
CLASSICAL MECHANICS/ ELECTRICITY AND MAGNETISM

Preliminary Examination

January 12, 2011

09:00 - 15:00 in P-121

Answer a total of SIX questions, choosing THREE from each section. If you turn
in excess solutions, the ones to be graded will be picked at random.

Each answer must be presented separately in an answer book, or on sheets of paper
stapled together. Make sure you clearly indicate who you are, and the problem you
are answering on each book/sheet of paper. Double-check that you include everything
you want graded, and nothing else.

Page 5 contains the formulas for standard vector operators in the Cartesian, cylin-
drical, and spherical coordinates.
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Figure 1: For problem CM2.

SECTION CM - Classical Mechanics

CM1. Consider the Lagrangian

L =
m

2
(ẋ2 − ω2x2)eγt.

The motion of a particle of mass m is in one dimension. The constant m, γ,
and ω are real and positive.

(a) Find the equation of motion.

(b) Physically interpret the equation of motion by stating the general nature
of the forces, to which the particle is subject.

(c) Find the canonical momentum and from this construct the Hamiltonian
function.

(d) Is the Hamiltonian a constant of motion? Is the energy conserved? Ex-
plain.

(e) For the initial conditions x(0) = 0 and ẋ(0) = v0, what is x(t) asymptoti-
cally as t → ∞?

CM2. A smooth, hollow, circular tube of radius R is fixed in a horizontal plane at one
point A and contains a particle P of mass m. The particle is initially at rest at
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the opposite end B of the diameter through A. The tube is then made to rotate,
with constant angular velocity ω about the vertical axis through A. Denote by
θ the angle subtended at the center of the circular tube by BP.

(a) Construct the Lagrangian L of the particle as a function of the coordinate
θ(t) and velocity θ̇(t).

(b) Obtain Lagrange’s equation of motion for the θ(t) coordinate and show
that θ̈ + ω2 sin θ = 0.

(c) Show that E = θ̇ ∂L

∂θ̇
− L is the integral of motion and determine the value

of this integral using the given initial conditions.

(d) Find the angle θ(t). What is θ(t) asymptotically as t → ∞?

Hint: The problem may be solved both in the laboratory and rotating frames and

both methods yield the same differential equation for θ(t). Be careful with the initial

conditions.

CM3. A manned spacecraft is traveling at a uniform speed of 3c/5 (c being the speed
of light in a vacuum) along a straight line towards a distant planet 12 light years
away from the Earth. Suppose that the journey began from the Earth at t = 0
(Earth’s clock) and t

′

= 0 (spacecraft’s clock).

(a) How long would it take for the spacecraft to reach the planet as measured
on the Earth’s frame and as measured in the spacecraft. If you get different
values, explain why.

(b) When the spacecraft reaches the planet, what does the clock on the Earth
read, according to the astronaut?

CM4. Three interacting particles with equal masses m are involved in one-dimensional
motion along the x-axis. Particles 1 and 2 and particles 2 and 3 are connected
to each other by identical ideal springs of constant κ (particle 2 is always in
a central position). Construct Lagrange’s equations, describing the motion of
particles in the Center of Mass frame, and calculate the eigenfrequencies of vi-
bration.
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SECTION E&M - Electricity and Magnetism

E&M1. Consider electromagnetic waves in a wave guide, propagating along the z-
direction. Write down possible forms for the electric and magnetic fields E(x, y, z, t)
and B(x, y, z, t) for such waves. Using Maxwell’s equations, show that TEM
waves (where Ez and Bz are both zero) cannot occur in a completely hollow
wave guide.

E&M2. An infinite plane slab of thickness a is charged to a volume density ρ(x):

ρ(x) = ρ0

x

a
, if |x| ≤ a/2,

ρ(x) = 0, if |x| > a/2,

where ρ0 is a positive constant and the x-axis is perpendicular to the slab
surface. The origin of coordinates x = 0 is placed into the center of the slab.
Find the potential φ(x) and electric field E(x) inside and outside the slab.

E&M3. A sphere of radius a has a bound charge Q distributed uniformly over its surface.
The sphere is surrounded by a uniform fluid medium with the dielectric constant
ǫr. The fluid also contains a free charge density given by

ρ(r) = −kφ(r),

where r is the distance from the center of the sphere, k is a positive constant,
and φ(r) is the electric potential at r. Using the Poisson equation find the
potential everywhere letting φ(r) = 0 as r → ∞.

E&M4. A constant electric current flows through an infinite cylindrical non-magnetic
conductor of radius a. The axially symmetric vector of current density j(ρ)
depends on the distance ρ from the cylinder z-axis:

j(ρ) = j0(a/ρ)ez,

where j0 is a positive constant and ez is a unit vector of z-direction. Determine
the magnetic vector potential A(ρ) inside and outside this conductor.
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Standard Vector Operations in Common Coordinate Systems

Cartesian coordinates x, y, z

∇ = êx

∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z

∇ · A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

∇× A = êx

(

∂Az

∂y
−

∂Ay

∂z

)

+ êy

(

∂Ax

∂z
−

∂Az

∂x

)

+ êz

(

∂Ay

∂x
−

∂Ax

∂y

)

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Cylindrical coordinates ρ, φ, z

∇ = êρ

∂

∂ρ
+ êφ

1

ρ

∂

∂φ
+ êz

∂

∂z

∇ · A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aφ

∂φ
+

∂Az

∂z

∇×A = êρ

[

1

ρ

∂Az

∂φ
−

∂Aφ

∂z

]

+ êφ

[

∂Aρ

∂z
−

∂Az

∂ρ

]

+ êz

1

ρ

[

∂

∂ρ
(ρAφ) −

∂Aρ

∂φ

]

∇2 =
1

ρ

∂

∂ρ
ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2

Spherical coordinates r, θ, φ

∇ = êr

∂

∂r
+ êθ

1

r

∂

∂θ
+ êφ

1

r sin θ

∂

∂φ

∇ · A =
1

r2

∂

∂r
(r2Ar) +

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ

∂φ

∇× A = êr

1

r sin θ

[

∂

∂θ
(sin θAφ) −

∂Aθ

∂φ

]

+ êθ

[

1

r sin θ

∂Ar

∂φ
−

1

r

∂Ar

∂θ

]

+ êφ

1

r

[

∂

∂r
(rAθ) −

∂Ar

∂θ

]

∇2 =
1

r2

∂

∂r
r2

∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

[

1

r2

∂

∂r
r2

∂

∂r
≡

1

r

∂2

∂r2
r

]
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