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Abstract- We present analytical and experimental 
results demonstrating a conceptual break through 
on how to overcome the fundamental time-
frequency bandwidth limit (or spectral super-
resolution) for a light pulse in traditional and 
heterodyne spectrometry. This can be achieved 
either by a de-convolution process suggested by 
analytical method or by heterodyne method, which 
we demonstrate. 
 
Index Terms- Interference, superposition principle, 
time-frequency Fourier theorem, overcoming time-
frequency bandwidth limit, super resolution in 
spectroscopy. 
 
 

I. INTRODUCTION 
 
The application oriented objective of this paper is 
to analytically and experimentally demonstrate 
that the traditional “time frequency bandwidth 
limit” 1tδνδ ≥  is not a fundamental limit of 
nature [1]. In traditional spectrometric 
instrumentsδν does represent actual spectral 
fringe broadening due to time-finite amplitude 
envelope of a light pulsed, but this broadening is 
due to spread of energy of the same source-
generated carrier frequencies of the pulse and not 
due to generation of new optical carrier 
frequencies by the spectrometer or the amplitude 
envelope. Accordingly, one can obtain super 
resolution in all spectroscopic experiments. 
Separate, simultaneous measurement of the 
temporal envelope of the pulse is necessary while 
using traditional spectrometers. In heterodyne 
spectroscopy, the temporal envelope 
measurement is useful but not essential.  
 

The second objective of this paper is to explain 
the conceptual foundation behind the derivation 
of the above mentioned results, which is an 
attempt to visualize the interaction process 
behind the measurements that register the effect 
of superposition of more than one light beams.  
 
Our starting point is the universal observation 
that the EM fields (well defined light beams) 
really do not operate on (or, modify the energy 
of) each other [2] when they are superposed 
(occupy the same space and time), especially in 
the absence of materials (dipoles). Otherwise we 
could not have recognized each other on earth; 
we could not have discovered the systematic 
Doppler shifts of distant star lights (Expanding 
Universe!) and we could not have enjoyed the 
global internet revolution while diverse 
information channels are being carried by many 
different frequencies through the same, hair-thin 
fiber! In spite of non-interference of light, we 
continue to use the phrases, like “interference of 
light” (for centuries) and “single photon 
interference” (for many decades).  
 
In the second (next) section we briefly show the 
similarity between the Maxwell and Fourier 
representations of linear superposition of simple 
harmonic oscillation function, which is supposed 
to vindicate the universal principle of 
superposition. Then we review our previously 
published experiments [3], which validates that 
the effect of superposition can be registered only 
in the presence of interacting detectors and the 
reported effect is “colored” by the different 
quantum properties of different detector dipoles.  
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The third section gives the summary of the 
derivation of the classical spectrometric 
formulation based on direct time-domain 
propagation of an incident pulse in the real-space, 
instead of working in the Fourier transformed 
frequency-space. This gives the pulse-impulse 
response of a spectrometer when the pulse shape 
is known. The de-convolution of this pulse 
impulse-response gives the actual content of the 
carrier (E-vector) frequencies and allows us to 
obtain super resolution. The time integrated 
expression, by virtue of the Parseval’s energy 
conservation theorem, is equivalent to the 
traditional Fourier convolution expression for the 
pulse broadened “spectral” fringe. This 
establishes why we can, in most cases, ignore the 
difference between real-space and the frequency-
space analyses.  
 
The fourth section presents the result of 
heterodyne detection of amplitude modulated 
pulses, demonstrating that the carrier frequency 
content can be directly measured [4] irrespective 
of the pulse shape, provided the pulse is much 
longer than, first, the time constant of the photo 
detector, and second, the photo conductive 
electron emission process.       

 
II. NON-INTERACTION OF LIGHT INSPITE 

OF FOURIER & MAXWELL 
       
     Maxwell’s free space wave equation [5] is 
given by: 

2 2 2 2(1/ )E c E t∇ = ∂ ∂                  (1) 
 A simple CW solution to Eq.1, neglecting the 
arbitrary phase factor, is exp[ 2 ]b i tπν− . 
Mathematically, any linear combination of this 
solution, 

 ( ) exp[ 2 ]total n nn
b t b i tπν= −∑             (2) 

 
will also satisfy Maxwell’s wave equation.  Well 
before Maxwell, Fourier established a very useful 
theorem [6] for handling a time finite signal by 
its mathematical transform in the frequency space 
using the well-known integral: 

 
0

( ) ( ) exp[ 2 ]a t a f i ft dfπ
∞

= −∫ %         (3)  

The inverse transform is represented by: 

0
( ) ( ) exp[ 2 ]a f a t i ft dtπ

∞
= −∫%           (4) 

We have deliberately used different symbols 
& fν for the frequencies used by Maxwell’s 

wave equation and the Fourier’s time-frequency 
theorem to underscore the difference between the 
actual carrier frequencies for EM wavesν  and 
the generalized Fourier’s mathematical 
frequencies f , which may or may not be 
identical for all cases of actual experiments. This 
point will be apparent later. Notice the mutually 
supporting mathematical equivalency between 
the summation of Eq.2 and the integral of Eq.3, 
which leads us to assume that Eq.2 is a physical 
phenomenon as if EM fields interact with each 
other all by themselves to generate a new time-
finite resultant EM field with a new mean carrier 
frequency. The assumption is strengthened by the 
fact that Maxwell’s wave equation is derived 
from the so-called Maxwell’s four equations of 
electromagnetism, which are all essentially 
derived from experimental observations 
(Coulomb’s law, Ampere’s law, Faraday’s law of 
electromagnetic induction and Maxwell’s 
displacement current). It is the structure of the 
mathematics invented by us and the inherent 
properties of the sinusoidal functions that is 
behind this apparent mathematical congruency 
between the Eq.1, 2 and 3. Note that, as is the 
tradition, we have used time infinite sinusoidal 
solutions in the right hand sides of the Eq.2 and 
3, which is non-causal in the real world because 
it attempts to override the inviolable law of 
conservation of energy. No real physical signal 
can have infinite spatial extension and time 
duration. Of course, approach has been 
developed to solve this issue by truncating the 
Fourier amplitudes [7] within a finite range of 
time T and frequency F and Parseval’s theorem 
of energy conservation makes the approach 
logically congruent: 

2 2

. .( ) ( )
t T f F

tr trt f
a t dt a f df

+ +
=∫ ∫ %       (5) 

So, it may appear that we can solve the problem 
by simply using a time finite solution to 
Maxwell’s wave equation and replace bn by bn(t): 
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( ) ( ) exp[ 2 ]total n nn
b t b t i tπν= −∑      (6) 

Unfortunately, the real world’s observed 
interaction processes indicate that EM fields 
cannot be summed as in Eq.6 because they do not 
operate on each other by themselves even when 
they are physically superposed within the same 
space and time domain as we have underscored 
in the introduction. Something has to sum the 
fields or their effects. The Eq.6 is mathematically 
correct, but it does not represent the actual 
process of interaction between the field and the 
detector that is behind the observation of the 
superposition effects of light beams in the real 
world. We “see” light through the “eyes” of the 
detectors. It is the detector molecules that are 
linearly (in the low intensity regime) stimulated 
by each of the superposed EM fields with a 
strength given by the first order linear 
polarizability factor (1)χ [8]. If the quantum 
mechanical properties of the detector allow it to 
respond to all the superposed n-fields as dipole 
undulations dn(t), then it is this detector molecule 
that sums the effects of all the superposed fields 
and makes the photo current or exposure 
(interference fringes) visible to us: 

   
22 2(1)( ) ( ) ( ) e ni t

total n nn
I t d t b t πνχ −= = ∑   (7)  

Eq.7 represents the real physical detection 
process.  
 
To underscore the reality of Eq.7, we have 
carried out an experiment with two CW 
frequencies separated by 2 GHz, symmetrically 
centered on one of the Rb-resonance lines [3]. 
When the superposed beam is sent through a Rb-
vapor tube, it did not show any resonance 
fluorescence, even though by simple 
trigonometry (according to two terms Fourier 
synthesis), we were supposed to get the matching 
resonance frequency (mean of the sum of the two 
superposed frequencies): 

0 1 0 2

1 2 1 2
0

( ) cos 2 cos 2

2 cos 2 .cos 2
2 2

totalb t b t b t

b t t

πν πν
ν ν ν νπ π

= +
− +

=
  (8) 

 This revalidates that light beams do not operate 
on each other by themselves. However, when we 

sent this same superposed beam on to a high-
speed photo conductor, we found the traditional 
AC current undulating at the difference (beat) 
frequency. The valence and the conduction bands 
of the photo detector are broad.  
 

 
 

Figure 1. Comparison of energy level diagrams for Rb 
sharp lines and detector broad bands with the quantum 
of energies as absorbed by the detectors from the two 
EM fields carrying two different optical frequencies.  
 
This allows the detecting dipoles to 
simultaneously respond to all the allowed 
frequencies (here two), and the resultant current 
becomes: 

1 2
22 2

2
1 2

( )

2 [1 cos2 ( ) ]

i t i tI t de de

d t

πν πν

π ν ν

− −= +

= + −
             (9) 

 
The detailed “picture” in our view is that the 

undulating electric vector of the EM field induces 
the material dipoles to undulate with it. If the 

frequency matches with the quantum 
mechanically allowed transition frequency, then 
only there is transfer of energy from the field to 
the dipoles. For the superposition effects to be 

manifest, the detecting dipoles must be 
collectively allowed to respond to all the light 

beams simultaneously. This collective response 
to all the allowed fields of different frequencies 

makes the dipoles’ undulation strength vary with 
time. Accordingly, the rate of transfer of the 
number of electrons from the valance to the 

conduction band undulates with time and we get 
the “beat” current. The generation of the beat 

current also requires that the Poynting vectors of 
the two superposed light beams be perfectly 

collinear (completely match their wave fronts). 
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III. SUPER RESOLUTION IN CLASSICAL 
SPECTROMETRY BY TIME-DOMAIN 

ANALYSIS 
 
       It is important to recognize, as indicated by 
Eq.6, that all optical signals have to be time 
finite; even a CW laser has to be turned on and 
turned off. So, one should develop spectrometer 
behavior in terms of a time-finite optical signal 
with a given unique carrier frequency. This 
approach is also congruent with our 
understanding of light emitters like atoms and 
molecules. They have a finite life time and 
absorb and emit a finite amount of 
energy E hνΔ = . We are making a rational 
assumption that when such a finite amount of 
energy is released by an atom or a molecule, it 

propagates out as a time-finite wave packet with 
a carrier frequencyν .  
 
Let us now propagate such a wave packet 
through a spectrometer. This propagation and 
evolution of a pulse in the real-space is depicted 
in the Fig. 2a, b. It is well recognized in classical 
optics that the finite width of the spectrometer 
fringes arise due to its limitation in producing a 
finite number N replicated beams out of the 
incident one [7, see Ch.7 & 8] . But, due to the 
periodic delay, τ, the train of replicated short 
 
 
 
 

 
 

 
 
 
 
 
 
                                                 
                                              (a)                                                                         (b) 
 
Figure 2. Schematic diagrams for a traditional Fabry-Perot interferometer (a), an echelette grating (b). They show 
how the replicated and delayed output pulses would appear due to a single incident short pulse. These diagrams 
depict the partial superposition of a train of finite pulses with a periodic step delay of τ produced by an echelette 
grating. The carrier frequency ν  of the E-vector and the time-finite duration of the input amplitude a(t)  are depicted 
on the diagrams. Notice that all spectrometers have a characteristic time constant for its fringe evolution, or  pulse 
stretching, given by  τ0 = Nτ [2].  
 
 
pulses are only partially superposed, causing a 
further broadening of the “spectral” fringe, which 
has nothing to do with the actual frequency 
content of the pulse.  A fast detector array will 
register a time varying spectral fringe width 
variation given by the square modulus of the train 
of partially superposed pulses, where d is the 
strength of the detector stimulation by the fields 
[1, 9, 10]:  

21
2 2 ( )

0

( ) ( )
N

n i t n
out

n FP

i t TR d t n e πν ττ
−

−

=

= −∑ (10a)  

21
2 2 ( )

0

1( ) ( )
N

i t n
out

n Gt

i t d t n e
N

πν ττ
−

−

=

= − ⋅∑ (10b) 

The Eq.10a and 10b correspond to the two 
classical spectrometers, Fabry-Perots (FP) and 
Gratings (Gt), respectively. The expression for 
the Michelson’s Fourier transform spectrometry 
can be obtained from Eq.10b by inserting N = 2 
for two beam interferometry. The Eq.10 clearly 
indicates time varying fringe width that can be 
recorded by a streak camera. We should not 
interpret such time evolving fringe width as time 
evolving spectral content of the pulse. A 

t   τ =2d/c τ t 

a (t)ei2πνt 

t 
τ

0 Nτ τ=
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spectrometer with linear response does not 
produce any new optical frequencies. The time 
integrated fringe energy distributions or the 
pulse-impulse responses for an FP and a grating 
are given by:  

1
2 2

0
1

2

( , )

2 ( )cos[2 ( ) ]

N
n

pls FP
n

N
n m

n m

I T R

T R n m n m

ν τ

γ τ π ντ

−

=

−
+

≠

= +

− −

∑

∑
 (11a) 

1

2
1

1( , )

2 ( ) ( ) cos[2 ]

pls Gt

N

p

I
N

N p p p
N

ν τ

γ τ π ντ
−

=

= +

−∑
            (11b) 

1( , ) [1 ( ) cos 2 ]
2pls Michelson

I ν τ γ τ πντ= + (11c) 

We have written ( ) ( )m n pγ τ γ τ− ≡ ; this 
normalized autocorrelation function is defined as: 

2

( ) ( )
( )

( )

d t n d t m dt
p

d t dt

τ τ
γ τ

− −
= ∫

∫
     (12) 

The limits of the integrations in the numerator 
and the denominator span the duration of the 
pulse train and the pulse pair, respectively, which 
is causal. Notice that unlike traditional definition 
of coherence [7] we have defined the 
autocorrelation function in terms of the detector 
stimulation since operationally EM fields cannot 
be summed as they do not operate on each other. 
In Fig.2 we have defined a spectrometer time 
constant 0τ as the duration of the partially 
overlapped N-pulses: 

0 Nτ τ=                         (13) 
 It is not very difficult to demonstrate that in the 
limit as 0t Nδ τ τ→ = , ( ) 1pγ τ → and the 
Eq.11a, b & c yield to classical text book 
formulas [7] for the Fabry-Perot, Grating and 
Michelson spectrometers, respectively:  

0

. ( , ) ( , )pls cwt N
Lt I I

δ τ τ
ν τ ν τ

→ =
⎡ ⎤ =⎣ ⎦       (14) 

The operational implication is that whenever the 
duration of the incident light pulse is longer than 
the spectrometric time constant 0τ , that is the 
pulse width 0  = N  tδ τ τ> , the functional form 

of the spectral fringe is indistinguishable from the 
classical CW formulas we are accustomed to use. 
Accordingly, we claim that our time domain 
formulation represented by Eq.10 and 11 is a 
better and more generalized approach to 
spectrometry than the traditional approach since 
it starts with a general pulse and derives the CW 
formulas as a special case when the pulse is 
longer than 0τ . This also gives us a new insight 
into the spectrometric fringe processing, a 
characteristic time constant, which has hitherto 
remained un-appreciated by us. 
 
One can now appreciate that just as in the case of 
CW light, we de-convolves the CW-impulse 
response from the recorded fringes to recover the 
actual carrier frequency content, so should we de-
convolve the pulse-impulse response function 
(Eq.11) when the light is pulsed. Thus when one 
knows the pulse envelope, one can achieve super 
resolution using the de-convolution of the pulse-
impulse response function [9]. 
 
We will now show the equivalency of our time 
integrated fringe pattern with traditional 
assumption of the convolution of the CW-
impulse response with the Fourier intensity 
spectrum of the pulse. The Fourier frequencies of 
the input amplitude envelope are given by: 

2[ ( ) ] ( )i tF T a t e a fπν ν= −%      (15) 
The FT-Kernel is exp( 2 )i ftπ− . The output 
amplitude, as per time-domain approach, is:  

2( , ) ( ) ( ) i t
outi t h t a t e πνν = ⊗        (16) 

Then its Fourier transform and the corresponding 
energy are: 

 ( ) ( ) ( )outi f h f a fν= ⋅ −%% %         (17a) 
2

( ) ( ) ( )outi f H f A fν= ⋅ −%%%       (17b) 

Then we apply the Parseval’s theorem of 
conservation of energy to obtain: 

22( ) ( )

( ) ( ) ( ) ( )

out outi t dt i f df

H f A f df H Aν ν ν

∞ ∞

−∞ −∞

∞

−∞

=

= ⋅ − = ⊗

∫ ∫

∫

%

% %% %

(18) 
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We now have the desired equivalency of the 
time-domain and the Fourier’s frequency-domain 
analysis, but only with the arbitrary assumption 
that actual carrier frequency of an EM field and 
the mathematical Fourier frequency are 
interchangeable, fν ≡ : 

2( , ) ( ) ( ) ( )pls out cwI i t dt I Aν τ ν ν
∞

−∞

≈ = ⊗∫ % (19) 

One can now appreciate why in most of the 
situation the classical convolution concept has 
given us the correct experimental spectral fringe 
broadening. However, this broadening does not 
represent any real carrier frequency distribution. 
The energy due to the same carrier frequency is 
just spread over a broader area because of 
incomplete super position of the replicated pulse 
by the spectrometer. Thus, while 

1tδνδ ≥ correctly represents the fringe 
broadening; δν represents energy spread, and not 
new frequencies. Thus, we do not have a 
fundamental limit on the measurement of the 
time-frequency-bandwidth as has been 
traditionally assumed. Only time-domain (real-
space) analysis reveals this deeper physical 
understanding of the actual process behind the 
spectral fringe evolution in time and its 
broadening due to time integrated recording. We 
can now apply this understanding to obtain super-
resolution for a pulse that contains a normalized 
carrier frequency distribution S(ν) instead of a 
single carrier frequency assumed while deriving 
Eq.11a & b. The time integrated fringe 
broadening ( )mf

plsI ν due to multi frequency 

(denoted as superscript mf ) will now be given by 
the convolution of the single carrier frequency 

( )plsI ν and S(ν): 

( ) ( ) ( )mf
pls plsI S Iν ν ν= ⊗            (20) 

If a(t) is separately determined by non-collinear 
autocorrelation method [11] for very short pulses, 
or by direct intensity detection for longer pulses, 

( )plsI ν is known from Eq.11. Then S(ν) can be 
recovered with super-resolution by de-
convolution of ( )plsI ν from ( )mf

plsI ν . 
  

IV. SUPER-RESOLUTION BY HETERODYNE 
SPECTROSCOPY 

 
 As underscored in section two, a broad band 
detector designed with fast electronic response, 
gives an undulating current (beat frequency) that 
exactly equals to the difference between the two 
carrier frequencies. When the reference light 
beam is a single, CW (very narrow) frequency 
and the signal under study (pulsed or CW) 
contains more than one carrier frequencies, the 
detector current will consist of many undulating 
beat frequencies. We demonstrate by this 
experiment that pure amplitude modulation does 
not generate any new optical frequencies, inspite 
of the popularly held belief supported by spectral 
measurements whose coincidental correctness 
can be appreciated from Eq.18 and 19.  
       We take two continuously running 
semiconductor lasers around 1550 nm, an 
external cavity laser (EC-L) and a distributed 
feedback laser (DFB-L). The two laser beams are 
combined on a 30 GHz photo detector whose 
output signal is analyzed by a 25 GHz electronic 
spectrum analyzer (ESA). The EC-L is 
conveniently tuned to within 20 GHz of the line 
center of the DFB-L so the ESA can display the 
beat signal and the intrinsic combined line width 
of the two lasers. For our case, the intrinsic line 
width of the DFB-L is below 20 MHz. The ECL 
line width is below 100 KHz. The top picture of 
Fig.3 shows a sharp ~15 GHz beat line when 
both the lasers are running CW: 

1 2
22 2

1 2

2 2
1 2 1 2 1 2

( )

2 . cos 2 ( )

i t i tI t d e d e

d d d d t

πν πν

π ν ν

− −= +

= + + −
(21) 

The detector and the ESA are DC-coupled that 
drops 2

1d and 2
2d . The ESA then recognizes the 

third term as a harmonic frequency of 15GHz and 
displays it as a sharp line.  
 
Next, we amplitude modulated the DFB-L with 
the help of an external Lithium-Niobate Mach-
Zehnder (LN-MZ) modulator. We have applied 
pseudo random communication data (fairly good 
square pulses) on the LN-MZ at various 
frequencies from 1 to 10 GHz. The bottom 
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picture of Fig.3 shows the case for 2.5 GHz 
pseudo random data. Notice that the FWHM of 
the beat line has remained essentially unchanged. 
This indicates that the carrier frequency content 
of the modulated AM pulses from the DFB-L is 
essentially the same as before. If time-frequency 
Fourier theorem were representing a real physical 
property of an AM signal, we should have 
recorded a 2.5 GHz FWHM spectral broadening 
of this beat line (note that the vertical scale is 
logarithmic). However, notice that there is a 
separate sinc2 curve whose first zero is at 2.5 
GHz (inverse of 0.4 ns). Since the function of an 
ESA (with memory and built-in algorithm) is 
designed to present all time varying currents 
received by it in terms of harmonic contents, the 
bottom picture separately shows that the photo 
current was turning on and off at 0.4 ns intervals 
(inverse of 2.5 GHz).    
 

 

 
 

Figure 3. Output from an electronic spectrum analyzer 
(ESA) fed by the photo current from a high speed 
detector illuminated by the superposed light beams of 
two different frequencies. The top photo corresponds 
to two CW light beams separated by ~15 GHz, the 
beat frequency. The bottom photo corresponds to the 

external amplitude modulation of one of the lasers by 
0.4 ns square pulses (2.5 GHz pseudo random data). 
The carrier frequency (beat) signal remains essentially 
unchanged, while the presence of AM is separately 
displayed as the Fourier transform of the square pulses 
(first zero at the 2.5 GHz location [4, 10]. 
 
Thus, heterodyne spectroscopy of pulsed light 
can give us super resolution (actual carrier 
frequency content) even when the light is pulsed. 
If the temporal response time of the combination 
of ESA and detector is faster than the rise time of 
the pulse under study, one can also obtain a 
quantitative value of the pulse envelope given as 
the inverse transform of the square root of the 
ESA pulse spectrum. This can be appreciated 
from the Eq.22 where 2 ( )d t represents one single 
square pulse 

1 2
22 2

1 2

2 2
1 2 1 2 1 2

( ) ( )

( ) 2 . ( ) cos 2 ( )

i t i tI t d e d t e

d d t d d t t

πν πν

π ν ν

− −= +

= + + −
(22) 

out of the pseudo random pulse train. As before 
2

1d is filtered out. The ESA memory and software 
is designed to recognize the harmonic signal 
15GHz of the third term; but it also separately 
recognizes the presence of 2 ( )d t , which 
repeatedly interrupts the 15GHz harmonic signal. 
The ESA is designed to present this interrupting 
signal 2 ( )d t as the square modulus of its Fourier 
transform. In our case 2 ( )d t is a square envelope 
of width 0.4ns; the square modulus of its FT is a 
sinc2 whose first zero is at 2.5GHz as is evident 
in the lower photo of Fig.3.  
 

V. CONCLUSION 
 
      We conclude by underscoring that we need to 
give careful attention to the actual detection 
(interaction) processes in nature for proper 
interpretation of mathematics, even when it 
predicts the measured value correctly [1, 10]. We 
do not “see” light in the absence of interacting 
materials. The superposition effect for light 
becomes manifest only when detecting materials 
can respond to all the superposed light beams 
simultaneously, which is dictated by their 
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quantum mechanical behavior. In other words, 
the detecting dipoles do the summing of all the 
undulations induced on them by the superposed 
fields. The effects of those frequencies to which 
the detectors are not allowed to respond to by 
quantum conditions, will not be manifested even 
when the fields are superposed on the detector. 
These understandings when applied appropriately 
to pulsed light, one can achieve spectral super-
resolution, which we interpret as determination of 
the actual carrier frequency content of a light 
pulse with arbitrary precision without being 
limited by the traditional ‘time frequency 
bandwidth’, 1tδνδ ≥ . This relation is only a 
corollary of the time-frequency Fourier theorem, 
a product of the half-widths of the two functions 
that form the Fourier transform pair; a rigorous 
proof uses Schwartz’s mathematical inequality 
theorem. Neither Fourier theorem nor the 
Schwartz’s inequality theorem represent any 
fundamental functional principle of nature, unlike 
say, Huygens-Fresnel principle, which accurately 
models diffraction and propagation behavior of 
all wave phenomena. 
 
We have validated this assertion of super-
resolution for classical spectroscopy analytically 
using a process of de-convolution of a function 
that we call pulse impulse response function 
(Eq.11), which is derived by using the knowledge 
of the pulse envelope. For heterodyne 
spectroscopy, we have actually demonstrated by 
experiment that quantitative information for both 
the carrier frequency content and the pulse 
envelope function can be determined separately 
with many orders of magnitude better precision 
than the traditional limit set by Fourier’s 
corollary, 1tδνδ ≥ . 
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