
 1

 
Damped Driven Harmonic Oscillator and Linear Response Theory 
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Last revised December 4, 2005 by Ed Eyler 
 
 
Purpose: 
 
  1. To measure and analyze the response of a mechanical damped harmonic oscillator.  Both the 

impulse response and the response to a sinusoidal driving force are to be measured. 
 
  2. Using linear response theory, analyze the impulse response to predict the frequency-dependent 

response to sinusoidal excitation.  The results can be compared both with theory and with the 
direct experimental measurements obtained with sinusoidal excitation. 

 
 
Equipment: 
 

1. Bifilar leaf-spring oscillator with Hall-effect position sensor and magnetic coil drivers for excitation 
and damping (or an equivalent oscillator/sensor combination). 

2. National Instruments interface board and the LabWindows program DDHO.exe to drive it. 
3. Micrometer and mount, for calibrating response of the position sensor. 
4. MathCad example programs regarding impulse response and least-squares fitting of a damped 

sinusoidal oscillation. 
 
 
Theory 
 
 
The basic theory of a damped harmonic oscillator is given in detail in most introductory physics 
textbooks.  If we assume that the damping force is proportional to velocity (actually a somewhat arbitrary 
assumption for a mechanical oscillator, but a reasonable one), the equation of motion for a harmonic 
oscillator is, 
 
 0mx bx kx+ + = . (1) 
 
Define the free-running frequency as usual, 

 ω 0 =
k
m

. (2) 

 
We will assume that the oscillator is under-damped, so that oscillatory solutions exist.  The condition for 
this to be true is 
 02b mω< . (3) 
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A. Transient Response 
 
If there is no driving term after t=0, the response can be found using standard methods for ordinary 
differential equations, or alternatively by substituting a guess in the form of a damped sinusoidal 
oscillation.  In complex notation this guess takes the form, 
 ˆˆˆ i tx Ce ω= . (4) 
 
Substituting and solving, then taking the real part, the solution for under-damped motion is, 
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This result shows that the resonance frequency is shifted slightly due to the damping.  The arbitrary 
constants A and φ  must be determined from the initial conditions. 
 
 
B. Steady-State Response to Sinusoidal Excitation 
 
If the harmonic wave is driven by a sinusoidal force at frequency w with constant amplitude, 
 
 cos( ),F D tω=  (6) 
the steady-state response after transient motion has died out is given by 
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Near resonance, the amplitude becomes large but remains finite, while the phase approaches –π/2 
(meaning that the velocity is in phase with the applied force).   Plots of the amplitude and phase as a 
function of frequency appear in the MathCad supplement on linear response theory and analysis of the 
impulse response.  Although obtained by a different method, they are identical to Eq. (7). 
 
Note that this result applies only for sinusoidal excitation that has been present for a long time (much 
longer than the damping time constant).  The general response of the harmonic oscillator to arbitrary 
excitation is a sum of transient and steady-state solutions.  A powerful method for quantitatively 
predicting the general solution is presented below. 
 
C. Impulse Response and the Transfer Function 
 
A different and very powerful perspective on the behavior of linear systems can be obtained from the 
superposition principle.  The idea of a transfer function is much-used in engineering, but is somewhat 
underappreciated in physics because it is basically a special case of the broader but more abstract idea of a 
Green's function, which we will not discuss here. 
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First consider the response of the damped harmonic oscillator to an impulsive excitation; that is, a pulse 
of very short time duration that nevertheless transfers a finite energy to the oscillator.  The impulse 
response h(t) is defined to be the response (in this case the time-varying position) of the system to an 
impulse of unit area.  For the harmonic oscillator, its form is given by Eq. (5). 
 
The key concept is that because the equation of motion is linear, solutions can be superposed.  In 
particular, the response to a succession of impulses is just the sum of the responses to the separate 
impulses.  It then follows that, because any function can be approximated as a series of impulses with 
varying amplitudes, we can calculate the response to any time-dependent driving term if we know the 
impulse response!  This can be expressed mathematically for an arbitrary driving term D(t) by integration 
over a series of infinitesimal impulse responses of size h(τ)D(t-τ), yielding the total response x(t): 
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If we take care that h(t)=0 for negative times, this can be written in the standard form of a convolution 
integral, 
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All of this can be re-expressed using the language of Fourier transforms, in a way that is both 
computationally straightforward and intellectually rich.  Most computer languages have a pre-
programmed fast Fourier transform, or FFT, which makes short work of the required numerical 
operations.  We perform a Fourier transform on the impulse response to obtain the frequency-domain 
transfer function, 
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Its physical interpretation is extremely simple.  It describes the response to an impulse (or delta-function) 
excitation that has equal components at all frequencies.  As a result, the transfer function at frequency ω 
directly describes the response of the oscillator to a sinusoidal driving term at frequency ω.  Its magnitude 
describes the amplitude response, and its phase describes the phase shift.  In short, it is exactly the same 
as the familiar plot of the amplitude and phase response of a harmonic oscillator as a function of the 
driving frequency! 
 
The convolution theorem of mathematics tells us that in Fourier transform language, the time-domain 
convolution integral of Eq. (9) corresponds to simple multiplication in the frequency domain.  More 
specifically we find the frequency-domain response of the harmonic oscillator to an arbitrary driving 
force D(t) by calculating the Fourier transform ( )D ω  of the driving force, then multiplying it by the 
transfer function, 
 
 ( ) ( ) ( )x h Dω ω ω= ⋅  (11) 
 
The ordinary time-domain response x(t) is obtained from this by performing an inverse Fourier transform 
back to the time domain, 
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A separate MathCad spreadsheet available on the Physics 258 Web page, Impulse_Response.mcd, 
demonstrates this remarkable result for a few examples.  It clearly verifies that if the impulse response is 
known, the response to any other excitation can be straightforwardly calculated. 
 
 
Experiment 
 
 
A. Calibration and Linearization of the Position Sensor 
 
1. Using the computer interface, read the static voltage from the Hall sensor that corresponds to the 
equilibrium position of the oscillator. 
 
2.  Use a micrometer to mechanically translate the oscillator mass first to one side, then the other, in 
calibrated increments.  Record the Hall voltage corresponding to each position, extending for a range of 
several mm on each side of equilibrium.  (Question: How can you easily tell when the micrometer first 
makes contact?). 
 
3. Analyze the results using MathCad  or MatLab to obtain a function X(V) that calculates the actual 
position of the oscillator mass, given the voltage measured by the Hall sensor.  If it is significantly 
nonlinear, you can improve your results if you use this function to process all of your position data.  
(Hint: Although you can use interpolation of the measured data, you will probably obtain better results by 
fitting the data to a low-order polynomial, using polynomial regressions.  Question: how many terms are 
enough?) 
 
B. Observation and Analysis of the Impulse response 
 
Using the LabWindows program ddho.exe, measure the impulse response to a sudden excitation.  Use 
a large-amplitude driving pulse (perhaps 5 V) with a duration very short compared to the free-running 
period of the oscillator, no more than 0.1 seconds.  You will probably have trouble using a pulse much 
shorter than 0.05 seconds, though, because the amplitude of the motion will be so small that the signals 
will be very noisy.  The main effect of using a driving pulse with a small but finite width is to cause a 
small delay in the response, which has little effect in the FFT analysis of the amplitude, but is noticeable 
in the phase (see Section B.2).  When taking data, make sure that your sampling period is long enough to 
allow for nearly complete damping, and that your sampling rate is fast enough to accurately represent the 
oscillations (at least 5-10 data points per period). 
 
Repeat the measurement both for the case of minimal damping and for at least one value of higher 
damping, obtained by using a magnetic damper. (Question: The magnetic damper involves passing a 
piece of copper through a region with a position-varying magnetic field.  How does it work?) 
 
1. Use a generalized least-squares fitting program to fit the data to a damped exponential decay curve.  
You can do this yourself if you wish, but you will probably want to start with a pre-written MathCad 
spreadsheet available on the Physics 258 web page, Damped_sine_fit.mcd, so you don’t have to go 
through the tedious task of re-typing the partial derivatives of the fitting function.  To obtain the best 
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results at large amplitudes, consider applying the linearization function from part A before fitting the data.  
From the fits, determine the damping constants b/2m and the shifted frequencies ω′ .  Calculate the free-
running frequency 0ω  from these results.  How well do the results obtained using different damping 
constants agree with one another? 
 
2.  Transform the impulse response using a Fourier transform (i.e., find the transfer function), then use it 
to predict the amplitude and phase response of the oscillator to steady sinusoidal excitation, as a function 
of frequency.  You will again probably want to make use of the examples provided in a pre-written 
MathCad spreadsheet, Impulse_Response.mcd.  To avoid confusion that has arisen in past years, it 
is important to note that your results should be calculated graphs of the predicted frequency-dependent 
amplitude and phase—it's not sufficient just to show that if you Fourier transform the impulse response 
and then perform an inverse transform, you get back what you started with.  How well does the functional 
form in your graphs agree with the theoretical expression in Eq. (7)?  Do you see a slight linear slope in 
the phase plot that “shouldn’t be there”?  See if you can interpret this in terms of a delay due to the finite 
duration of the driving pulse.  Can you obtain a similar effect in a numerical simulation by inserting a 
slight phase offset into the sample waveform provided in Impulse_Response.mcd?  Finally, note 
that you can minimize this effect by discarding the first several points of the measured impulse response, 
choosing a new starting point in the data set so that it nearly coincides with a zero crossing. 
 
C. Response to a sinusoidal driving force 
 
Measure the response to sinusoidal excitation at a variety of frequencies near resonance, as well as a few 
frequencies further away.  Be sure to record data for a sufficiently long time to include both the transient 
and the steady-state response to the driving force. 
 
1. Analyze the steady-state amplitude of the response x(t) at large times.  Plot your results to obtain a 
resonance curve, showing the amplitude as a function of frequency for sinusoidal excitation.  Also draw a 
phase plot, showing the relative phase between the response and the driving term, as a function of 
frequency. 
 
2. Compare the center frequency and width of the resonance curve with the predictions of linear response 
theory, using the transfer function obtained from the impulse response. 
 
3. Compare the shape of the amplitude response with the theoretical expression in Eq. (7).  To facilitate 
this, note that in the limit of small damping, the amplitude A(f) can be approximated by a Lorentzian with 
a full-width at half-maximum determined by the damping.  Do your results (for small damping) agree 
with the predicted value using the measured damping term? 
 
4. You can also predict the short-time response to a suddenly applied sine wave burst by using the transfer 
function.  Calculate the predicted response for frequencies differing by about 5% from the resonant 
frequency, where you should be able to see beat notes between the applied frequency and the natural 
resonant frequency.  Compare the predictions with your measured short-time position data. 


