Observation of light quantum jumps and time-resolved reconstruction of field states in a cavity

S. Haroche1,2

1Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris, France
2Collège de France, Paris, France

After a general review of recent developments in Cavity Quantum Electrodynamics, I will focus on experiments performed at ENS on microwave fields trapped during a few tenths of a second in a very high Q superconducting cavity1.

Circular Rydberg atoms crossing the cavity one at a time are used to count trapped photons in a quantum non-demolition (QND) way, projecting in the process the field into a Fock state containing a well-defined number of light quanta2. The subsequent evolution of these states induced by cavity damping exhibits photon number quantum jumps observed on single field trajectories3. The usual exponential decay of the field energy is recovered by averaging over these trajectories, whose statistical analysis yields a direct measurement of all the damping rates of the field master equation4.

By using atoms to perform QND measurements on an ensemble of cavity fields prepared in the same state, we fully reconstruct this state and its Wigner function5. The method is applied to coherent states whose Wigner function is gaussian and to non-classical Fock and Schrödinger cat states exhibiting Wigner functions with striking non-gaussian features presenting negative values. By following the time-evolution of the reconstructed field states, we observe the progressive disappearance of these non-classical features and realize actual ‘movies’ of the decoherence phenomenon.

These studies in which photons are trapped and manipulated non-destructively by atomic beams can be viewed as the counterpart of ion trap experiments, in which atoms are localized in space and interrogated by laser beams. I will conclude by briefly discussing future projects generalizing these photon trap studies to two cavities and implementing quantum feedback methods to lengthen decoherence times in cavity QED experiments.

4J. Bernu, C. Guerlin \textit{et al}, to be published.
5S. Deléglise, I. Dotsenko, C. Sayrin \textit{et al}, to be published.