Physics 151, Sections: 1 - 5

Announcements:

- Laboratory sessions start week after next.
- Lectures etc. available on the web at:
 - » http://www.phys.uconn.edu/~nkd/151_2006/
 - » Homework: Each student needs to register at WebAssign. Go to http://www.webassign.net and register using:
- GO TO: http://www.webassign.net to register:
 - ← ID: Same as UConn e-mail address without @uconn.edu, e.g.
 JOHN.S.ANDERSON@UCONN.EDU becomes JOHN.S.ANDERSON
 - ← Institution: UConn
 - ← Password: your PeopleSoft ID
 - If you have problem registering contact physics office or me
 - » Read instructions on WebAssign for additional info.
- Homework #1: from Ch.1 and Ch.2 (due Fri. 9/8; 5:00 pm EST)

Lecture 2

Today's Topics:

- Kinematics: Motion in One-Dimension (Chapter 2)
 - Displacement, Velocity, Acceleration
 - Average vs Instantaneous quantities
 - ←Free Fall

Example

You and your friend are standing at the top of a cliff. Both throw a ball with equal initial speed, you straight down and your friend straight up. The speed of the balls when they hit the ground are v_{γ} and v_{F} respectively.

Which of the following is true:

- (a) $V_Y < V_F$
- (b) $V_Y = V_F$
- (c) $V_Y > V_F$

Motion in One-Dimension (Kinematics) Position / Displacement

Position is measured from an origin:

- **←Joe is 10 feet to the right of the lamp**
- ←origin = lamp
- direction = to the right
- ←position vector :

Position / Displacement

Displacement is just change in position.

Average speed and velocity

Average velocity = total distance covered per total time,

$$v(average_velocity) = \frac{\Delta x(total_displacement)}{\Delta t(total_time)}$$

- Speed is just the magnitude of velocity.
 - ←The "how fast" without the direction.

Instantaneous velocity, velocity at a given instant

$$v(velocity) = \lim_{\Delta t \to 0} \frac{\Delta x(displacement)}{\Delta t(time)} = \frac{dx}{dt}$$

x (meters)

What is the average velocity over the first 4 seconds?

- A) -2 m/s
- B) 4 m/s
- C) 1 m/s
- D) not enough information to decide.

x (meters)

What is the instantaneous velocity at the fourth second?

- A) 4 m/s
- B) 0 m/s
- C) 1 m/s
- D) not enough information to decide.

Acceleration

Acceleration is change of velocity per time.

 $\leftarrow a = \Delta v / \Delta t$

average

 \leftarrow a = dv/dt = d²x/dt²

instantaneous

Example

Similarly,

$$\leftarrow$$
v = \int a dt

Also,

$$\Delta x = \int v dt$$

displacement

Recap

If the position x is known as a function of time, then we can find both velocity v and acceleration a as a function of time!

$$x = x(t)$$

$$v = \frac{dx}{dt}$$

$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

1-D Motion with CONStant acceleration

- High-school calculus: $\int t^n dt = \frac{1}{n+1} t^{n+1} + const$
- Also recall that $a = \frac{dv}{dt}$
- Since *a* is constant, we can integrate this using the above rule to find:

$$v = \int a \, dt = a \int dt = at + v_0$$

• Similarly, since $v = \frac{dx}{dt}$ we can integrate again to get:

$$x = \int v \, dt = \int (at + v_0) dt = \frac{1}{2}at^2 + v_0t + x_0$$

Recap

So for constant acceleration we find:

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

$$v = v_0 + at$$

$$a = const$$

Race car video (x(t), v(t), a(t)

Derivation:

$$v = v_o + at$$

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

Solving for t:

• Plugging in for t:

$$t = \frac{V - V_0}{a}$$

$$\mathbf{x} = \mathbf{x}_0 + \mathbf{v}_0 \left(\frac{\mathbf{v} - \mathbf{v}_0}{\mathbf{a}} \right) + \frac{1}{2} \mathbf{a} \left(\frac{\mathbf{v} - \mathbf{v}_0}{\mathbf{a}} \right)^2$$

$$v^2 - {v_0}^2 = 2a(x - x_0)$$

Average Velocity

• Remember that $v = v_0 + at$

$$v_{av} = \frac{1}{2}(v_0 + v)$$

Recap:

For constant acceleration:

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

$$v = v_0 + at$$

$$a = const$$

From which we know:

$$v^{2}-v_{0}^{2}=2a(x-x_{0})$$

$$v_{av}=\frac{1}{2}(v_{0}+v)$$

Lecture 2, ACT 3 Motion in One Dimension

• When throwing a ball straight up, which of the following is true about its velocity v and its acceleration a at the highest point in its path?

- (a) Both v = 0 and a = 0.
- (b) $v \neq 0$, but a = 0.
- (c) v = 0, but $a \neq 0$.

Lecture 2, ACT 3 Solution

 Going up the ball has positive velocity, while coming down it has negative velocity. At the top the velocity is momentarily zero.

- Since the velocity is continually changing there must be some acceleration.
 - In fact the acceleration is caused by gravity (g = 9.81 m/s²).
 - (more on gravity in a few lectures)

The answer is (c) v = 0, but $a \neq 0$.

Free Fall

- When any object is let go it falls toward the ground !!
 The force that causes the objects to fall is called gravity.
- The acceleration caused by gravity is typically written as g
- Any object, be it a baseball or an elephant,
 experiences the same acceleration (g) when it is dropped, thrown, spit, or hurled, i.e. g is a constant.

Gravity facts:

- g does not depend on the nature of the material!
 - ←Galileo (1564-1642) figured this out without fancy clocks & rulers!
- Nominally, $g = 9.81 \text{ m/s}^2$

 \leftarrow At the equator $g = 9.78 \text{ m/s}^2$

 \leftarrow At the North pole $g = 9.83 \text{ m/s}^2$

• More on gravity in a few lectures!

Lecture 2, ACT 4

Alice and Bill are standing at the top of a cliff of height H. Both throw a ball with initial speed v_0 , Alice straight down and Bill straight up. The speed of the balls when they hit the ground are v_A and v_B respectively.

Which of the following is true:

(a)
$$V_A < V_B$$

(b)
$$V_A = V_B$$

(c)
$$V_A > V_B$$

Problem:

 On a bright sunny day you are walking around the campus watching one of the many construction sites. To lift a bunch of bricks from a central area, they have brought in a helicopter. As the pilot is leaving, she accidentally releases the bricks when they are 1000 m above the ground. The worker below is getting ready to walk away in 10 seconds. Does he live?

Problem Solution Method:

Five Steps:

- 1) Focus on the Problem
 - draw a picture what are we asking for?
- 2) Describe the physics
 - what physics ideas are applicable
 - what are the relevant variables known and unknown
- 3) Plan the solution
 - what are the relevant physics equations
- 4) Execute the plan
 - solve in terms of variables
 - solve in terms of numbers
- 5) Evaluate the answer
 - are the dimensions and units correct?
 - do the numbers make sense?

Problem:

- 1. We need to find the time it takes for the brick to hit the ground.
- 2. Describe the physics
- 3. Plan the solution
- 4. Execute the plan It takes 14.3 s.
- 5. Evaluate the answer the man escapes !!!

Recap of today's lecture

←Displacement, Velocity, Speed (Text: 2.1-2)

←Acceleration (Text: 2.3)

Kinematics with constant acceleration (Text: 2.5)

←Free Fall (Text: 2.6)

Reading for Friday

» Chapter 3: pages 58-70