurs by
1) Avalanche breakdown

or 2) Zero breakdown - direct breakage
of covalent bonds by E field at junction.

Normally causes destruction, but used intentionally for "zener diode".

Ratings:

Important ones are --
1) \(PIV \) (peak inverse voltage)
or \(VR \) (max)
2) \(I_F \) (max.

3) \(I_R \) (max)

(goes up 6.2% /°C !)

Small-signal:

<table>
<thead>
<tr>
<th>Device</th>
<th>(VR) (max)</th>
<th>(I_F) (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN914</td>
<td>75 V</td>
<td>10 mA (cont.)</td>
</tr>
<tr>
<td>(or IN4478)</td>
<td></td>
<td>(0.75V)</td>
</tr>
<tr>
<td></td>
<td>(5)μA at 100°C and (VR)</td>
<td></td>
</tr>
</tbody>
</table>

Typ. Rectifier:

<table>
<thead>
<tr>
<th>Device</th>
<th>(VR) (max)</th>
<th>(I_F) (max)</th>
<th>(I_R) (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN4007</td>
<td>1000 V</td>
<td>1000 mA (cont.)</td>
<td>50 μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.9V)</td>
<td></td>
</tr>
</tbody>
</table>

Note: IN400x is much slower than IN914.

General rule: use "conduction" \(AV \sim 0.6V \)
(of thumb) for Si diodes.
Still OK: Kirchhoff's laws

Not OK: Ohm's law (assumes linearity)
 Thévenin Theorem (assumes both linearity & superposition principles)

Applications:

1) Rectification:

 a) half-wave

 b) full-wave

Simple power supply:
Estimate ripple: look at limit of small ripple.

Assume \(I_{\text{load}} \) constant, and that \(C \) discharges for full half-cycle \(\Delta t = \frac{1}{2f} \).

Then

\[
\Delta V = \frac{Q}{C} = \frac{I_{\text{load}} \Delta t}{C} = \frac{I_{\text{load}}}{2fC}
\]

(This overestimates real ripple.)

Example: \(100 \mu F, I = 100 \text{ mA}, 60 \text{ Hz} \)

\[
\Rightarrow \frac{1}{2(60)(10^{-4})} = 8.3 \text{ V (!!)}
\]

So we need at least \(1000 \mu F \) to do at all well here.

Apart from using huge capacitors (and transformers), a good solution is to add regulators and series inductors, called "chokes." Increasing \(f \) also an option -- used by switching power supplies.

2) Variant: Voltage doubler:

\[
V_{\text{out}} = V_{\text{in}} \text{ (aver)}
\]

like 2 half-wave rectifiers in series.

Can extend for tripler, etc.
Basic clamp:

\[V_n \quad V_c \quad V_a \]

\[V_n \quad V_c \quad V_a \]

Want a perfect clamp? Use an op amp!

Uses:
1) protection (e.g., in IC's)
2) prevent overmodulation (e.g., radio, etc.)
3) limit swing in servo, etc., prevent latching.

Symmetric limiter:

Also good for ampl. protection!

Variation -- ac restoration/shifting

\[V_{out} \]

When diode conducts, C changes. So its voltage builds up until conduction stops:

\[V_{out} \]

Zero is shifted by \(\frac{A}{2} \) (-.6 V)
Protection from back-emf:

- Solenoid or relay coil → Protection diode
- Transistor switching circuit such as emitter follower (next)

For detectors with small signals, can even use

\[-0.6 < V < +0.6 \]
Diode Mixers & such:

Can explicitly exploit nonlinearities as a log converter.
Or can exploit it to generate new freqs --
see lab!

\[w_1 \quad \text{or} \quad \text{dum: just } \cos(w_1 t) + \cos(w_2 t) \]

\[w_2 \]

Has beat note --

\[\text{waveform} \]

Yes

But replace \(\oplus \) with

\[\text{expression} \]

\[V_{out} = IR = I_0 (e^{\frac{V}{A}} - 1) R, \]

where \(V = V_1 \cos(w_1 t) + V_2 \cos(w_2 t) \)

To get

\[\text{Has new freqs} \]

\[e^{\frac{V}{A}} = \frac{1}{2} \left(e \frac{V}{A} + \frac{1}{2} \left(\frac{V}{A} \right)^2 \right) + \cdots \]

gives \(w_1, w_2, 2w_1, \ldots \)

Can see \(w_1, w_2 \) here in arg.

To reduce distortion, bias diode into conduction.

IF \(w_1 \ll w_2 \), this is an amplitude modulator;
if comparable, it's a mixer.