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NOTE TO STUDENTS: 

 

This material closely parallels that found in John R. Taylor's An Introduction to Error Analysis, 2nd Edition 

(University Science Books, Sausalito, California; 1997).  Taylor's text is a standard on the subject, and is 

well worth acquiring for your long-term use. 

 

The Physics Department has in the past also provided Errors Without Tears, by Professor Daniel Marlow, 

as a handout in Physics 103/105 lab.  It covers much the same material as this packet; copies are available 

on request. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Material from Matt Trawick    (Physics 103, Fall 2002) 

Format revised Summer 2003 (S. Smith) 

 

 



 3

"Table of Contents" for Error Analysis Interludes 
 

 
ERROR ANALYSIS INTERLUDE #1 PAGE  5 
 

What is Uncertainty, and Who Cares? 
How to Report Uncertainties 

Rule for confidence level of errors 
Absolute and Relative Uncertainties 

Rule for relative and absolute uncertainties 
Significant Figures 

Rule for significant figures 
Different Kinds of Error (precision vs accuracy; random vs systematic) 
Vocabulary Review 

 
ERROR ANALYSIS INTERLUDE #2 PAGE 10 
 

What is Error Propagation? 
Unit Conversion 

Rule for converting units 
Easy Propagation of Single Errors 

Rule for easy propagation of single errors 
Rule for multiplying by a constant 
General rule for single small errors 

 
ERROR ANALYSIS INTERLUDE #3 PAGE 14 
 

Adding or Subtracting Two Quantities 
Rule for adding and subtracting quantities with independent errors 
Rule for adding and subtracting quantities with dependent errors 
Rule for products and quotients with independent errors 

General Rules for Multiple Errors 
Rule for multiple independent errors 
General rule for multiple dependent errors 
Example: Combining Two Errors 

Ignoring Small Errors 
Rule for ignoring small errors 

 
ERROR ANALYSIS INTERLUDE #4 PAGE 18 
 

Plotting Data with Error Bars 
Fitting Data to a Straight Line:  The Eyeball Method 
Fitting Data:  The Method of "Least Squares" 
Uncertainty in the Best Fit Straight Lines 

Example: Combining with Systematic Error 
Don't Believe Everything You Read:  A Cautionary Note 

Example:  Misuse of a Least Squares Fit 
 
ERROR ANALYSIS INTERLUDE #5 PAGE 26 
 

Repeated Measurements and Distributions 
Rule for Averages 

The Standard Deviation 
Example:  Calculating a Standard Deviation 
Rule for Standard Deviations (68%) 

Standard Error 
Rule for Standard Errors 

The Normal Distribution 





 5

 
 

ERROR ANALYSIS INTERLUDE #1 
 
What is uncertainty, and who cares? 
 

In 1919, Albert Einstein's general theory of relativity faced a crucial test.  On 
May 29, the moon would come between the Earth and the Sun in a solar eclipse, making 
it possible to see stars very close in the sky to the Sun's position without being blinded by 
the glare from the Sun itself.  Einstein predicted that as light from a distant star passed by 
the sun, it would be deflected by the sun's immense gravitational field by a miniscule 
angle of 1.75 arc seconds (3600 arc seconds = 1 degree).  A calculation based on 
Newtonian physics predicted an even smaller deflection of 0.875 arc seconds. 
 

Observations led by Arthur Eddington at three different telescopes measured the 
deflection: the resulting deflections were 0.86, 1.61, and 1.98 arc seconds.  None of these 
three measurements agrees exactly with either prediction.  They don't even agree with 
each other!  How could three measurements of the same thing all be so different? 
 

All measurements, however careful and precise, are subject to some degree of 
"uncertainty."  (The scale in a doctor’s office is probably more accurate than a cheap 
bathroom scale from Kmart, but neither one is perfect.)  However, by knowing the 
amount of uncertainty in a measurement, it is often possible to make definite statements 
even from indefinite results.  For example, Eddington reported that the middle of his 
three measurements had an uncertainty of 0.30 arc seconds.  In other words, although his 
best estimate from that measurement was 1.61 arc seconds, the actual value might have 
been anywhere between 1.31 and 1.91 arc seconds.  Einstein's prediction of 1.75 is 
clearly consistent with that measurement.  More importantly, the Newtonian prediction of 
0.875 is clearly not.  Notice that the uncertainty of a measurement is just as important as 
the measurement itself.  Were it not for the uncertainty, it would be impossible to 
differentiate between two competing theories.  Based on his analysis of his uncertainty, 
Eddington concluded that the Newtonian paradigm was inconsistent with his new 
measurements.  The general theory of relativity had passed its first experimental test, and 
Albert Einstein became an instant celebrity.1 
 

We seldom get to test theories as important as Einstein's general theory of 
relativity.  But professional scientists and engineers routinely use measurements and their 
uncertainties to differentiate between competing theories large and small.  You might be 
surprised how often such situations arise even in everyday life.  What if your car is 
supposed to get 25 miles per gallon, and you measure its fuel economy to be only 20 
miles per gallon?  Only by knowing the uncertainty of your measurement can you 
determine whether there's really something wrong with your car. 
 

The uncertainty in a measurement is often called the "error" of a measurement.  
"Error analysis" means figuring out how big the uncertainty is.  It is important to 
remember that in this sense the "error" of a measurement is not a mistake.  All 
measurements, no matter how well done, have some degree of error or uncertainty.  

                                                           
1 Although relativity has since passed many other experimental tests, it is not clear whether Eddington's conclusion in 1919 was really 
justifiable based on his data.  Error analysis is tricky business, and even the pros get it wrong sometimes.  See, eg. Jim Holt, Lingua 
Franca, Volume 11, No. 2—March 2001. 
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Although "uncertainty" is clearly the best word to use, the words "error" and 
"uncertainty" are used interchangeably. 
 

The "error" of a measurement is not just the difference between the measured 
value and the "right" answer.  In the case of Eddington's measurements, he couldn't 
possibly calculate that, because nobody knew for sure what the "right" answer was.  In 
the case of your gas-guzzling car, you might wish to calculate the difference or 
"discrepancy" between the book value of the fuel economy and your own measurement.  
Stated in absolute terms, the difference between the two is 20 mpg – 25 mpg, a 
discrepancy of -5 mpg.  You may also wish to state the discrepancy in percentage terms:  

 
percentage discrepancy = (20 mpg – 25 mpg) / 25 mpg × 100% =  -20%. 

 
This is not the uncertainty in your measurement.  The uncertainty might be more or less 
than -20%, depending how carefully you made your measurements. 
  

You can only determine the uncertainty of a measurement by examining in detail 
exactly how the measurement was made.  In all likelihood, you would have calculated the 
fuel economy by measuring both the distance you drove, and the amount of fuel you used 
to get there.  Each of these measurements alone has some uncertainty, and these are 
combined mathematically to calculate the uncertainty in the final quantity.  It is this kind 
of calculation that error analysis is all about. 
 
How to Report Uncertainties 
 

Let's suppose that you want to measure the length of a fish you have caught.  
(This is a challenging measurement, since the fish is wet, slippery, and considerably less 
interested in having its length measured than you are.)  Bracing yourself against your 
wobbly canoe, you place a ruler alongside the reluctant creature and judge its length to be 
about 27.5 cm.   (It's clearly between 27 cm and 28 cm.)  After a little consideration you 
decide that you are pretty sure that the length is between 27.2 and 27.8 centimeters.  
Satisfied, you record the length in your notebook as x = 27.5 ± 0.3 cm.   (The symbol “±” 
is read “plus or minus.”)  The value before the ± sign, 27.5 cm, is called the “best value” 
of your measurement x.  The value after the ± sign, 0.3 cm, is the uncertainty in x, and is 
written δx, where δ is the lower-case Greek letter “delta.”  (You may also see the 
uncertainty written as ∆x or σx in some texts.) 
 

In the example above, we said that you were "pretty sure" the length of the fish 
was between 27.2 and 27.8 centimeters.  Just how sure is pretty sure?  Scientists typically 
report their uncertainties based on a "confidence level" of 68%.  In this case, "pretty sure" 
means that you are 68% sure that the actual length of the fish lies somewhere in your 
reported range.2  Said another way, if you caught and measured lots of fish, the actual 
lengths of about two-thirds of them would lie within your reported range.  

 
If the 68% confidence level seems a bit unwieldy, try asking yourself the 

following: would you bet a dollar that the fish is between 27.2 and 27.8 centimeters?  In 
general, you might be willing to make such bets as long as you have a pretty good chance 
of winning, and as long as losing isn’t going to destroy you.  With that in mind, you will 
want to estimate your uncertainty so that the actual length of the fish has a pretty good 
chance of being within your stated range. If somebody with more patience than you 

                                                           
2 68% seems like an odd number to choose for a confidence level.  We'll see in a later error analysis diversion where this comes from. 
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manages to persuade all of your fish to hold still for laser interferometry measurements, 
it's okay if about a third of those measurements fall outside your stated range.  In general, 
if you are just willing to bet a dollar that the actual value falls within your error range, 
your error estimate is probably about right.  
 

Of course, you could simply overstate your uncertainty, and report all of your 
fish measurements as ± 10 centimeters.  That ought to be safe enough, right?  Indeed, if 
you were trying to sell the fish, and you wanted to guarantee that each was within a 
certain range, it might be a good idea to make that range as broad as possible, to avoid the 
hassle of giving lots of refunds to angry customers.  (Manufacturers often set "tolerances" 
this way, with lots of room to spare!)  But for scientific purposes, your notebook will be 
most valuable if you record your honest best guess of your uncertainty, without any extra 
padding. 

 
Rule for confidence level of errors: When you write a 
quantity as x ± δx, you mean that you are about 68% sure 
the actual value of x falls between x - δx and x + δx. 

 
Absolute and Relative Uncertainties 
 

In reporting your uncertainties, it is sometimes important to know the size of 
your uncertainty relative to the measurement itself.  For example, measuring the distance 
x from the tip of your nose to the stake in the ground at the South Pole to within one 
meter would require a fantastically precise measurement... unless you were standing right 
next to the South Pole.   What matters here is the ratio δx/x, which is defined as the 
"relative uncertainty" of the measurement.  If you were standing 5 meters from the South 
Pole, the relative uncertainty of your measurement would be 

 
δx/x = 1 m / 5 m = 0.2, or 20%.   
 

But if you were a continent away from the South Pole, the relative uncertainty might be  
 

δx/x = 1 m / 5,000,000 m = 0.0000002, or 0.00002%.   
 

(Amazingly, the Global Positioning System (GPS), which uses satellites with very 
accurate atomic clocks, makes such precise measurements routine.  We live in 
extraordinary times!) 
  

The relative uncertainty is also called the "fractional uncertainty" or "percentage 
uncertainty."  (It is also sometimes called the “precision” of a measurement, but this is 
potentially confusing because the word has another more specific meaning, as we’ll see 
later.)  To avoid confusion with the relative uncertainty, the quantity δx is sometimes 
called the "absolute uncertainty."  It's always a good idea to have in the back of your 
mind roughly what your relative uncertainty is for a given experiment.  Are you doing a 
1% measurement or a 10% measurement? 
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Rule for relative and absolute uncertainties: the 
relative uncertainty of a measurement of x is defined as 
δx/x, and is usually expressed as a percentage.  The 
absolute uncertainty is δx.  Uncertainty alone can mean 
either one. 

 
Significant Figures 
 

Scientists often use a kind of shorthand for writing uncertainties: significant 
figures.  Writing a mass as 3.26 grams implies that you know the mass is not 3.25 or 3.27 
grams, but 3.26± 0.005 grams.  In this case your measurement has three "significant 
figures" or "significant digits:" the 3, the 2, and the 6.  Written in kilograms, 0.00326 kg 
also has three significant digits; the leading zeroes are merely place markers.  If the 
uncertainty of this measurement was 0.00005 grams, then you would write five 
significant digits: 3.2600 grams.   
 

Unfortunately, this kind of shorthand can lead to some problems.  First, if an 
object is "250 pounds," it is unclear whether the final zero is significant.  (Does this mean 
250 ± 5 pounds or 250 ± 0.5 pound?)  The confusion can be resolved by writing 2.50 × 
102 pounds, but that's a little awkward.  Second, this shorthand does not always allow you 
to state your uncertainty as precisely as you'd like.  Suppose you have measured the 
width of a beetle's antenna as 0.30 ± 0.02 mm.  Writing "0.3 mm" implies 0.30 ± 0.05 
mm, which overstates your error, but writing "0.30 mm" implies "0.300 ± 0.005 mm, 
which understates your error.  Simply put, significant figures are not a very precise way 
to report your uncertainties. 
 

In Physics 103, you will be expected to report all of your uncertainties explicitly.  
But we also expect you to be sensible about significant figures.  If you are calculating the 
circumference C of a wheel 3.0 centimeters in diameter, do not under any circumstances, 
write that C = π d = 9.424778 centimeters.  You can't possibly know the circumference 
to that kind of precision, no matter what your calculator says! 
 

We're not going to fret over whether you write 9.4 or 9.42 as part of some 
intermediate calculation.  In fact, feel free to keep an extra digit or two in your 
intermediate calculations, and then drop them later on.  But please, resist the temptation 
to write down all of the digits produced by your calculator.  It just makes you look silly! 
 

In general, you will only know your uncertainty δx to one or two decimal places 
at most, and that is what you should write.  For example, you should write the uncertainty 
of the fish's length as “δx = 0.3 cm” (not “δx = 0.31853 cm”).  Report your results so that 
the last significant digit of your best value is in the same position as the last significant 
digit of the uncertainty.  For example, write “27.5 ± 0.3 cm” (not “27.5127 ± 0.3 cm”).  
Again, the extra digits just look silly. 

 
Rule for significant figures: Don't be writing ridiculous 
numbers of meaningless digits, or you'll look like a 
doofus. 
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Different Kinds of Errors 
 

Your calculator is not the only instrument that can give you more digits than are 
really useful.  For example, you may be wearing a digital watch right now that gives you 
the time of day right down to the second.  But we instinctively know that unless you were 
very careful in setting your watch (and did so recently) it will only be accurate to a few 
minutes.  The distinction here is that while a digital watch is very "precise", it may or 
may not be very "accurate."  A measurement that is “precise” has the ability to 
distinguish between two values that may be close together.  A measurement that is 
“accurate” is close to the correct value. 

 
As another example, the speedometer in your car may tell you your speed with a 

precision of about ± 1 mile per hour; that is, you can distinguish the position of the needle 
to ± 1 mph.  However, the speedometer may not be as accurate as it is precise.  What if 
your tires are the wrong size, or the speedometer's electronics are not properly calibrated?  
Beware of this kind of "false precision," and don't believe everything you read!   
 

Another word that you may see is the "reproducibility" of a measurement.  Even 
if your measuring device is very precise and accurate, your measurement may still vary 
from measurement to measurement.  For instance, if you were to listen to your heart 
beating, you might count exactly 41 beats in 30 seconds, a rate of 82 beats per minute.  
This single measurement is very accurate and very precise (probably ± 1 beat per 
minute), but if you tried the same measurement 5 days or even 5 minutes later, you might 
get a very different answer.  This is an example of a measurement with a high precision 
and a high accuracy, but a low reproducibility.  
 

The lack of reproducibility of your own heart rate is an example of a random 
error; the result of the measurement is likely to change from measurement to 
measurement.  It may sometimes be a little higher or a little lower than normal, but the 
results will usually cluster around the same place over time.  Similarly, if you try to 
estimate tenths of millimeters from a standard ruler, you might by chance guess either a 
little high or a little low.  This lack of precision is also a random error, unless you are 
holding the ruler at an angle and reading the result too low every time.   
 

Holding a ruler at an angle and reading the result too low every time would be an 
example of a "systematic error:" one that does not cause your measurement to change 
from time to time.  Similarly, if the tires on your car are a little too big, the accuracy of 
your speedometer reading will be affected by the same amount every time you measure 
your speed.  These systematic errors are often hard to detect, and sometimes the only way 
to discover them is to compare your measuring device to another one that is known to be 
more accurate.  (In the case of the speedometer, you could drive past a police speed trap, 
and see if they chase you.) 

 
Vocabulary Review 

 
We've introduced many new words and phrases in this first section.  Take a quick 

look at these, and be sure you can come up with a reasonable definition of what they 
mean.  Many of these are different words for the same thing. 

 
uncertainty percentage uncertainty false precision 
error absolute uncertainty reproducibility 
discrepancy best value accuracy 
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error analysis confidence level random error 
relative uncertainty precision systematic error 
fractional uncertainty   

 
As you might guess, words like "precision," and "accuracy" that have been 

defined in this section are not always used exactly as they have been described here.  
Although many authors and scientists are real sticklers for these distinctions, others 
(including your lab instructor!) may not be so careful.  Try to use these words as 
"precisely" as you can.  When you hear others using these words, be prepared to ask them 
what they really mean to say. 

 
 
 

ERROR ANALYSIS INTERLUDE #2 
What Is Error Propagation? 

As professional scientists and engineers, you will almost never get to measure the 
final result of an experiment directly.  Instead, you will deduce the final result from 
measurements of related quantities.  For example, you might deduce the mass of a black 
hole by measuring its effects on nearby stars.  Or you might measure the optical 
properties of a chemical solution to calculate what fractions of the reactants have 
combined to form a new compound.   

In each case, the uncertainty of your result is determined by the uncertainties of 
your original measurements.  Just how these measured uncertainties "propagate" through 
your calculations to your final results is no easy matter, and is much of what error 
analysis is all about.  In this unit, we begin to study error propagation. 

Unit Conversion 

Recall that in the last unit, you had measured the length of a fish to 
be cm,3.05.27 ±=x  a relative uncertainty of %1cm5.27cm3.0 ≈=xxδ .  Let's 
suppose you wanted to report this in millimeters instead of centimeters: how would you 
write that?  Of course, you would write mm.3275 ±=x   Think for a second about how 
you did that: you multiplied both your result and your uncertainty by the same factor of 
10.  Has the relative uncertainty of your measurement changed?  Of course not; it's still 

%.1cm275cm3 ≈=xxδ   

 

 
Rule for converting units: Convert your uncertainty in 
the same way as your best value.  The relative 
uncertainty stays the same. 

Easy Propagation of Single Errors  

Let's suppose that you plan to drop a water balloon out of your window, and you 
want to know how fast it will be going when it splats on the sidewalk below.  Trying it 
out, you measure the time of the fall to be about 1 second, and you calculate that that  

( )( )
.sec/m10

sec1sec/m10 2

=
=

= gtv  
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(For convenience, we’ll assume that g, the acceleration due to gravity, is exactly 10 
m/sec.) 

Suddenly driven by a compulsion you can't quite explain, you decide to calculate 
your uncertainty in this measurement.  Although you timed the fall carefully with your 
digital stopwatch, you guess that you may have been off by about 0.1 seconds, a relative 
uncertainty of about 10%.  In the one extreme, this leads to a result of  

( )( )
.sec/m9

sec9.0sec/m10 2

=
=

= gtv  
In the other extreme, the result becomes  

( )( )
.sec/m11

sec1.1sec/m10 2

=
=

= gtv  
Based on your uncertainty in the time of the fall t, you conclude that the velocity right 
before impact was between 9 m/sec and 11 m/sec, so you state your result as 

.sec/m110 ±=v   Congratulations, you've just done your first error propagation! 

 

 Rule for easy propagation of single errors: if f = f(x), 
you can always calculate f(x+δx) and f(x-δx) to see how 
big your error is. 

Multiplying by a Constant  

Let’s look at that last example again.  You actually calculated  

( )( )
.sec/m110

sec110sec/m10 2

±=
±=

= gtv  
The reader with a flair for observation will notice that the absolute uncertainty in the time 
δt = 0.1 sec, multiplied through by the constant g = 10 m/sec, gives the absolute 
uncertainty in the velocity of δv  = 1 m/sec.  Furthermore, the relative uncertainty of the 
result is exactly 10%, the same as the relative uncertainty of the original measurement.  
We can generalize this as a rule for multiplying by a constant.  

 

 

 

Rule for multiplying by a constant: if ,)( cxxf =  
where c is a constant, then .xcf δδ =   The relative 
uncertainty is unchanged: .xxff δδ =   
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A look at the first graph at the right 
will show why this is true.  The graph shows 
a situation where ,)( cxxf =  where c is a 
precisely known constant.  The slope of the 
line is c, and so the uncertainty is 

.xcx
dx
dff δδδ =






=  

General rule for single small errors 

The special case of multiplying a 
measurement by a constant shows us how 
we can deduce a general rule for 
propagating the uncertainty in any single 
measured variable, provided the relative 
uncertainty in that variable is small. A look 
at the second graph at the right will show 
how this is so.   

The second graph shows an arbitrary 
function f(x) that is not a straight line.  If the 
uncertainty δx is small, then we can 
approximate the function f(x) near the best 
value bestx  as a straight line through the 
point ( )( )bestbest , xfx .  The slope of this line 

is the value of 
dx
df  evaluated at bestx , which 

we denote by 













bestxdx
df .  We can see from 

the graph that x
xdx

dff δδ 












≈

best

. 

 

 

 

Rule for propagation of single small uncertainties: if 

)(xff =  then x
xdx

dff δδ 












≈

best

 for small values of δx. 

Example: a power law. 
Problem: Let's suppose you want to measure the height of a five-story building by 
dropping a baseball off of the roof and timing its fall.  Using your digital watch, you 
measure the fall to be t = 2.0 ± 0.1 seconds.  Your best value of the building height h is  

( )
( )( )( )

.sec/m20
sec2sec/m1021

21
22

2

=
=

=

h
h

gth  

 )(xf

x

xcδ

xδ

xcδ

xδ

bestx

bestcx

( ) cxxf =

)(xf

x
xδ

x
xdx

df
δ










best

xδ

bestx

( )bestxf

( )xf

x
xdx

df
δ










best
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What is the uncertainty of this measurement? 
 
Solution: First, we’ll find δh using the rule for propagation of single small uncertainties: 

( )
( )( )( )

.meters2
sec1.0sec20sec/10 2

best

best

≈
≈

≈














≈

h
mh

tgth

t
tdt

dhh

δ
δ

δδ

δδ

 
Answer: The measurement is h = 20 ± 2 meters.   
Let's compare this to what happens if we calculate our error using the rule for easy 
propagation of single errors, based on our highest and lowest estimates of t. 

( )
( )( )( )

( )
( )( )( )

m05.22
sec1.2sec/m1021

21

caseHighest 

m05.18
sec9.1sec/m1021

21

caseLowest 

22

2

22

2

=
=

=

=
=

=

h
h

gth

h
h

gth  
Here, we have kept a few extra digits from our calculation to make a point.  Our rule for 
propagation of single small uncertainties tells us that h is between 18 and 20 meters, but 
the rule for easy propagation of single errors tells us that h is between 18.05 and 22.05 
meters.  Remember, the rule for propagation of single small uncertainties is only an 
approximation for small errors.  In this case, the approximation is close enough. 
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ERROR ANALYSIS INTERLUDE #3 
Adding or Subtracting Two Quantities 

Standing in the middle of a soccer field, you and your friend suddenly wonder 
whether the field you have been practicing on is the regulation length of 115 yards.  You 
decide to pace it off, each walking from the middle to opposite ends.  You each measure 
a distance of 50 ± 10 yards, or ± 20%.   (Pacing is a pretty crude measurement, after all.)   
Adroitly adding 50 yards plus 50 yards, you calculate the your best guess of the length of 
the field to be 100 yards.  Now the hard part: what is your uncertainty in this 
measurement?  Is it: 

a) 10 yards? 
b) 20 yards? 
c) Something between 10 and 20 yards? 
If you think about it carefully, you can eliminate answer (a) as a possibility.  

After all, 10 yards is the uncertainty you would expect if you had measured your part as 
you did, but somehow managed to know the other part exactly.  Surely, having your 
friend pace it off instead should add something to the uncertainty in the resulting 
measurement. 

Answer (b) is a little more tempting.  After all, let's consider the two worst-case 
scenarios: If both distances are on the high side of your range, the result is a field 
of yards120yards60yards60 =+ .  If both distances are on the low side of your range, 
the result is an area of yards80yards40yards40 =+ .  That's a measurement of 

yards20100 ± , right? 

Not so fast.  It turns out that answer (b) is an overestimate of the error, because it 
is also possible that the two errors will tend to cancel each other.  The table to the right is 
a summary of some possible 
discrepancies between the actual lengths 
and the measured values of 50 yards.  
Here, we assume that there are only three 
possibilities: the actual length of the 
distance you measured might be 10 yards 
greater (+10), or 10 yards less (-10) than 
your estimate of 50 yards, or the actual 
value might be exactly 50 yards (0).  The 
same three possibilities are shown for 
your friend’s side of the field.  (Of course, 
for each measurement there are actually 
an infinite number of possibilities, but to list them all would make the table rather long 
and tedious, and difficult to post on the web.) 

Of the 9 possibilities listed, only 2 of them lead to an error as high as 20 yards.  It 
appears to be very unlikely that the uncertainty in the total length of the field could be as 
much as 20 yards. 

Let's be a little more quantitative about it, remembering the “Rule for confidence 
level of errors” from Error Analysis Interlude #1.  If your measurement of the field is 

Your 
Discrepancy

Friend’s 
Discrepancy 

Total 
Discrepancy

+10 +10 +20 
+10 0 +10 
+10 -10 0 

0 +10 +10 
0 0 0 
0 -10 -10 

-10 +10 0 
-10 0 -10 
-10 -10 -20 
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yards,1050± this means that you estimate that there is a 68% chance that the actual 
length is between 40 and 60 yards.  There is a 16% chance that the length is 60 yards or 
greater, and a 16% chance that the length is 40 yards or less.  We can now ask ourselves: 
what are the chances that you and your friend's measurements are both 60 yards or 
greater?  Go ahead.  Take a minute and do the calculation.  Don't read ahead.... Try it 
yourself first.... Don't look.... 

The probability that both measurements would be over 60 yards is 
026.0)16.0)(16.0( =  or 2.6%.  The probability that both measurements would be less 

than 40 yards is also 2.6%.  So if you did state your measurement of the length of the 
field as yards,20100 ± you would be giving the confidence interval of 95% instead of the 
usual 68%.  Clearly, the 68% confidence interval (the one we usually use) must be less 
than that.  So the uncertainty of this measurement must be somewhere between 10 and 20 
yards, answer (c). 

So what is the uncertainty of your measurement?  We can't prove it here, but it 
turns out that the best way to combine those two independent errors is by adding in 
quadrature: square each one, add them together, and take the square root.  In this case, 

( ) ( ) yards.14yards10yards10 22 =+=lδ   (Just like finding the hypotenuse of a right 

triangle, .22 bac += )  This means that if you had to bet a dollar one way or the other, 
you would bet that the field was less than the regulation 115 yards.  But remember, your 
error estimate is only your 68% confidence level; you sure wouldn't want to bet your life 
on it. 

 

 

 

Rule for adding and subtracting quantities with independent 
errors: if KK −−−−+++= cbazyxf  then 

( ) ( ) ( ) ( ) ( ) ( ) KK +++++++= 222222 cbazyxf δδδδδδδ .   

Dependent Errors 

Adding in quadrature is the rule we use when we think the two errors are 
independent of each other.  In the example above, it's quite likely that your measurement 
is too low and your friend's is too high, or vice versa.  However, if the two quantities are 
not independent of each other, for example if the same person paces off both halves of 
the field with a systematic error in stride length that effects both halves equally, then 
adding in quadrature isn't the right thing to do.  In that case, the errors would simply add 
together. 

 

 

Rule for adding and subtracting quantities with 
dependent errors: if KK −−−−+++= cbazyxf  
then KK +++++++= cbazyxf δδδδδδδ .   

Products and Quotients 

Having just measured the length of the field, you and your doubtlessly geeky 
friend are just getting warmed up!  You decide to measure the width of it and calculate its 
area too.  Your friend quickly paces it off and reports the answer: "70 plus or minus 10 
yards.  Let's see, 70 times 100, that's 7000 square yards.  Now what about the error?"   
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You can't use the rule for adding and 
subtracting quantities here.  (If you try it, you'll 
see that the units won't even work out.  You'll 
end up with 7000 square yards plus or minus 17 
yards, which is nonsense.)  

The figure to the right shows the 
situation graphically.  The best value for the area 
is ,bestbestbest wlA ×=  but it might be as large as 

( )( ),bestbestbest wwllAA δδδ ++=+  or as small as 
( )( ).bestbestbest wwllAA δδδ −−=−  The uncertainty in the area, shown by the shaded 

regions, is roughly .wllwA δδδ +=  The relative uncertainty would be 

 ( )
.wwllAA
AwllwAA

δδδ
δδδ

+=
+=  

Notice that for the product of l and w, it’s the relative uncertainties that add together, not 
the absolute uncertainties. 

But as in the case of addition and subtraction, simply adding the relative 
uncertainties wwllAA δδδ +=  actually overstates the error, because there is only a 
small chance that wδ  and lδ  will both be very large or both be very small.  Again, the 
best estimate of the error is obtained by adding the two relative uncertainties in 

quadrature, ( ) ( ) .22 wwllAA δδδ +=   This is the general rule for combining 
uncertainties in products, and it works for quotients too. 

 

 

 

Rule for products and quotients with independent 

errors: if 
K

K

××
××

=
ba
yxf , then 

.
2222

K+

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


+





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b
b

a
a

y
y

x
x

f
f δδδδδ  

General Rules for Multiple Errors 

In the previous error unit, we wrote a rule for small errors in )(xf : 

x
xdx

dff δδ 












≈

best

.  This rule can be combined with the principle of adding independent 

errors in quadrature, leading to a very general rule for combining multiple independent 
errors: 

 

 

 

Rule for multiple independent errors: if ),,,( Kzyxff =  then 

K+
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(The symbol 
x
f
∂
∂  is the partial derivative.  It means to hold the rest of the stuff constant, 

and take the derivative of just that one variable.)  In fact, both the rule for addition and 
subtraction and the rule for multiplication and division can be derived from this one 
general rule.  

Of course, multiple errors might not always be independent of each other.  In the 
case of dependent errors, we would not add the terms in quadrature. 

 

 

 

 

General rule for multiple dependent errors: if 
),,,( Kzyxff =  then 

K+
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. 

Don't be intimidated if these general rules for multiple errors look big, hairy, and 
unfriendly to you.  In fact, they are merely extensions of two principles you have seen 

before: the rule for propagating single small uncertainties, x
xdx

dff δδ 












≈

best

, and the 

general principle of combining uncertainties by adding them in quadrature when they are 
independent.  

Example: Combining Two Errors. 
Problem: In bright sunlight, the total solar power P incident on a circular solar panel is 
given by ),cos(2 θπRCP =  where the constant C = 0.1367 Watt/cm2, R is the solar 
panel’s radius and θ  is the angle at which it faces the sun.  Suppose that you have 
measured cm1.00.5 ±=R and degrees130 ±=θ , and calculated P = 9.30 Watts.  What 
is your uncertainty in this result?  
 
Solution: We’ll find Pδ using the general rule for multiple independent errors.  Notice 
that we have to convert δθ  to radians for our calculation: 

( ) ( )
( )

( )
( ) ( )

Watts38.0
W093.0W37.0

)rad0175.0)(30(sin)cm0.5)()(W/cm1367.0(

)cm1.0)(30)(coscm0.5)()(W/cm1367.0)(2(

)sin()cos(2

22

2o22

2o2

2
best

2
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2
bestbest

2
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P
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π
δ

δθθπδθπδ
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δδ

 

Notice that although the relative uncertainty in θ  is larger than that for R (3%, compared 
to 2%), the contribution to Pδ  from δθ  (0.093 W) is significantly smaller than that from 
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Rδ  (0.37 W).  This is due to both the magnifying effect of squaring R, and the relatively 
shallow slope of θcos at o30=θ . 
 
Ignoring Small Errors 

If you look again at the example problem above, you will see that the effect of 
the uncertainty δθ  disappears almost entirely when it is added in quadrature to the larger 
uncertainty due to Rδ .  Let’s look at another example.  Suppose you are multiplying two 
independent quantities together: xyf = .  Let's suppose your relative uncertainty in x is 
4%, and your uncertainty in y is 1%.  Look what happens when you calculate the relative 
uncertainty in f:  

( ) ( ) %.4%12.4%1%4 22 ≈=+=
f
fδ

 

Notice that the smaller error makes almost no difference in the final calculation of the 
uncertainty.  Adding in quadrature makes it possible to ignore the small one completely.  
It will often be the case that your measurements will be dominated by a single source of 
error, and all the others can be safely swept under the rug. 
 
 
 

Rule for Ignoring small errors: Feel free to ignore 
small independent errors.  They only add in quadrature, 
so what the heck? 

Although you have been given many "rules" to keep track of, you will find as 
you use them that they become more a matter of common sense than anything else.  
(Don’t dread long calculations either; in many cases, the uncertainty in your final result 
will be dominated by the error in a single variable, and other uncertainties can be safely 
ignored.) You will quickly get a feel for estimating the effects of large errors and 
ignoring small ones.  In time, you error analysis will become quite natural.  In the same 
way that a good auto mechanic knows which parts of an old car are most likely to cause 
trouble, you will soon get a feel for which laboratory measurements are your largest 
sources of uncertainty, how to estimate their effects, and even how best to minimize 
them. 

 

 
 
 

ERROR ANALYSIS INTERLUDE #4 
Plotting Data With Error Bars 

So far in physics 103, whenever you have made a graph of your experimental 
data, you have represented your data points with little round dots or circles on the graph.  
The size of the dots was either whatever size the computer program happened to give 
you, or whatever size was convenient to make with your pencil in your notebook.  And 
although the dots or circles were actually a few millimeters in diameter on the paper, we 
thought of them as representing infinitesimally small points, at their centers.   

But if you stop and think about it, there’s something inherently wrong (or at least 
pretty misleading) about treating your data as infinitesimally small points.  In fact, every 
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measurement you make is subject to some uncertainty.  While the center of a dot is a 
good way to denote your best guess of a measurement’s value ( )bestbest , yx , it leaves out 
the equally important information about your measurements’ uncertainties, xδ and yδ .  
The convention used by scientists and engineers to convey this additional information in 
a graph is to use error bars around the data points.   

In the picture below, a student has dropped a marble from several different 
heights h and plotted the time t of the fall as a function of h. Both h and t are somewhat 
uncertain for each data point, so there are two error bars for every point, representing hδ  
and tδ .   (Sometimes you’ll see the two error bars represented as an ellipse or a circle.)  
Often, if the uncertainty of one of the coordinates is either very small or simply not 
known, a single error bar may be used.  In this case, since the relative uncertainty in h is 
apparently much smaller than the relative uncertainty in t, the student might well have 
chosen to skip the error bars showing hδ  and shown only tδ . 
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(You can easily add error bars to your own Excel graphs.  Double click on one of 
your data points on the graph to open the “Format Data Series” window, then click on the 
“X Error Bars” or “Y Error Bars” tab.) 

Fitting Data To A Straight Line: The Eyeball Method 

The next graph shows a set of experimental data points that closely resembles a 
straight line.  Of course, the points do not fall exactly on a line, in part because the 
measurement that produced them is subject to some uncertainty.  Here, we assume that 
any uncertainty in the x values is much smaller than the uncertainty in the y values, so we 
include only error bars for yδ  in the graph.   
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Let’s suppose that you want to find the equation for the line that “best” fits this 
apparently linear data; that is, you 
suspect that the data is of the form 

xAAxy 10)( += , and you wish to 
find values of 0A  and 1A  that are most 
likely to be the actual, true values, 
based on the available data.  If you had 
to guess at where the line would be 
based on your intuition and common 
sense, you would probably draw the 
line right about where the solid line is 
in the figure.  You could then read the 
y-intercept ( 3.40 ≈A ) and slope 
( 50.01 ≈A ) of that line from the 
graph, and you’d have your answer.  
This is what we call the eyeball 
method. 

Now you need to know the uncertainty in 0A  and 1A .  After all, somebody else 
might have drawn the “best fit” line in a slightly different place.  Imagine holding the 
slope of the line constant, and sliding the line up and down along the y-axis.  A 
reasonable person might slide the “best fit” line as high or as low as the two dotted lines 
in the figure.   This uncertainty in the location of the line leads to an uncertainty of 

2.00 ≈Aδ .  Similarly, you can imagine holding the y-intercept fixed at 50.00 =A   and 
changing the slope to find the uncertainty in 1A , as is suggested in the following figure.   

The error bars included in 
the graph are a valuable tool for 
determining 0Aδ  and 1Aδ .  Do you 
remember the rule of the 68% 
confidence limit?  If these data 
points really describe a linear 
relationship between x and y, and if 
the error bars have been drawn 
correctly to indicate the usual 68% 
confidence limit, then the error bar 
on each point should have about a 
68% chance of overlapping the 
line.  Stated another way, the best 
fit line should hit about two-thirds 
of the error bars in the graph.  Any 
fewer than that, and the line is 
probably not in the right place.  
Sure enough, we see that the solid 
straight line in the figure hits 8 out of the 11 error bars, which is close enough to two-
thirds that we may suspect we’re on the right track.   
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The bottom line here is that the uncertainties in the y values in each of the data 
points leads to an uncertainty in the “best fit” parameters 0A  and 1A . 

Fitting Data: The Method Of “Least Squares” 

Computers don’t have eyeballs or common sense, so they pretty much stink at the 
“eyeball method” described above.  Instead, a computer program uses a specific 
mathematical algorithm to find the best fit parameters.  The algorithm you will learn 
about here is called the “least squares” fit.  Using a process like this to fit data to a line is 
called a “linear regression.”   

Suppose you have four data 
points to fit to a straight line, as 
shown in the figure to the right.  
Intuitively, you want your line to be 
“close to” where the points are, so 
line A drawn in the figure seems 
like a good first start. 

Is minimizing the distance 
between the line and the points 
exactly what we want the computer 
to do?  The vertical distance 
between line A and each of the 
points in the figure is 1 unit, and the 
sum of these distances is 4.  Clearly 
if you raised the best fit line to line 
B, you would increase that total 
distance, and make the fit worse.  On the other hand, line C is clearly less likely than line 
A to be the actual line approximated by the data, and yet the total distance between the 
points and line C is also exactly 4.  Apparently, minimizing the total vertical distance, or 
differences, between the points and the line is not quite right. 

Instead, we can hit on a reasonable algorithm if we try to minimize the sum of 
the squares of these differences.  For line A, each difference is 1 unit, so each difference 
squared is also 1, and the sum is 4.  For line C, the difference between the lines and the 
two missed points is 2 units; square it and get 4; the sum of the squares is 8.  By this 
algorithm, line A is clearly the better fit than line C.  Apparently we have just stumbled 
on a reasonable way to find a best-fit straight line: find the line that minimizes the sum of 
the squares of the differences between the line and all the data points.  This is the method 
we call “least squares fitting.” 

Finding the “least squares” line need not be a matter of trial and error.  (Although 
a computer is infinitely patient for that kind of tedium, you may not be.)  Hopefully, you 
can see right away what has to be done.   

Imagine a line xAAxy 10)( +=  on the same graph as your data, and a bunch of 

data points ( )ii yx , , where Ni K3,2,1=  up to however many data points you have.  
Write down the difference between each of the data points and the line: 

( )ii xAAy 10difference +−=  
Square the differences and sum them: 
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Sum of differences squared ( )( )∑
=

+−=
N

i
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To find the values of 0A  and 1A  for which the sum is a minimum, take the derivatives 
and set them to zero: 
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The result is a set of two equations and two unknowns, which either you or a computer 
can solve.  The result, shown here for completeness only, is 
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Life is too short to bother memorizing these equations, in fact, with a computer at hand, 
life is too short to even bother ever using them yourself.     

Although you’ve seen that the least squares method is a reasonable way to find 
the best fit straight line, we haven’t proved that it’s the best way.  (“Why not minimize 
the sum of differences to the fourth power,” you might ask.)  The real reason has to do 
with the mathematical form of what is called the normal distribution (more popularly 
called the bell curve), which you will learn about in the next error analysis interlude.  
You can make the argument for the exponent of 2 as mathematically rigorous as you like, 
but we won’t do it here.   

The method of least squares works for fitting other functions besides just straight 
lines.  For fitting a quadratic, you’ll have three parameters: 0A , 1A , and 2A .  For non-
polynomial fits, the mathematics becomes a bit more hairy, but least squares fitting is still 
the basic recipe you’ll need.   

Uncertainty In The Best Fit Straight Lines. 

Having just written down a formula for how to find the parameters 0A  and 1A  
that will best fit your data to a straight line, we now ask, “can we calculate the 
uncertainty in these parameters?”   

The answer is that you can, and you already know how to do it, at least in 
principle. The formula that we wrote down for 0A , for example, is just a big, messy 
formula of lots of variables, ( )K,,,, 22110 yxyxA .  Some of those variables (maybe all 
of them) have uncertainties associated with them.  (Remember those error bars on the y 
coordinates?)  In principle, you could use the rule for the propagation of multiple 
independent errors that we learned about in Error Analysis Interlude #3,  
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and just crank it through.  Mercifully, you won’t have to.  Whenever you ask a program 
like WPTools to find the best values of 0A  and 1A , it can find the uncertainty in them 
too.  That’s what WPTools has done in the figure on the below, where it tells you 
“SE(a0)=0.1529.”  The “SE” stands for standard error, which you’ll learn about in the 
next error analysis interlude. 
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But now you may be wondering just what WPTools is actually doing, since you 

never told it anything about the uncertainties in all of your data.  How does it know?  The 
answer is that it estimates the uncertainty of the data points based on how far away they 
are from the best-fit line or best-fit curve it finds.  If the data are very close to the line, the 
uncertainties in their values must be small.  If the data are very scattered, their 
uncertainties must be large.  WPTools uses the scatter in the data (more precisely, their 
deviation from the best-fit line or curve) to determine their uncertainties, and then uses 
those uncertainties to calculate the uncertainty in the fitting parameters 0A , 1A , 2A , and 
so on. 

The good news is that the random differences between the data and the best-fit 
curve are usually an excellent measurement of the amount of random errors in the data.  
The bad news is that this totally ignores any non-random, or systematic errors in the data.  
These will have to be factored in later. 

Example: combining with systematic error. 
Problem: Amir and Belinda have just taken a video of a cart moving along an air track at 
a constant velocity, and they want to know its speed.  They copied their data of x position 
vs. time into Excel, and had WPTools fit their data to a straight line.  WPTools tells them 
the slope of the x-position vs. time graph is “0.71”, and the standard error in that slope is 
“0.031” Amir and Belinda write down the speed in their notebooks: m/sec03.071.0 ± , 
or 4%.  Are they done?  
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Solution: They’re not done yet.  The linear regression routine in WPTools has given 
them the uncertainty in the slope based only on the random errors in the data.  It has no 
way to determine the uncertainty in the speed due to any systematic errors in the data.  
Amir and Belinda will have to account for those themselves.  
 
The random errors are things that would vary from point-to-point.  The biggest random 
error is the clicking of the points themselves, which at best have a precision of only one 
pixel.   The systematic errors are the ones that are the same for all of the (x,t) data points.  
Perhaps the clock is running a bit slowly on their computer, affecting all of the time 
measurements?  Perhaps the camera was tilted slightly so that there was also some 
motion of the cart along the y-axis in addition to the x-axis?  Or perhaps the scale factor 
converting pixels to meters is slightly imprecise?  Of these, the scale factor is by far the 
largest, and the others may be safely ignored. 
 
Amir recalls that to scale their movie, they measured a half meter stick to be 65 pixels 
across.  Belinda figures they knew could only have measured that distance to within 2 
pixels, a relative uncertainty of %365/2 = .  Alone, this would yield a 3% uncertainty 
in their speed calculations.  Combining their 3% systematic error to their 4% random 
error from the curve fitting, Amir and Belinda find their real error in their velocity is 

( ) ( ) %5%4%3 22 =+ . 
 
If you wish, you can look at Amir and Belinda’s problem in another way.  The fitting 
routine really only told them the slope of their line in pixels per second.  If they hadn’t 
input their scaled data, the fitting routine would tell them their speed was 492±  
pixels/second, or 4%.  To convert to meters, they divide this by their scale factor, 265±  
pixels/0.5 meter, or 3%.  To combine these errors, they use the rule for multiplying and 
dividing and combine the relative uncertainties in quadrature, as before. 
Don’t Believe Everything You Read: A Cautionary Note. 

In general, we know better than to try to stick a square peg in a round hole.  But 
computer software generally isn’t that bright.  WPTools will happily fit a straight line to 
curved data, and report back to you the best fit parameters with their uncertainties as if 
everything was just fine.   

Don’t believe everything you read!  After the computer fits your data, look at it 
and see if it makes sense.  Your data points should be randomly distributed above and 
below the fitted curve.  If all the data in the middle of the range is above the straight line, 
and all of the data on the ends are below it, that would be your big clue that your data 
isn’t really a straight line.  Something else is going on, and you’d better understand it or 
you’re going to get screwy results. 

Example: Misuse of a least squares fit 
Problem: Albert and Barb have are analyzing a collision between two carts.  To find the 
velocity of one of the carts after the collision, they plot the x_position vs. time, and fit the 
data to a straight line, shown in the graph below, where the collision has happened at time 

0=t .  Is the slope of the straight line fit (0.29 m/sec) really the best value for the 
velocity immediately after the collision?  
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Solution: Clearly, data after the collision is not exactly a straight line.  Apparently, their 
cart does not have a constant velocity as they had guessed.  Reading the slope off of the 
straight line fit will not give the best estimate of the speed immediately after the collision. 
   
The students could try to fit a smaller portion of their data right after the collision, during 
which time the velocity 
would be more constant, 
though with fewer data 
points they would have a 
larger uncertainty in their 
value.  Bettter yet, they 
could model their cart as 
undergoing constant 
acceleration.  They could 
then fit their position data 
to a quadratic 
equation
( ) 2

2
1

00 attvxtx ++= , 
and find the best fit of the 
initial velocity 0v  that 
way.  Or they could oil the 
cart’s wheels and try the 
experiment again.  
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ERROR ANALYSIS INTERLUDE #5 
Repeated measurements and distributions 

Many of the experimental measurements we make are subject to random errors: 
our results are slightly different every time we make the measurement.  For example, 
suppose that we are measuring g by timing the period of a pendulum with a handheld 
stopwatch.  We might measure the following times, in seconds: {2.79, 2.81, 2.83, 2.77, 
2.80, 2.81, 2.81, 2.79, 2.82, 2.82, 2.81, 2.82, 2.79, 2.81, 2.81, 2.78, 2.79, 2.78, 2.79, 
2.80}.  By repeating the measurement several times as we have, it is possible to both 
estimate our uncertainty in the final result, and minimize it.   

The histogram on the following page shows the distribution of our measurements 
of the period.  There was one measurement of 2.77, two measurements of 2.78, five of 
2.79, and so on.  If we took many more measurements, we might reasonably expect that 
our histogram might gradually begin to look like a smooth, bell-shaped curve.  As long as 
we suspect that our distribution would eventually become a more-or-less symmetric bell-
shaped curve, we can safely assume that the best value of our measurement is the average 
or mean of all of the individual measurements we have made, denoted by x . 
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Rule for Averages: The best value of a repeated 
measurement is the average or mean of the individual 

measurements, 
N
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K21 , provided the 

distribution function is a symmetric single peaked 
function.  (But you probably already knew this.) 

The standard deviation 

Consider the two graphs below.  Both are distribution functions ( )xf  for 
repeated measurements of x, and both have the same average value x .  Clearly, the 
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difference between them is that one distribution is much wider than the other.  The way 
we describe this is with the standard deviation xσ  of all of the measurements: 
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(You can think of the standard deviation as kind of a “typical difference” 
between the individual values and the average value.  In fact, the equation looks a little 
like an average in that we’re adding up a bunch of things and dividing by N, but we have 
to go through the business of squaring each item and then taking the square root of the 
sum in order to prevent our “typical difference” from averaging to zero.) 

If a measurement is subject to many small random errors, so that the distribution 
function of the measurement is a nice, smooth, symmetric bell-shaped curve, then the 
standard deviation tells us where any single measurement is likely to fall.  Though we 
won’t prove it here, it turns out that for a smooth distribution like that, 68% of the 
measurements will fall between xx σ−  and xx σ+ .  Stated another way, any single 
measurement has a 68% of falling in the range of xx σ± .   

Example: calculating a standard deviation. 
Problem: Calculate the standard deviation of the following set of numbers: {3,3,4,4,6}.  
 
Solution: The average of these numbers is 
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and from here we can calculate the standard deviation: 

( )

( ) ( ) ( ) ( ) ( )

1.1
5

6444443434 22222

2

=

−+−+−+−+−
=

−
= ∑

N

xx i
xσ

 

xx σ+xx σ−

x

( )xf

x
xx σ+xx σ−

x

( )xf

x



 28

You will often see the definition of standard deviation with 1−N  in the denominator 
instead of  N:   
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xσ  (alternate definition). 

There are subtle differences between the cases when you should use one version or the other, but 
as long as N is large enough, the difference won’t matter much anyway.  For purposes of this 
course, you may use them interchangeably.  (If you ever really need to know the difference, plan 
on either spending an hour curled up with a statistics book or buying a cup of coffee for a friend 
who already has.) 

 

 

 

 

Rule for Standard Deviations: The standard deviation 
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xσ  tells us 

about the width of a distribution.  About 68% of the 
individual measurements should fall in the range 

xx σ± .  

Standard Error  

Suppose you have made a series of repeated measurements and calculated their 
average and standard deviation.  After correctly figuring that your best estimate of the 
measurement is the average, you might be tempted to write that your uncertainty in your 
measurement is the standard deviation, but you would be wrong. 

The uncertainty in your measurements is not given by the standard deviation, 
because the standard deviation doesn’t necessarily go down with more measurements.  
Intuitively, we know that our results should be more and more precise as we average 
together more and more measurements.  But with more and more measurements, the 
standard deviation stays the same.  If we take a million additional measurements of 
something, the standard deviation might fluctuate either up or down a little bit, but it 
won’t reflect the huge improvement in our precision that should come from averaging a 
large number of measurements. 

The uncertainty of a series of measurements is obtained by dividing the standard 
deviation by N .  This quantity is called the standard error or standard deviation of the 
mean: 
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Intuitively, we should be comforted to see that our uncertainty decreases as we average 
more measurements.  
 
 
 

Rule for Standard Errors: The uncertainty of a series 
of measurements is given by the standard error, 
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Example: what standard deviations and standard errors are good for. 
Problem: Moustafa and Marika have just taken 5 measurements of the period of a 
pendulum using an electronic timer, and they have calculated x , xσ , and xσ .  (a) What 
is their best estimate of their period, and its uncertainty?  (b) If they took one additional 
measurement, what range would they expect it to lie in?  (c) If they came back the next 
day to take five additional measurements, what range should they expect the average of 
those next five measurements to lie in?   
 
Solution: (a) Their best estimate of the period is the average (mean) value of their 
measurements x , and their uncertainty is the standard error xσ .    
 
(b) If they took one additional measurement, it should fall within one standard deviation 
of their average: xx σ± .  (Most measurements don’t fall within the smaller range 

xx σ± .)   
 
(c) If they came back the next day to take five more measurements, their result should fall 
within the range xx σ± .  That’s part of what their uncertainty estimate says: that on 
another day, someone doing the exact same thing should end up with the same answer, to 
within their uncertainty of the standard error.  That is why the standard error is also called 
the standard deviation of the mean: because several different means calculated in the 
same way would have a distribution for which the standard deviation was xσ . 

The Normal Distribution 

If a measurement is subject to a large number of small, random uncertainties, it 
can be shown that the bell-shaped distribution function (as seen on a histogram like the 
previous graphs) will always have a particular mathematical form called the normal 
distribution, or Gaussian distribution, which has the form (which you don’t have to 
memorize)  

( ) ( ) 22 2/ xxxexf σµ−−= , 
where xµ  is the mean of the distribution and xσ  is the standard deviation. 

The normal distribution has many important mathematical properties that provide 
the theoretical justification for much of the error analysis we have done in this course.  
The mathematical form of the normal distribution allows us to add uncertainties in 
quadrature.  It provides the justification for using the average as the best statistical 
estimate of a series of measurements.  It’s also the reason for the seemingly arbitrary 68% 
confidence level we adopted as our standard.  Our use of the standard deviation and 
standard error as uncertainty estimates for a single measurement or a group of 
measurements also depends on a normal distribution.  Even the least squares method of 
fitting data to a straight line in Error Analysis Interlude #4 was based entirely on the 
assumption that the distribution of the data points around the best fit line was a normal 
distribution. 

Now that we know that all of the error analysis we have done so far is based on 
the assumption that our errors all follow a normal distribution, we can let you in on the 
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dirty little secret about error analysis: most errors probably don’t follow a normal 
distribution.  In fact, most distributions are slightly asymmetric about the center, and 
some may even be bimodal, or worse.  Dealing with these cases could be the basis for 
many additional Error Analysis Interludes, or even whole courses. 

Learning that most errors don’t follow a normal distribution is like learning that 
most surfaces aren’t frictionless, air resistance isn’t always negligible, and g isn’t exactly 
9.8 m/sec2 everywhere.   These are still useful approximations to be able to use, but it’s 
important to remember that they are just that: approximations. 

In the end, error analysis is all about approximation in the following sense: even 
our best, most accurate, most precise measurements are only approximations of the 
physical reality that’s out there.  All measurements are somewhat uncertain, and error 
analysis is all about figuring out how much of an approximation our uncertain 
measurements really are. 

The flip side is that measurements are also subject to some degree of certainty: 
“Error” analysis is also “correctness” analysis.  When you make a measurement and 
calculate your uncertainty, you are putting up a big bold flag that says not only where 
your uncertainty begins, but also where your certainty begins.  Anybody with a theory 
that relates to your measurement is going to have to deal with you first.  Putting a line 
between what we do know and what we don’t know yet is an important part of what 
science and engineering is all about, and error analysis is one of the ways we do it.   

 


