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1. Introduction

Ion hydrates in polar solutions is a rich and multi-discipline topic. Examples can be
found in molecular biology topics such as nerve signal transfer, electrolyte transport, nutrient
transport through cell walls, and inter-cell communication. Industrial applications such as
toxic chemical studies and treatment in ground water, and polar solvent hydration of surfaces.
Examples of these are UO2 and U2 hydration in ground water, and MgO surface interaction
with polar solvents. The investigation of Ion hydrates directly ties with the properties of bulk
and cluster water systems. To understand hydration of materials, the structure of different
water systems must be understood. In addition, theoretical calculations of cluster and bulk
water behavior is not well understood.

The hydration of Ca2+ and Ca2+Cl2 is a well known phenomena, and so makes an
excellent material for the testing of theoretical models. Well tested quantities include first
shell coordination numbers and radial distribution functions. We show that the use of
classical molecular dynamic calculations with an single point charge model for water give
good agreement with experimental reports by implementing the Groningen Machine for
Chemical Simulations (GROMACS) package.

Investigation of cluster water in the soft UV range is a difficult experimental and the-
oretical system to obtain. Edge effects and cluster sizes dominate any calculations, and
internal structure greatly shifts any results obtained. The soft UV spectrum of clustered
water is investigated using real time-time dependent functional theory calculations with the
Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA). It is shown
that with an appropriate basis set the soft UV spectrum of cluster water can be accurately
calculated. From this, it is possible to calculate the soft UV spectrum of many other systems
that interact or are members of clustered water systems.

2. Classical Molecular Dynamic Calculation Methods and Results

The solvation structure of Ca2+ in a water solvent was calculated using the GROMACS
classical molecular dynamic routines (1; 2), using the GROMOS96 43a1 force field to cal-
culate the trajectories of the system. Initial configurations were calculated by a random
placement of water molecules about the Ca2+ atom (centered in the calculation box ini-
tially). Any overlapping molecules are removed from the system, then energy minimization
is performed on the system to relax any bad Potential. A positional relaxation calculation
is performed on the full system, to obtain an optimized configuration of solvents and the
ion. This positional relaxation reduces the time needed to reach equilibrium with the full
classical molecular dynamics run, with very little computational time used.
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The full classical molecular dynamics calculation was performed over a 1.2 ns time in-
terval, with snapshots taken every 0.002 ps. The interaction potentials used in the dynamics
calculation uses the Lennard-Jones repulsive and dispersive potential

(1) Vij(r) =
Aij

r12
ij

−
Bij

r6
ij

.

Water molecules are represented using the SPC potential proposed by Berendsen et

al. (3), where the partial charges for the oxygen is −0.82E and for the hydrogen is 0.41e.
The ion-solvent and solvent-solvent interactions are described by a Coulomb-Lennard Jones
potential of the form

(2) V(r) =
∑
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−
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).

The behavior of the solvent near the Ca2+ ion can be described by two radial distribution
functions (or RDF) for the water Oxygen and Hydrogen (Ow and HW respectively). These
RDF calculations consist of a normalized average radial density function 〈ρ(r)〉, so that the
RDF g(r) is defined (4) as

(3) g(r) =
〈ρ(r)〉

〈ρ(rlocal)〉
=

1

〈ρ(rlocal)〉

1

Ni

Ni∑
k∈i

Nj∑
l∈j

δ(r − r)

4πr2
.

Where rlocal is half the box length and 〈ρ(rlocal)〉 represents the effective density of the solvent
box at equilibrium.

This first maximum of gCaO(r) is shown in Figure 1 to be 2.47±0.05Å, which corresponds
to the mean radius of the first hydration sphere (HS). Other reported theoretical results
for the first hydration sphere radius are 2.67Å(5) using classical molecular dynamics and
2.47Å, 2.37Å and 2.45 Å(6) (calculated with classical molecular dynamics and QM/MD
respectively).
Experimental results for Ca2+ − H2O hydration include 2.46 Å with X-ray diffraction (7),
2.40 Å using neutron diffraction (8) and 2.46Å with EXAFS and LAXS (9). Discrepancies in
the hydration shell values can be explained by differences in concentration(5) and interaction
effects from Ca2+Cl2 salts in the experiments. Another factor that effects simulated results
is the underestimation of ion-solvent and solvent-solvent interactions by the SPC model of
water (10). This underestimation by will result in an over estimate the distance between
ions and the solvent to give the peak shift seen.

In addition to obtaining solvent mass distribution about the ion with the RDF, the
shell coordination number n can be obtained as

(4) n = 4π〈ρ(rlocal)〉
∫ rmin

0
drg(r)r2,

where rmin is the location of the RDF minima after the shell in question. The first hydration
shell of Ca2+ in water consists of 6 water molecules in the gas phase, and 8 to 9 in the
condensed phase. Integration of Eqn. 4 for the Ca2+ − Ow RDF shown in Figure 1 yields
a coordination number of 7.44, which is in good agreement with the experimental results of
7.3 (8) and 8 (8; 9).

3. Optical Response of water

The calculation of frequency-dependent optical response of liquid water is done using
real time-time dependent density functional theory (RT-TDDFT) as implemented by Tso-
lakidis et al. (11) using SIESTA (12). Briefly, SIESTA is a DFT program that uses a local
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Figure 1: Ca2+ − Ow and Ca2+ − Hw RDF results

basis and optimized for large order systems. SIESTA is attractive to this problem because
it uses confined (strictly zero beyond the cutoff radius) numerical atomic orbitals (NAO),
which are built with the eigenstates of atomic pseudopotentials. This use of confined NAOs
and localized Wannier-like electron wave functions cuts the computational and storage costs
considerably, and allows the program to scale linearly with system size(12; 11).

We calculate the linear response of the system to an external electric field E by intro-
ducing a perturbation Hamiltonian δH = −E ·x; E. Once self consistency has been reached,
the electric field is turned off (t = 0) and the time dependence of the system is calculated
using the Hamiltonian

(5) H = −
1

2
∇2 + Vext(r, t) +

∫
dr′(

ρ(r′, t)

|r − r′|
) + Vxc[ρ](r, t).

The calculation of the exchange-correlation (xc) potential Vxc[ρ](r, t) is performed using the
adiabatic local density approximation (ALDA), which gives

(6) Vxc[ρ](r, t) =
δELDA

xc [ρt]

δρt(r)
= V LDA

xc [ρt](r, t)

where ELDA
xc [ρt] represents the exchange-correlation energy of the homogeneous electron

gas(13) calculated with the instantaneous density ρ+.
The dipole moment of the system D(t) is calculated at each time step and the frequency-

dependent response is found by a Fourier transform

(7) D(ω) =
∫ ∞

0
dte(iω−δ)t)D(t)
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Figure 2: Real (ǫ1) and imaginary (ǫ2) parts of the dielectric constant of (H2O)44 water.

where δ is a damping factor introduced to account for broadening, and effectively sets the
minimum width of the peaks in the imaginary response. Thus to linear order the polariz-
ability α(ω) = D(ω)/E(ω) or

(8) Im α(ω) = ω
Re D(ω)

E

with E(t) = Eθ(−t). After calculating the response along different axes, the average linear
polarizability is one-third the trace of the polarizability tensor such that 〈α〉 = Tr{αij(ω)}.
The dielectric response of the system as a function of frequency. This can be obtained from

(9) ǫ(ω) = 1 + 4πα(ω)/Vclust

where Vclust is the electron volume of the system. The quantity α(ω) is calculated using Eqn.

8, and the relation Im α(ω) = ω Re D(ω)
E

to arrive at

(10) ǫ(ω) = 1 + 4πω
(Im D(ω) + iRe D(ω))

Eθ(−t)Vclust

, or

(11) ǫ1(ω) = 1 + 4πω
Im D(ω)

Eθ(−t)Vclust

, ǫ2(ω) = 4πω
iRe D(ω)

Eθ(−t)Vclust

The optical response was calculated for liquid water in an equilibrium state with a
molecular density of 0.034molec/Å3. This was calculated using the molecular mechanic
simulations discussed above. Problems with intrinsic dipole moments to the water clusters
was avoided by doing a Monte Carlo sample of the bulk water system, and choosing the
clusters with the most optimal configuration (see Appendix A for details).

The real and imaginary part of the dielectric constant are shown in Figure 2. Hayashi et

al.’s results for ǫ(ω) (15) show that while our calculated ǫ(ω) has both the correct shape and
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Figure 3: Calculated loss function Im(−1/ǫ(ω)) compared to experiment (14) for liquid water.

comparable magnitudes, there is a distinct shift of the peaks towards higher energy levels
after 15 eV. This can be clear seen by calculating the loss function

(12) Im(−
1

ǫ(ω)
) =

ǫ2

ǫ2
1 + ǫ2

2

,

which is shown in Figure 3 against data from Hayashi et al. (14). It is clear that there
is a significant shift in peak values towards higher energy levels. The shift towards higher
energies in both the loss function and dielectric constant are strong indicators of issues with
the methods used to calculate the electric response of the clusters. It has been shown by
Cabral do Coutoet al. (16) that insufficient basis sets will cause a shift towards higher
energies.

4. Conclusions

We show that with GROMACS, we can accurately compute the molecular behavior of
solvents near ions. Using an appropriate basis set, it is also possible to accurately describe
the electronic behavior of water. With an improved basis set, edge effects on water clusters
and the soft UV structure of water interacting with other ions.

Appendix A. Optimal Configuration Algorithm

The optimal configuration of the sub-group of the calculated equilibrium liquid water
system was calculated by forming a sphere about some arbitrary point in the box, then the
sub-group’s dipole moment was calculated using the formula P =

∑
riqi. The radius of

the sphere chosen was picked by using the molecular density 0.034molecÅ3 and a general
requirement of molecules per sub-group. This intrinsic dipole moment was used to determine
the optimal structures by defining a dipole maximum cutoff, and only keeping structures in
this subset that have the lowest possible dipole moment.
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Because of the size of the system and number of molecules, it is clear that a statistical
sampling of sub-group center coordinates is advantageous when searching for a specific cutoff
for the sub-group dipole moment. This is done via Monte Carlo simulation, where the sub-
group center coordinate is randomly generated, followed by the calculation of the dipole
moment. Analysis of this raw information is done efficiently by using the hash capabilities
in Perl. Following the calculation of the dipole moment for each sub-group, a hash of each
molecule that is a member of the sub-group is saved and keyed against the Monte Carlo loop
index. A hash is also built of all the Monte Carlo look indexes using the scalar dipole moment
of each index as a key, this is important because after the Monte Carlo run is finished it is
a simple sort and loop over keys to the dipole hash to get the information needed.

Overview of the sub-group selection algorithm.

### do random seed across the box

srand( time() ^ ($$ + ($$ << 15)) );

for ($ri = 1; $ri < 7000; $ri++) {

$dipx = 0.000; $dipy = 0.000; $dipz = 0.000;

#create random center

$cx = rand 20; $cx-=10.000;

$cy = rand 20; $cy-=10.000;

$cz = rand 20; $cz-=10.000;

#loop over each atom in the file

for ($i = 0; $i < scalar(@x); $i++) {

#keep only oxygen

if ($Atype[$i] =~ /$Asearch/g) {

#r scalar length to i’th O atom

$r=sqrt(abs(($x[$i]-$cx)**2+($y[$i]-$cy)**2+($z[$i]-$cz)**2));

#calculate dipole contribution of the $ith molecule

if ($r < $rcutoff) {

Here calculate the dipole moment of the system.

#hash of atoms per $ri run

$atoms{$ri} = [] unless exists $atoms{$ri};

push @{$atoms{$ri}}, $i;

}

}

}

#hash of dipole moments vs index

$nr = sqrt(abs( $dipx**2 + $dipy**2 + $dipz**2 ))*$scale;

#keep the dipoles around

$mydipolehash{$nr} = [] unless exists $mydipolehash{$nr};

push @{$mydipolehash{$nr}}, $ri;

#save index of each good dipole system, or skip to next run

if (scalar sort @{$atoms{$ri}}) {

if ($nr < 2.5) { push(@risk,$ri);} else { next; }

}

#hash of cx,cy,cz vs index

$coordinatehash{$ri} = [] unless exists $coordinatehash{$ri};

push @{$coordinatehash{$ri}}, ($cx,$cy,$cz);

}
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