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ABSTRACT. We derive the Markovian master equation and the Jaynes-Cummings (JC)
Hamiltonian for the ultra-high Q quantum optical cavity. It is shown that there is a correla-
tion between the JC interaction model and the Markovian Lindblad master equation through
the Liouville-von Neumann equation on the W* algebra. First, the Jaynes-Cummings in-
teraction potential is shown to arise from the coupling between quantized electromagnetic
modes and the dipole moment of a simple quantum rigid rotor. Using this JC interaction
potential, the two state JC Model Hamiltonian is derived. Also, using quantum stochastics
and a first order Markovian approximation, the Quantum Langevin equation is derived from
the Heisenberg equations of motion. The formalism of Completely Positive (CP) Quantum
Semigroups is defined on the W* algebra, and the origin of the Lindblad form of Markovian
master equations is shown. This is done by the creation of a completely dissipative (CD)
operator and by corollary it is shown that the Quantum Semigroup is CP iff the CD operator
is of the Lindblad form. Using the Liouville-von Neumann equation on the W* algebra, a
Markovian master equation is derived. It is shown that if the interaction potential is in the
form of the JC interaction potential, then this Markovian master equation reduces to the
Lindblad form. Finally, by a series of examples the ultra-high Q quantum cavity master
equation is derived.

1. INTRODUCTION

The quantum optical cavity forms a very robust and rich system in which to study
quantum effects at very easily measurable scales. Even with low Q cavities and strong
bath interactions, it is possible to obtain nonclassical behavior in the cavity. With modern
developments in cavity construction (examples of such are quantum dots (1) and Bose-
Einstein condensates in lattices (2)), previously unattainable cavity levels are now open to
experimentation. Direct applications of these new developments in cavity construction can
be seen in the use of ultra-high Q micromasers, which started making an appearance in
the early 90’s (3). These micromasers use low density beams of Rydberg atoms injected
in such a way such that only one atom is inside the cavity at any moment. This gives
rise to the increased influence of quantum fluctuations inside the cavity. Since the resonant
frequencies of Rydberg atoms are in the microwave region, an initial problem would be
photon detection in the cavity. However it is possible to use the Rydberg atom beam as the
probe pulse as well. By measuring the final states of the atoms at exit, it is possible to obtain
indirect information about the cavity. In this setting, tests of Quantum Electrodynamics, and
Quantum Measurement theory can be conducte. Because of the entanglement of the atom
and field, it is also possible to conduct quantum information and computation experiments.

While the variety of applications of the single atom cavity resonator are numerous and
varied, the models that describe the system are well defined and have analytic solutions.
This can be demonstrated by the simplicity of the Jaynes-Cummings model (JCM) (4) (de-
veloped by Jaynes and Cummings to show Rabbi flops in different systems), which accurately
describes (to a first order perturbative limit) the modern micromaser, but is just a twostate
Hamiltonian with a Markovian interaction potential. Because the JCM is Markovian and
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limited to a twostate atom-field, it is possible to obtain analytic solutions to the JCM. It is
of note that these solutions show a completely reversible Rabbi state flopping (see (5) for
an analysis of the Rabbi flops and reversibility). Couple this fact with the nature of the
perfect or ultra-high Q cavity and one can see the attractiveness of the model. We derive
the JC interaction potential using quantized electromagnetic modes inside the cavity and
the corresponding interaction with a strong dipole rigid rotor. The JCM directly follows
from this derivation, providing both the multi-photon and twostate models.

The JCM works very well in the perfect or ultra-high Q cavities, but it falls short when
the system needs to interact with the outside world. This is because it becomes difficult
to create cavities with a low enough coupling to the laboratory heat bath. Recently this
low level of coupling has become accessible in the form of low temperature cavities. It is
possible to use a perturbative approach to the problem (see (6)). However, there is a point
when the cavity interacts strongly enough with the out side world that perturbative analysis
fails. At this point it is necessary to either use a Quantum Stochastic Langevin equation or
the Liouville-von Neumann (as seen in section 6) master equation. There are advantages in
using either method. Some of these advantages are discussed in the following sections.

Quantum Stochastics was offered as an alternate to the usual commutator derivation for
the dynamics of Quantum cavities. Using a stationary quantum white noise as the heat bath
input, and a first order Markov approximation, it is possible to use the Heisenberg equations
of motion for an arbitrary system operator. Also, if an appropriate Wiener process is chosen,
one can back derive the Ito calculus rules using the Heisenberg equation previously derived.
It can be shown that it is possible to couple the Ito calculus with the trace representation
of the expectation value to derive the high Q master equation. However we only pursue the
stochastic model in a brief investigation of the Heisenberg equations.

The theory of Completely Positive Quantum Semigroups holds many insights into quan-
tum information theory. Early work by Lindblad goes into entropy inequalities, and moves
into Markovian dynamics through generating operators on a completely dissipative * map
(which we take to be a W* algebra). Through the theory of completely positive semigroups,
with the relations of completely dissipative maps, an arbitrary Markovian master equation
can be defined. It has been further shown that this Markovian master equation is even well
defined on a C* algebra. From the interaction picture, and the Liouville-von Neumann equa-
tion, Markovian and non-Markovian master equations can be derived. The method relies on
a W* algebra and the class of trace Banach operators to provide effective models. It is shown
that under the assumption that the interaction potential (between the bath and system) is
of a similar form as the JC interaction model, then it is possible to see that an arbitrary
Markovian master equation through the Liouville-von Neumann equation is equivalent to
the Lindblad form. Finally, it is shown that with an appropriate interaction potential, the
Liouville-von Neumann equation reduces to the quantum optical cavity master equation.

2. FORMALISM

For convenience, most of the mathematical definitions will be made here. To start, let
H be a separable Hilbert space, and B(H) the W* algebra of all bounded operators on .
Also let T'(H) be the class of trace operators, such that 7'(H) is a Banach space with trace
norm:
ol = T7r(p),
where p is a member of the class of density matrices on H such that p € T(H). On T(H),
the trace is defined as:
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Definition 1. Let A € B(H) be a bounded W* operator and let there exist an orthonormal
basis {|1),]2),...,|n),...} € H. The trace operator is defined such that Tr € T(H) as
Tr(A) =>,(i|Ali) with the relations

(2.1a) Tr(aA; + BAg) = aTr(Ay) + BTr(As),
(2 1b) ’I“( 1.A2) (.AQ.Al)

(2. (A) = _eig(A),

(2.1d) Tr(A*) =Tr(A).

Then, the class of density matrices are defined as:

Definition 2. Let H € B(H) be the interaction Hamiltonian for an arbitrary system and
let A € B(H) be a bounded W* operator, then the density matrix p € T(H) is defined as

(2.2a) p= Zpﬂjﬂj[, p; is the probability of state j,
J
(2.2b) p; >0, Y pj=1=pe CP(H), |p| =1,
J

(2.2¢) Tr(pA) = (A) VA € B(FH),
(2.2d) and p is given by the Liouville-von Neumann equation: p = —[H, p).

Definition 3. Assume a boson Fock space I'(HH) such that |n) are boson states for a given
w € R representing the frequency of the photon space. Then it follows that the boson
creation and annihilation operators of, 0 € B(H) and o', 0 : w — B(H) operate on the Fock
space as

(2.3a) o(w)|n) =0"d(w —w)n — 1)

(2.3b) o (w')|n) = I} o(w — w')|n + 1)

(2.3¢) o' (W)o(w)ln) = 9207 '6(w — w')|n) = nd(w — w')ln)

(2.3d) o(w)o(w)n) = 92 016(w — w')|n) = (n+ 1)d(w — w')ln)

where n = 1/(exp(hw/kT) — 1), and o', o follow the commutator algebra:
(24a) [o(w), o' (W)] = 6(w — )

(2.4b) [o(w), o(w)] = [¢'(w), e'(w)] = 0.

3. THE JAYNES-CUMMINGS MODEL

Here we derive the simple Jaynes-Cummings interaction Hamiltonian (4) from the per-
spective of a quantum rigid rotor. This approach uses simple techniques to derive the
standard twostate Hamiltonian from first principles without a priori knowledge of its form.

Starting with a quantum rigid rotor, with a dipole term D € R? in a cavity with electric
field modes & € R? where € : w — R3; the Hamiltonian of the rigid rotor and cavity with
the electromagnetic interaction term can be written down as

(3.1) H= —%LQ + h/dw {AQ(w)a'a + (D, &) (w)}.

Where a',a are the boson creation and annihilation operators given by Definition 3. We
can expand the field modes in terms of the creation and annihilation operators as €& =
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Eo(a® +a), & € R? and &; : w — R3 which gives
h2
H=—-p124 h/dw mO(w)ata + V.
2m
Where V' is the interaction potential

(3.2) V(w) = / dw (D, &) (a" + a)

Theorem 1. With a basis of |lmn) = |lm) ® |n), where |lm),|n) € H are the spherical
harmonics and the Fock space T'(H) respectively, equation 3.2 becomes

(3.32) V(w)=h [ do | DIIENa" +a)(B; + B;).

Then under the rotating wave approximation the multi-photon Jaynes Cummings interaction
potential becomes

(3.3b) V=0 g(alB +aB),
where Bli are the orbital angular momentum ladder operators

Proof. Expand the inner product in V(w) (note that cos(d) = P o |1,0)) and recall the
Wigner-Eckhart Theorem

(I'm'n/|V (w)lmn) = <l’m’n’\ﬁ/dw {IIDIIE )1} Py [imn)

= <l’m’|10>jm><l’n’|h/dw UIDIIE@)[3]En).

Thus by the triangle Theorem for angular momentum we obtain the transition rules for the
interaction potential to be |/ — j| = 1,0. Ignoring any zero transition contributions, we
can rewrite the interaction potential in terms of the orbital momentum ladder operators
Bif € B(H) N A; , where A, is a nonlinear Lie algebra (7; 8; 9; 10). Substituting the ladder
operators for the P term, and gathering the constants into a single coupling constant, we
get

V)= [ do [DEl(al +a)(By + By).
If we apply the rotating wave approximation (seen in (11)) then:
(a' +a) (B + B) — (a'B] + aB;).

Let 2||D||||€o]] = g(w) and note transitions of the rigid rotor form quantized energy states
(0E; = j(j +1)). Thus interaction potential becomes
V=0 glalB +aB). 0

Carrying the quantized energy states in the cavity through the rest of the Hamiltonian,
we arrive at the multi-photon Jaynes-Cummings model

h2
(3.4) H == 1"+ 3 {haja; + hgi(a] By + a;B)}.

It is a simple matter to extend the rotating wave approximation through the rest of the
Hamiltonian, by replacing —h?L*/2m with hwo,/2. Where o, /2 is the Pauli 2 spin matrix
and the energy of the transition is w. Also simplify by replacing B; , B} with o_ and o



MARKOVIAN DYNAMICS OF ULTRA-HIGH Q QUANTUM CAVITIES 5

respectively!, resulting with
(3.5) H = hwo, 4+ hQad'a + hg(a'o_ + ao,),

which is the classic twostate Jaynes-Cummings model.

Remark 1. Equation 3.5 was derived using a simple rigid rotor with a fixed dipole moment.
However, the result is a completely general equation that is applicable to any twostate system
that has either a permanent or induced dipole moment. It is also useful to note that the
boson operators are not constrained to being members of the cavity operator space. It will
be shown that this kind of interaction holds for non-cavity operators as well.

The analysis of equation 3.5, while simple, is not the focus of this paper. It is notable
that the eigenfunctions of equation 3.5 show Rabbi flopping, and predict reversible states.
In modern micromaser experiments, this is indeed the case. Often it is only necessary to do
a perturbative analysis of the expectation values to achieve accurate results for very high
Q systems. For a detailed analysis of the Jaynes-Cummings solutions, see Dutra (11) and
Meystre (12). The solutions are also discussed in a more applied context in Shore and Knight
(5) and Meystre and Sargent (3).

4. QUANTUM STOCHASTIC LANGEVIN EQUATION FOR CAVITY-HEAT BATH SYSTEMS

The use of a Langevin equation is one of the simplest ways to include bath-system
dynamics. It has the benefit of easily showing dynamical characteristics of the system, and
lends itself to linear systems easily. The Langevin approach has the disadvantage of most
Heisenberg systems, in that one can only examine the evolution of operators, and not the
states directly.

Assume that the Hamiltonian H € B(H) can be written as H = Hgys + Hy + Hint;
Hgys, Hy, Hipy € B(H) where the system Hamiltonian is left undefined, and the bath &
interaction Hamiltonians are defined as

(4.1) Hy, = ﬁ/fO dw' Wb (W)b(w')

(4.2) Hip = ih /_OO dw' k(W) (' (W)e — (W),

Here ¢ is a bounded system operator such that ¢ € B(H), b'(w), b(w) are the boson creation
and annihilation operators given in Definition 3 and ﬁ(w) is the cavity coupling constant.
With the addition that we also take [b(w),c] = [bf(w'), c] =

Then the Heisenberg equations of motion for b(w) and a (another arbitrary system
operator, a € B(H)) are
(4.3) b(w) = = [b(w), H] = = [b(w), Hy + Hin

(44) a = _ﬁ[aa H] - _ﬁ[aa Hsys"i_Hint]‘

Before these can be solved, several commutators must be worked out.

Theorem 2. Assuming Definition 3 applies, then the following equation holds

1

—[b(w), Hp] = wb(w).

(4.5) .

Yo = (0, +i0,)/2 are the non-hermitian spin flip matrices
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Proof. 1t can be seen, that

1

(4.6) ﬁ[b(w), Hy| = /_o:o dw" W {b(w)b! (W )b(W') — b (W)b(w)b(w)}.

Then operating on equation 4.6 with (n’| & |n) we get
) [ ! (b)) — B ()l () ) =

(n'| /oo dw' W{0"n — (n—1)0"}o(w —w)|n—1) = (n|wd"|In — 1) = (n'|wb(w)|n).
O
Theorem 3. Assume Definition 3, then the equation

1

(4.7) —

holds.

b(w), H|] = k(w)c

Proof. As before, operating on equation 4.7 with (n’| & |n) and taking b(w) through the
integral we get

%(n’hh /_o:o dw' k(W) {b(w) (b (W)e — (W) — (bT(W)e — cTb(W))b(w)}|n) =

/ T dw k(W) (|0 el — (| cararLn — 2)—

(0110 cln) + (n'|c'0" 0" n — 2)}o(w — W) =
k(wW){{(n'|(n + 1)cIn) — (n'|nc|n)} = k(w)c.
O

Using Theorems 2 and 3 we can easily solve the Heisenberg equation for b(w)

. ) t . /
(4.8) b= —iwb(w) + K(w)c = bw) = e ®0p(w) + [ dt’ e g(w)e(t).

to
If we make the first Markov approximation (13)

K(w) =/v/2m
then equation 4.4 becomes

== Ho(0) Ho) 1 [ (), 8 @)e)] — [aft), € (1))

= 2lalt) Hoye] 0 [ e’ (1) a8, t)] = [a(®), o} ()]ble)).

Substituting in equation 4.8, we get
(4.9)

= = a(t), Hop + [ d’ (e @)ale), o(#)] = [alt), ¢l (¢ e b))

+ t: dt' K2 (e at), c(t)]) + [at), ()] e e(t))}.
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Define a bath input field

1 00 4
(4.10) binlt) = —= /_ " ! )

and make use of the identities
t

/ T emtto) — 216(t —t'), and by c € B(H) = [ dt’ c(t)o(t —t') = c(t)/2

to
so that equation 4.9 becomes

o = —3la(t), Hy) + VAL ®)]at), et)] — [alt), c(t)]bum )+
%{CT(t)[a(t), c(t)] — [a(t),c'(t)]e(t)}

or, collecting terms

(111) & = —[o(t), Huye] — {la(t), S (O D et) + y3bia(0) = (Sl (1) + /0L, ()alt), )]}

Equation 4.11 is a common form for the Quantum Langevin equation for a high Q, low bath
coupling system. The derivation shown is a detailed account of the one seen in Gardiner and
Collet (13). the analysis of equation 4.11 can also be found in Gardiner and Collet (13).

5. QUANTUM DYNAMICAL SEMIGROUPS

It is possible to completely define a Quantum Markovian master equation using the
theory of completely dissipative generators on a CP Quantum Semigroup. This is done in
the following discussion by using the mathematical construct developed by Lindblad (14),
then completed by showing that the equation 6.8a satisfies the Lindblad form.

A Quantum Semigroup is defined as

Definition 4 (Ingarden & Kossakowski semigroup axioms (14)). Let A be a bounded W*-
algebra. A dynamic semigroup is a one parameter Hamiltonian ®; so that &, : A — A
while being norm continuous. Also there is a bounded map L : A — A such that:

d, € CP(A), o,(1) =1,

q)s X (I)t = q)s-I—ta limt_>0 Hq)t - IH = 0,

®, is ultra-weakly continuous wrt &, : A — A, o, = '’

lim o ||L — (&, — I)/t|| =0, L is ultra-weakly continuous wrt L : A — A.

We can further specify the nature of the Quantum Semigroup by calling the corollary

Theorem 4 (Lindblad (14) Corollary 1). For A € B(H), L is a bounded *-map L : A — A,
®; = et and &, € CP(A) iff L € CD(A). Then ®; is a norm continuous dynamical
semigroup on A such that ®, : A — A iff &, = el

With the Quantum Semigroup thus defined, then the form of a completely dissipative
generator in a CP Quantum semigroup follows from the proposition

Corollary 1 (Lindblad (14) Proposition 5-6). If A is a hyper finite factor of the separable
Hilbert space 3, and L € CD(A), then there is a W € CP(A) and a s.a V € A such that for
all X € A

(5.1) L(X) = W(X) = %{\I/(I),X} +i, X].
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By the proceeding Corollary, the Shrédinger picture Markovian Generator (or master
equation) is

Corollary 2 (Lindblad (14) Theorem 2. ) L € CD(H) iff it is of the form

(5.2) L(p) = —i[V,p] + = Z (Vi Vi + Vi, oV,

which 1s the Lindblad form for the master equation, where Vj,ZVjTVj € B(H), V sa. €
B(H).

It is of interest that this form of the master equation was first proposed for an N
level atom by Davies (15) and independently of Lindblad by Gorini et al (16) for a finite-
dimensional Hilbert space.

Remark 2. Following the aside made by Lindblad (14): Let A be a hyper finite factor of
the separable Hilbert space H. If L : A — A is a bounded ultra-weakly continuous *-map
such that for all X € A there is a positive normal map ¥ : A — A and K € A such that
L(X)=V¥(X)+ KX + XK' Then the most general form of the Markovian Generator is:

Theorem 5 (Lindblad (14) Theorem 3.). Let A be a C*-algebra, L : A — A a bounded
*-map and put ®; = . If L(X) = W(X) + KX + XK' where K € A and ¥V € CP(A),
then &, € CP(A).

This Theorem is of interest mathematically, but holds very little bearing on physical
systems. Because of this, we will instead use Corollary 2 to derive the master equation as
seen in the following section.

6. LIOUVILLE-VON NEUMANN MARKOVIAN MASTER EQUATION

Using the interaction picture with a self adjoint Hamiltonian H € B(H) which can be
represented as H = Hyys +V; Hyys, V € B(H), where H,y, is the collection of appropriate
system operators, and V : t — J is the bath-system interaction potential, the Liouville-
von Neumann equation (17) gives the dynamics of the density matrix by

ok(t) 1

(6.1) 5 = Vs

Where k € T(H) satisfies Definition 2 and is the time dependent system density matrix.
We integrate formally to get

k(t) — Kk(ty) = / dt'y "],
then iterate using the von Neumann series Wlth a kernel of K{k} = [V, k]
r1(t) = r(to)

@@:%tﬁmw%mmJ
w=—%ﬂﬁfﬁﬁﬁwwmw0mwm

to arrive at the the closed forrn solution

62) sl = att) = [0 wtto)] — gy [t [ a0, )R]
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Separate the system density matrix into a combined bath and system matrix in the
form: k(t) = ps(t) ® pp(t), with ps € T(Hs), pp € T(H,) being the system and bath density
matrices respectively?, and that p, and p, satisfy Definition 2. The dynamical equation for
k(t) becomes

) pu(t) = pulte) © palte) = - [ D). pulto) © pult)

— g [t [ @, ) © )L

Taking the trace over the bath operators

ps(t) — ps(to) = / dt'Try[V(1'), ps(to) @ pu(to)]

m/ﬁmwwwmww%wmmm1

where we note that Tr(ps ® pp) = psTre(pp) = ps-
Assume that we can write V in the general form V = A), Q;F; where @);, F; are the
system and bath interaction operators respectively. Thus

(6.3) ps(t) — ps(to) = / dt TTbZ Qi(t' "), ps(to) © pu(to)]

; "t ; dt”TrbZ Fi(), [Q;(t") F3 ("), ps(t") @ pu(t")]]-
J#Z

Theorem 6. Under the assumption of a stationary quantum white noise in the bath (see
Gautam and Gardiner (17; 13) for further application, and the discussion in Gardiner,
Huang and Attal (13; 18; 19)), then under the relations

dpy(t
(B =0, P _0 o 1) = it
the first integral in equation 6.3 is
(6.4) / dt Trbz ), pslte) ® polto)] = 0.

Proof. Expand equation 6.4 by writing out the commutator and taking the trace through
the system operators to get

(6.5)
ps(t) — ps(to) = / dt'{Qi(t' ) Try(Fi(t") pu(to)) ps(to) — ps(to)Qi(t) Tro(po(to) Fi(t') }
=—Z/wwwwwmwm—mm@mm%m1
- _Z/ dt Qz ps tO)]< (t0)>
By the assumptions made in the Theorem, equation 6.5 must equal zero. 0

2Here you can add in a system-bath correlation term, however in the appendix of Gautam (17) it is shown
that the correlation term is of higher order than what we have taken von Neumann series to.
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Thus our dynamical equation for p,(t) becomes

) = plto) = = [t [ a0 T TIQUOED) Q. p¢) © )]

J#Z
Going from an integral equation to a differential equation for ps(t), expand the commutators
and apply equation 2.1b:

/wix po(t') = Q) Q) FA F5 (1)
J#Z
— (Qi(t)ps(1)Q;(1) — ps(1)Q; (1) Qs (1)) (F5 () Fi(1)) }-

Up to this point, we have followed the method of Gautam (17). However, instead of
proceeding to obtain the non-Markovian master equation, we will make the Markov approx-
imation to recover the master equation shown by Meystre et al(3; 12) Gardiner (13) and
used by Savage and Carmichael’s groups (20; 21; 22), which will then be generalized to show
that this is equivalent to the Lindblad form (14; 15; 16) of the quantum master equation on
a quantum dynamical semigroup.

Directly write the time dependence of @),,(7) in the interaction picture as

(6.6) On(7) = U QuU (r) = efevsT/hQ) emiflapat/h — ) ienT
and apply the Markov approximation p,(t') = ps(t) Vt to get the master equation

= - /tt dt/Z{(Qinps(t) — Qips(1)Qy)e it ) (B (1) Fy(t))
jiki
— (Qips(1)Q; — ps(1)Q;Qi)e™ T N Fy () Fi(t)) }

(6.7) Z{ QiQ;ps(t) — Qips(1)Q:) P}, — (Qips(H)Q; — ps(1)Q;Q:) DL}

J#Z
where we have grouped the time dependent terms into the bath fields

¢ i(wit+w;t ! (witt+w,t’
= [(ares s B E ), B = [ dret o () F).

This can be further simplified if we make the change of variables ' — ¢t — 7 and take
the secular approximation, which is reasonable in the weak system-bath coupling limit. The
master equation, equation 6.7, in the Shrodinger picture and the bath fields become:

(68&) Ps = — [HsySaps Z{ Q Qgps ) ijs(t)Qi)q);j - (Qips(t)Qj _ps(t)QjQi)q)é'i}
jsﬁi
and
! iwW; T t —iW; T
(6.8b) 7 = /t dre” () Fy(t = 7)), @y = | dre” 7 (Fy(t =) E(1))
Before it is possible to expand this formulation to a CP Quantum Semigroup, it is

necessary to further reduce the equations 6.8b. To do this, we write the bath operators in
the Shrodinger picture, with the time dependence explicitly written as in equation 6.6:

F (1) = U(r)F, U (1) = F,e™.



MARKOVIAN DYNAMICS OF ULTRA-HIGH Q QUANTUM CAVITIES 11
Then equations 6.8b become

t . . ) ; A A
(I):j = dTe_ijT<Fi€ZQitFj€_ZQj (t—T)> — <Fng> dTeZ(Qi+Qj)t€_Z(Wj+Qj)T

to to
t
/ dre~ Zw]T<F e G T)Fezﬂ t> <F1]F12>/ d,]_ei(QiJer)tefi(a)jJer)T‘
to
Again, make the secular approximation, assumption that ¢ > ¢y and that the bath is tuned
to the cavity, such that
(6.9) ¥y, = (R, O = (FF).
Prop051t10n 1. Assummg a potential of similar form to the JCM, such that the relations
Qoo = Qby, Fop = F%Jrl and the commutator identities:

(Qar, Qj] = [Fok, Fj] = 0ok+1,5, [Qart1, Q] = [Forgr, Fj] = O j
hold. Then the interaction potential becomes
(6.10) V=h> QuF} + QL F:.
k=0

Theorem 7. By Proposition 1, equation 6. 8a becomes

(6.11) Lpe = ps = —i[Huys, ps(t)] + 5 Z{Vkps Vil + Vi ps (O V]

Proof. Proposition 1 simplifies equations 6.8a and 6.8b to:
ps = —i[Hoya, ps(t)] — ;{@k@psu) — QLps(H Q) Py — (Qrpa(H)QL — pa(t)QLQK) P+
(QLQrps () — Qups (RN, — (Qhps ()Qk — ps()QRQ) P} =
(6.12a)  — i[Hyys, ps(t Z{ (QLQxps(t) = 2Qups () Q) + ps(H)QLQK) Pi+
(QQLps(t) — 2QLps(1)Qx + s (1) QL) P}

(6.12h) and O = (FLF}), @ = (F]F,)
Let Fi = gy, where g € R, X € B(H); (¢,N) : w — R and 7, = 2¢7 such that
(6.13) V=R (9:Q0R%) + glQi],

k

and equation 6.12b becomes

(6.14) o

l\Dld

= JOuRE), B = JRIR)

Finally, let Vo, = /n®hQx & Varr1 = /n®LQL then Vi, = /@5 QL & Vi, = \/n®LQx

so that the master equation can be described as:

’Cp - ps - [Hsysaps + Z{ Vkps ] [Vk,Ps( )Vlj]}

Theorem 8. Assuming that the system bath interaction potential can be written as

V=hY_ QkF,I + QLFIC

k=0
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where Q, F are defined as Q, F € B(H) and Q, F follow Proposition 1. Then by the Defini-
tions ps € Tr(H) and Hyys € B(H), equation 6.11 is a bounded * map and L € CD(H).

Proof. L is a bounded * map by Definition (£ € B(H)), and is CD(H) by Corollary 2. O
Corollary 3. The equation
. . 1
(6.15) Lps = ps = =il Hoysr ps(B)] + 5 2 _{[Virs(2), VilT+ Vi ps ()T}
k=0
is the general (but not necessarily unique, see (23)) Markovian master equation for a system
such defined in Section 2 and at the beginning of Section 6.

Proof. By Theorems 4 & 8 and Corollary 2. U

Example 1. Let ) = wa, X = b where a & b are given by Definition 3 and x = wn/2, then

V = hwg(ab™ +a'b) and Vy = /2k(n + 1)a, Vi = v/2kna’. Substitute this into equation 6.11
to get

(6.16) ps = —i[Hays, ps(t)] — r{n(aa’py(t) — 2a'p(t)a + ps(t)aa’)+

(n+ 1)(alaps(t) — 2aps(t)a’ + ps(t)a’a)}.
Under the zero temperature limit, this reduces to
(6.17) ps = —i[Hoys, ps(t)] — i{(aap,(t) — 2aps(t)a’ + py(t)ata)}.

Example 2. In Corollary to the previous example, the atom-bath interaction with an in-
teraction potential (with n — v): V = hy/7(0_b' + 0.b) such that Vy = /v(n+ 1)o_, V; =
Vyno,. Then equation 6.11 becomes
) . 8
(6.18)  ps = —i[Hsys, ps(t)] = 5 {n(0-02ps(t) = 20 ps(t)o + ps(t)o—o )+
(n+1)(or0-ps(t) — 20_ps(t)oy + ps(t)oro-)}

which becomes, in the zero temperature limit,

) . 8
(6.19) ps = —iHsys, ps(t)] = S{(040-ps(t) = 20-ps(t)os + ps(t)oro-)}.
Remark 3. Add equations 6.17 and 6.19 to obtain

(6:20) py = —ilHoye: pu(t)] = F(010-ps(t) = 20 pu(t)ors + pu(t)oo-)—
k(alap(t) — 2aps(t)a’ + p(t)a'a)

which is the cavity-bath photon density equation derived using Quantum Stochastics by
Meystre (3) and used by Savage and Carmichael’s groups (20; 22; 21) in their early experi-
mental research.

7. SUMMARY

The Jaynes-Cummings model for single and multiple photon systems has been developed
for ultra-high Q quantum cavities. It was shown that the JC interaction potential is a member
of B(H) N A, and is of the form

V =hg(a'o_ +ac,).
It was also shown that this potential can be generalized to the form
V= hY(g:QkR + gL QiR),
k



MARKOVIAN DYNAMICS OF ULTRA-HIGH Q QUANTUM CAVITIES 13

where g € R and @, N € B(H) and Proposition 1 applies.

A first order Markovian Langevin equation was derived from Heisenberg’s equations,
but it is seen that the the Heisenberg formulation is not ideal for this system. Using the
theory of Completely Positive Quantum Semigroups, the general form for the Markovian
master equation was presented. Through the use of the Liouville-von Neumann equation, a
Markovian master equation was derived. Assuming the interaction potential to be equation
6.13, we showed that the Liouville-von Neumann master equation was also a Lindblad master
equation. Thus it was demonstrated that the Jaynes-Cummings model and the Lindblad CD
generators are linked by the Liouville-von Neumann equation on the W* algebra.

Finally, by choosing the interaction potential to correspond to a cavity-bath system, the
master equation used by Savage and Carmichael’s groups (20; 22; 21) is recoverable as shown
by examples 1 & 2 and remark 3. With equations 3.5 and 6.20, it is possible to accurately
model the dynamics of quantum cavities. With micromaser applications, the JCM can be
used to describe the dynamics while an atom is inside the cavity, and equation 6.17 is used
for periods with no atom in the cavity.
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