*
Particles, Astrophysics, and Nuclear Physics Seminar
*

**
The Pomeron and Gauge/String Duality
**

Professor Richard
**
Brower
**

*
Electrical & Computer Engineering
Boston University
*

The traditional description of high-energy small-angle scattering in QCD has two components -- a soft Pomeron Regge pole for the tensor glueball, and a hard BFKL Pomeron in leading order at weak coupling. On the basis of gauge/string duality, we present a coherent treatment of the Pomeron. In large-N QCD-like theories, we use curved-space string-theory to describe simultaneously both the BFKL regime and the classic Regge regime. The problem reduces to finding the spectrum of a single j-plane Schrodinger operator. For ultraviolet-conformal theories, the spectrum exhibits a set of Regge trajectories at positive t, and a leading j-plane cut for negative t, the cross-over point being model-dependent. For theories with logarithmically-running couplings, one instead finds a discrete spectrum of poles at all t, where the Regge trajectories at positive t continuously become a set of slowly-varying and closely-spaced poles at negative t. Our results agree with expectations for the BFKL Pomeron at negative t, and with the expected glueball spectrum at positive t, but provide a framework in which they are unified. Effects beyond the single Pomeron exchange are briefly discussed. |

**
Monday, April 3, 2006
2:00pm
Gant Science Complex
Physics Department
Room P121
**

This page was last updated by WWW administrator on March 21, 2006