Answer a total of **FOUR** questions. If you turn in excess solutions, the ones to be graded will be picked at random.

Each answer must be presented *separately* in an answer book or on sheets of paper stapled together. Make sure you clearly indicate who you are and what is the problem you are solving on each book/sheet of paper. Double-check that you include everything you want graded, and nothing else.

You are allowed to use a result stated in one part of a problem in the subsequent parts even if you cannot derive it. On the last page you will find some potentially useful formulas.
Problem 1. Let us define \(D = \frac{1}{2}(xp + px) \), where \(x \) is the position operator and \(p \) the momentum operator in one dimension.

(a) Calculate \([D, x^m]\) and \([D, p^n]\) where \(m \) and \(n \) are integers.

(b) Consider the Hamilton operator \(H = \frac{p^2}{2m} + V(x) \) with the potential \(V(x) = \alpha x^\beta \) where \(\alpha \) and \(\beta \) are real non-zero constants. Calculate \(U(\lambda)HU^\dagger(\lambda) \) with \(U(\lambda) = \exp(i\lambda D/\hbar) \).

(c) There is a value for \(\beta \) in the potential \(V(x) = \alpha x^\beta \) for which the Hamiltonian in part (b) transforms as \(U(\lambda)HU^\dagger(\lambda) = f(\lambda) H \). What is the function \(f(\lambda) \)?

Hints: Recall the identity for two non-commuting linear operators \(A \) and \(B \)

\[
\exp(\lambda A) B \exp(-\lambda A) = B + \frac{\lambda^1}{1!} [A, B] + \frac{\lambda^2}{2!} [A, [A, B]] + \frac{\lambda^3}{3!} [A, [A, [A, B]]] + \ldots
\]

You may do the mathematics formally, ignoring issues such as the precise definitions and domains of various operators.

Problem 2. (a) Given the usual eigenstates \(|j, m\rangle\) of the angular momentum operators \(J^2 \) and \(J_z \), determine the expectation values \(\langle j, m|J_x|j, m\rangle \) and \(\langle j, m|J_y|j, m\rangle \).

(b) Find the standard deviation \(\Delta J_x = \sqrt{\langle j, m|J^2_x|j, m\rangle - \langle j, m|J_x|j, m\rangle^2} \), and \(\Delta J_y \) defined analogously.

(c) Determine the eigenvalues and construct the real eigenfunctions of the Hamiltonian involving orbital angular momentum of a single particle, \(H = a(L_x^2 + L_y^2) + bL_z^2 \), where \(a \neq b \) are real constants.

Possibly helpful identity: \(Y_{l,m}^*(\theta, \phi) = (-1)^m Y_{l,-m}^*(\theta, \phi) \).

Problem 3. A particle of mass \(m \) and electric charge \(q \) is constrained to move in a tightly confining ring of radius \(R \); call the remaining coordinate along the ring \(x \). The motion along \(x \) is free, i.e., there are no forces acting on the particle in the direction \(x \). Determine:

(a) Eigenvalues and eigenfunctions of energy.

(b) The maximum value of the electric current \(I \) in the first excited state.

Hint: The current density of a quantum particle is \(\mathbf{j} = \frac{i\hbar q}{2m} (\psi \nabla \psi^* - \psi^* \nabla \psi) \).
Problem 4. A particle with the energy E and mass m is scattered by the potential field

$$U(r) = U_0 (R/r) \exp(-r/R),$$

where U_0 and R are positive constants. Calculate the scattering amplitude $f(E, \theta)$ (θ is the scattering angle) and the total scattering cross section σ using the first Born approximation.

Problem 5. Consider the Hamiltonian

$$H = E_1 |1\rangle\langle 1| + E_2 |2\rangle\langle 2| + V |2\rangle\langle 1| + V^*|1\rangle\langle 2|,$$

with $|V| \ll |E_2 - E_1|$.

(a) Find the eigenvalues of energy and the corresponding normalized eigenstates up to the lowest nontrivial order in the strength of the perturbation V. Denote these by $E_1', |1'\rangle$ and $E_2', |2'\rangle$, with $E_1' \to E_1$ as $V \to 0$ and so on.

(b) Suppose we are studying transitions from yet another state $|g\rangle$ to the states $|1\rangle$ and $|2\rangle$ governed by the operator D, and have the known transition matrix elements $\langle 1|D|g\rangle = d$, $\langle 2|D|g\rangle = 0$. At this level the transition $g \to 2$ is evidently forbidden. However, the perturbation V leads to a small admixture of the original state $|1\rangle$ in the state $|2'\rangle$. Thus, a transition that to an observer unaware of the existence of perturbation V might seem to be $g \to 2$ is possible after all. Find the corresponding matrix element $\langle 2'|D|g\rangle$.

3
\[\ln N! \approx N \ln N - N \text{ as } N \to \infty \]

\[\int_{-\infty}^{+\infty} dx \exp(-\alpha x^2 + \beta x) = \sqrt{\frac{\pi}{\alpha}} \exp\left(\frac{\beta^2}{4\alpha}\right) \text{ with } \Re(\alpha) > 0 \]

\[\int_0^\infty dx \, x \exp(-\alpha x^2) = \frac{1}{2\alpha} \]

\[a = \sqrt{\frac{m\omega}{2\hbar}} \left(x + i \frac{p}{m\omega} \right) \]