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SEISMIC VISCOELASTIC ATTENUATION

Synonyms

Seismic intrinsic attenuation

Definitions

Linear viscoelastic attenuation. The loss of energy to heat within a material as an elastic
wave propagates through the material, in which the resultant elastic deformation (strain)
in the material lags in time the applied stress induced by the wave.

Apparent seismic Q. A factor defining an exponential decrease with frequency f and
propagation time T of a seismic body wave given by the expression exp(-π f T/Q). The
apparent Q combines the energy lost to heat and with the energy lost to elastic scattering.

Introduction

The amplitude of seismic waves decreases with increasing distance from earthquake,
explosion, and impact sources.  How this amplitude decrease, occurs, how rapidly it
occurs, and how it depends on frequency of the seismic waves is fundamentally important
to the efforts to describe Earth structure and seismic sources.

Seismic attenuation and its variation with location within the Earth are useful for
determining the type and state of the rocks and minerals composing the Earth.  In
addition to providing information on a physical property, research in seismic attenuation
has also been strongly motivated by more practical problems.  One problem has been the
prediction of ground motion due to probable earthquakes in different regions.  The
frequency content and decay with distance of this strong ground motion is an important
input to the design of earthquake resistant structures and to disaster forecasting (see
Earthquake strong ground motion forecast).  Another problem has been to estimate the
size and detectability of underground nuclear tests (see Seismic monitoring of nuclear
explosions).

How do seismic waves attenuate?

The attenuation of seismic waves is due to three effects: geometric spreading, intrinsic
attenuation, and scattering.

Geometric spreading

Geometric spreading is simply the energy density decrease that occurs as an elastic
wavefront expands.  In a homogeneous Earth of constant velocity and density, the
geometric spreading of a seismic body waves is proportional to the reciprocal of the
distance between source and receiver.  In the real Earth, velocity and density vary
strongly with depth and less so laterally.  Given a model of this variation, however, the
geometric spreading of a body wave can be easily calculated (see Seismic, ray theory).



Intrinsic attenuation

Intrinsic (viscoelastic) attenuation is energy lost to heat and internal friction during the
passage of an elastic wave.  The microscopic mechanisms of intrinsic attenuation have
been described in several different ways, including the resistive and viscous properties of
oscillator models of the atoms in crystalline lattices, the movement of interstitial fluids
between grain boundaries and cracks, and the frictional sliding of cracks. Jackson (1993
and 2007) reviews laboratory experiments that investigate microscopic mechanisms of
intrinsic attenuation. This article concentrates on the measurement of intrinsic attenuation
from recordings of seismic waves at great distance.

Scattering attenuation

Scattering attenuation is not energy loss to heat or random motions on the scale of atoms,
but rather elastic energy that is scattered and redistributed into directions away from the
receiver or into waves arriving in later time windows at the receiver (see Seismic,
scattering).   Scattering takes place by reflection, refraction, and conversion of elastic
energy by wavelength-scale irregularities in the medium. These irregularities are
discontinuous or rapid variations in the velocity and/or density of the medium.  In the
crust and uppermost mantle, variations in velocity and density can be particularly strong
in the lateral as well as the vertical direction.

Linear Viscoelasticity

Rheology

A stress is a vector force per unit area applied to a solid.  A strain is non-dimensional
measure of the deformation of the solid due to the applied stress, such as the change in a
length element divided by the original length.  The equation that relates stress and strain
is sometimes termed the rheology or the constitutive relation (see Mantle rheology).  A
linear viscoelastic rheology can be described by a linear differential equation:
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L1σ(t) = L2ε(t)                                       (1)

Where L1 and L2 are any linear combinations of operators of the time 
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dtn
 or 
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dtn∫ . This

type of equation can describe both the elastic strain of a material over a short time
interval of applied stress as well as its viscous behavior and flow over a longer time
interval  (Gross ,1953; Nowick and Berry, 1972; Jackson et al. 2005).

Anelastic hysteresis

Seismic oscillations at distances beyond several fault lengths from an earthquake excite
small strains less than 10-6.  These strains are recoverable during a cycle of seismic
oscillation and lag the applied stress of the oscillation in time.  Because of the time lag, a



cycle of increasing and decreasing stress does not produce a perfectly proportional
increase and decrease in strain.  Instead a hysteresis loop occurs (Figure 1). The area
enclosed by the hysteresis curve is a measure of the energy lost to heat and internal
friction.  During the stress cycle associated with the passage of a seismic wave, the
energy lost to this internal friction is not available to deform the adjacent regions of the
solid ahead of the wavefront and the amplitude of the wave decreases.

From the hysteresis curve, one can see that the stress-strain relation cannot be described
by a simple constant of proportionality in the time domain.  A more complicated relation
involving an integral over time is required to describe strain at any instant of time as a
function of the prior time history of the applied stress. By Fourier transforming the
rheologic equation, however, and keeping only terms describing the short-term anelastic
behavior, the stress-strain relation can be simply expressed by means of either a complex
elastic modulus   
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G (ω)  or by its reciprocal, the complex elastic compliance,   
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J (ω) :
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σ (ω)=
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G (ω)ε(ω)            (2a)
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J (ω) ) 

σ (ω)              (2b)

The elastic modulus   
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G  and compliance   
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J  must be a complex numbers to describe the

phase lag of strain.   
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) 
G  and   
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) 
J  must also be frequency dependent because the phase lag of

strain depends on the time history of stress, the shape of the hysteresis curve changing
with different load histories. The trend of the frequency dependence can be inferred from
the time lag of strain.

A feature of the complex modulus is that its real part will be smaller at zero or very low
frequency and larger at infinite or very high frequency.  That is, there will be an
instantaneous response of strain to the applied stress, which is smaller than the eventual
equilibrium response after longer time. The difference between the modulus at infinite
frequency 
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G(∞) , representing the instantaneous or unrelaxed response, and the low
frequency limit of the modulus 
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G(0), for the equilibrium or relaxed response, is called
the modulus defect 
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ΔG , with
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ΔG =G(∞) −G(0)           (3)

The relaxed and unrelaxed moduli are pure real numbers that can be determined by
observing a sequence of hysteresis curves for increasing frequencies of monochromatic
loads.  The frequency dependence of the real part of the modulus of at frequencies
between 0 and 
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∞  implies that the propagation of a stress pulse will be dispersive, with
higher frequencies traveling faster than lower frequencies.

Q and complex velocity

Since simple mechanical systems, composed of springs and dashpots and simple electric
circuits also obey linear equations of the form of eqs. (2a,b), there are analogies between
the quantities describing these systems and quantities in the stress-strain relation.  For



example, strain behaves like voltage, stress like current, and the complex compliance   
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like the complex impedance of an electric circuit.  Similar to the resonance phenomenon
in circuits and mechanical systems, a Q can be defined by the average energy W per
cycle divided by the energy lost or work done per cycle, ΔW:
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Q=
W
ΔW

              (4)

Large Q’s imply small energy loss; small Q’s imply large loss.  Q is a measure of the area
contained in the hysteresis loop of a stress-strain cycle.  The inverse of (4), Q-1, is
sometimes simply termed the attenuation.

Plane waves of frequency ω and propagating in the + x –direction can be defined by the

phasor   

€ 

exp(iω t−
) 
k t) where   
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k is a complex wave number 
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ω
) c 

 and   
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) c  is a complex velocity

defined from the local density ρ and complex modulus 
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ˆ G , with
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ρ

                  (5)

From the average energy density and loss per cycle of a complex plane wave it can be

shown that 
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Q=
Re(

) 
G )

Im(
) 
G )

.  It is often less confusing to report the reciprocal parameter Q-1,

which represents the usually small perturbations to perfect elasticity.

The Q-1(ω) relaxation spectrum

Since   
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) 
G  depends on frequency, Q also depends on frequency.  Zener (1960) described

the frequency-dependent effects on an elastic modulus of a solid having a single
characteristic time τ for the relaxation of stress. A distribution of relaxation times can be
constructed to give a Q-1 having a general dependence on frequency.  The function
Q-1(ω) is called the relaxation spectrum.  In the Earth and in many solid materials, the
relaxation spectrum is observed to be slowly varying and nearly constant over a broad
band of frequencies. A theoretical requirement is that the attenuation Q-1 cannot increase
faster than ω1 or decrease faster than ω-1.  Figure 2 shows how a continuous distribution
relaxations can produce a Q-1 that is nearly constant with a frequency over a broad band.
Once the limits of an absorption band are specified, however, it is not possible to have an
arbitrarily high Q-1 (low viscoelastic Q) over an arbitrarily broad frequency band without
making an unphysical large modulus defect 

€ 

ΔG .



Velocity dispersion

Although the dispersion in elastic moduli had long been known and predicted from the
theories of viscoelasticity, it was only widely recognized in seismology when velocity
models determined in the low-frequency band from the normal modes of the earth
(0.0001 to 0.01 Hz) where compared with velocity models determined in a high
frequency band (0.1 to 10 Hz) from body waves (Dziewonski and Anderson, 1981).  The
models were found to differ and the difference was found to agree with the amount of
dispersion predicted from average Q models of the Earth. For example, since the
preliminary reference Earth model (PREM), was derived from observations of both the
travel times body waves as well as the eigenfrequencies free oscillations, it reports
velocities referenced at both 0.001 Hz and at 1 Hz.

Another more subtle effect of this velocity dispersion can be seen in the propagation of
pulses as body waves.  A stress disturbance that propagates from its point of initiation as
a symmetric narrow Gaussian or triangle-shaped function in time gradually evolves into
an asymmetric pulse (Figure 3).  High frequencies, traveling faster than low frequencies,
are preferentially loaded into the front of the pulse (Futterman, 1962; Carpenter, 1967).
Common theories for the physical mechanism of earthquakes as either frictional slip on a
plane or a propagating crack triggered by tectonic stress often predict a far-field
displacement pulse that has either a different or opposite form of asymmetry than that
predicted for the effect of viscoelastic attenuation.  These differences can assist in
separating the effects of the source-time history from the effects of viscoelastic
attenuation.

Effects of scattering

Equivalent medium

At frequencies that are so low that wavelengths are much larger than the characteristic
scales of heterogeneity, the attenuative effects of scattering can usually be neglected. At
sufficiently low frequency, little energy is lost to scattering, and the medium behaves like
an equivalent medium, having properties that are an average of small-scale
heterogeneities.

Stochastic dispersion

The most complicated domain in which to perform calculations is where the wavelength
is on the order of the scale length of the heterogeneity (Figure 4). In this domain, the
presence of heterogeneities can profoundly alter the propagation of the wavefield, both
the initial cycle of a body wave pulse as well as the motion immediately following the
initial cycle or coda. The effects of scattering can be calculated in a one-dimensional
medium consisting of thin planar layers in which the velocity in each layer is assigned
randomly (O’Doherty and Anstey, 1971; Richards and Menke, 1983).  A prediction of
such experiments is that body waves will exhibit a stochastic dispersion in which high-
frequency energy is transferred into the coda following the first several cycles.  This



stochastic dispersion may have some biasing effects on measures of intrinsic attenuation.
In measures of the spectrum taken over a narrow time window, different results can be
obtained, depending on the length of window analyzed, with less attenuation of higher
frequencies estimated from longer time windows.

Pulse measurements such as width and rise time may also be biased because higher-
frequency energy has been transferred out of the pulse into the later coda.  This behavior
is opposite to the effects of intrinsic attenuation on a propagating pulse, in which higher-
frequencies arrive at the beginning of the pulse. A symmetrically shaped displacement
source pulse loses less of its symmetry as it propagates through the heterogeneous
medium (Figure 5).  Anisotropy of the scale lengths of heterogeneity can also be
important factor (Hong and Wu, 2005), attenuation being strongest for paths for which
the wavelength is on the order of the characteristic scale length in the medium in that
direction.

Effects of anisotropy

The existence of general anisotropy in the real part of the elastic modulus has the
potential to bias some estimates of anelastic attenuation from either shear wave pulses or
surface waves. In a medium having general anisotropy, the decompositions of shear wave
motion into SH and SV motion will each contain the interference of two orthogonal shear
wave polarizations that are neither SH or SV (see Shear wave splitting).  The broadening
of the SH component due to the interference of two quasi-S waves arriving close in time
can be mistaken for the broadening due to anelastic attenuation.  The regions of the deep
Earth characterized by the strongest elastic anisotropy are the upper 400 km of the mantle
(Silver, 1996) and the lowermost 400 km of the mantle near the core-mantle boundary
(Panning and Romanowiz, 2006). The effects of elastic anisotropy must be removed by
combined analysis of SV and SH components of motion, resolving the polarizations of
two quasi-S waves, before viscoelastic attenuation can be properly meaured.

Measurement and Modeling Attenuation

Measurements of amplitude of seismic waves may be taken directly from seismograms or
from their frequency spectra.  To measure the attenuation, we must predict its effects
from a model and vary the parameters of the model to fit the observed amplitude,
amplitude ratio, or waveform.  The effects of intrinsic attenuation in any modeling
algorithm operating in the frequency domain can be simply obtained by allowing elastic
moduli and/propagation velocities to become complex.  Elastic boundary conditions,
reflection and transmission at boundaries, travel times, and amplitudes are calculated
exactly as in a non-attenuating solid but with elastic moduli and associated velocities
analytically continued to complex values.  This step of analytic continuation of real
moduli to complex moduli is the same whether one wishes to predict the waveform of a
body wave or surface wave or spectrum of free oscillations.  The size of the imaginary
part of the elastic moduli, parameterized by the value of Q as a function of depth and
frequency, is chosen to match an observed waveform, spectrum, amplitude ratio, or
spectral ratio.



The attenuation operator for body waves

As an example of these procedures, consider an experiment with body waves.   The
effects on a body wave of source radiation, geometric spreading, reflection-transmission,
and intrinsic attenuation are most conveniently expressed in the frequency domain by a
product of complex functions.  The complex   
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) 
Ω ( r x ,ω)  spectrum of a body wave

propagation from a point   
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r 
x o  to a receiver at   
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r 
x  is
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) 
Ω ( r x ,ω) =

v 
B ( r x o,

r 
x ,ω)

) 
S (ω)

) 
A (ω)                                        (6)

The function  
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S (ω)  is the Fourier transform of the source-time function.   
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B ( r x o,

r 
x ,ω)

incorporates a product of reflection-transmission coefficients, reverberations at source
and receiver, geometric spreading, and source radiation pattern.   
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) 
A (ω) is defined by
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) 
A (ω) = exp[iω

) 
T (ω)]                                                         (7),

where   
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) 
T (ω) is the complex travel time obtained by integrating the reciprocal of complex

velocity along a ray or normal to the wavefront of the body wave:
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) 
T (ω) =

) c (ω)ds
ray
∫                                                                  (8)

For body waves, the dominant effect of attenuation on amplitude and phase is given by
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) 
A (ω). The effects of attenuation on reflection-transmission coefficients and geometric
spreading, which have been lumped into   
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) 
B  are much smaller and can be neglected

unless the attenuation is very large (Q is very small).  For Q>> 1,   
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A (ω) can be rewritten

as
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A (ω) = exp −ω t * (ω)
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    (9),

where
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t * (ω) =
Q−1

) c (ω)ray
∫ ds                                                  (10).

In eq. (9) attenuation effect is contained in the factor
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exp −ω t * (ω)
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 , and the dispersive

effect is in the factor 
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. The operator 
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H  is a Hilbert

transform.  In a band of frequencies in which Q and t* are nearly constant
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H[t * (ω)]/2=
ln(ω /ω0)

π
t *                                      (11),

where 
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ω0 is a reference frequency contained in the band (Liu et al, 1976). The value of
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T(∞) need not be known and can be replaced by some reference time or predicted from
an Earth model for the phase being analyzed. The Hilbert transform relation in eq. (11)
for the dispersive phase of   
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) 
A (ω) says that   
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) 
A (ω) must be a minimum phase filter in the

frequency domain. In general, the Fourier transform of the source-time function,   
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) 
S (ω) , is

not a minimum phase filter, which can be aid in the separation and discrimination of the
source spectrum from the effects of   
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) 
A (ω) in the total expression for the far-field

spectrum   
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Ω ( r x ,ω) .

The phase given by eq.(11) will be accurate only between and far from the low and high
frequency corners of the relaxation spectrum. Accurate representations of   
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) 
A (ω) across a

broad frequency band can be obtained for a general relaxation spectra by substituting
expressions for complex velocity   
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) c (ω) in eq. (8) obtained by superposing multiple Zener
relaxations centered on single relaxation times whose strength is varied to achieve a
desired shape for the relaxation spectrum.  A useful expression for   
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) c (ω) that is accurate
for all frequencies across a relaxation spectrum, which is flat between two corner
frequencies, can be derived from formulae for complex modulus given by Minster
(1978), and is
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) c (ω)=cref (ω0)
1+ 2πQ−1 ln[ψ(ω)]

Re 1+ 2πQ−1 ln[ψ(ω0)]
          (12a),

where
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ψ(ω) =
iω + 1/τ1
iω + 1/τ 2

                                                  (12b).

with 
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τ1 and 
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τ 2 the relaxation times corresponding to the low and high frequency corners
respectively. 
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cref (ω0)   is a real velocity at the reference frequency 

€ 

ω0.

Most measurements of attenuation attempt to measure only the amplitude effect of
attenuation through the term 
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exp[−ω t * (ω) /2] from the spectral shape of body waves.
There are basically two types of experiments commonly reported: matching of (1)
spectral decay rates and (2) spectral ratios.  In experiment (1) a shape for the
displacement source spectrum   
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) 
S (ω)  is assumed usually to be a flat level followed by a

decay of 
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ω−2 above a corner frequency. The additional decay observed at high
frequencies in data spectra is taken as a measure of 
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t *in 
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exp[−ω t * (ω) /2].  In
experiment (2) a ratio of two different seismic phases from the same source is observed
in which the source spectrum is assumed to approximately cancel and the factor related to
ratios of geometric spreading and near source and receiver crustal reverberations can be



assumed to contribute a simple constant scalar factor.   If the phases analyzed are
recorded at the same receiver and are incident at nearly the same angles, then crustal
reverberations at the source and receiver will approximately cancel.  Both types of
experiments usually apply some type of smoothing to the spectra to remove biasing
effects of spectral holes caused by interfering crustal multiples, source complexities,
scattering, and multipathing that are not included in the simple propagation model. Figure
6 illustrates an attenuation experiment of this type.

Since t* measures only the path-integrated effect of attenuation, many such experiments
for different ray paths, bottoming at a range of different depths, are needed to construct a
model of Q as a function of depth. Serious breakdowns in this approach, however, exist
for cases in which the factorization of the observed spectrum into a product of a
geometric spreading, source spectrum, and crustal effects is no longer accurate. One such
case is when the body waves in question experience frequency dependent effects of
diffraction near caustics or grazing incidence to discontinuities. The spectral ratio of
PKnKP waves, for example, are dominated by the effects of frequency dependent
reflection and transmission coefficients at grazing incidence to the core mantle boundary.
Instead of decreasing linearly with increasing frequency, the observed spectral ratio
increases with frequency and exhibits a curvature in a log-log plot, which is consistent
with a Q near infinity (Q-1= 0) in the other core (Cormier and Richards, 1976).

It is becoming more common to model and invert for viscoelastic attenuation parameters
in the time domain, including not only the magnitude of the viscoelastic attenuation
parameter Q-1, but also its frequency dependence.  Examples of such a study are the
inversions for Q-1 in the inner core assuming either a viscoleastic (Li and Cormier, 2002)
or a scattering origin of attenuation (Cormier and Li, 2002). In these studies the combined
effects of mantle attenuation and source-time function were first modeled by fitting P
waves observed in the great circle range 300-90o.  Attenuation in the liquid outer core was
assumed to be zero. Parameters defining a viscoelastic relaxation spectrum in the inner
core were then varied to match the observed PKIKP waveforms.  Care must be taken to
examine a broad range of attenuation parameters because waveform inversions of this
type are very non-linear.

Free oscillations and surface waves

Measurements of attenuation in the low-frequency band of the free oscillations of the
Earth are conducted in the frequency domain by observing the width of the individual
resonance peaks associated with each mode.  These measurements face special problems
associated with the broadening produced by lateral heterogeneity of elastic Earth
structure.  This heterogeneity splits the degenerate modes of a radially symmetric Earth,
making a set of modes that would have the same frequency have slightly different
frequencies.  The slightly different frequencies of the split modes may not be easily
resolved in the data spectra and can be confused with the broadening of a single
resonance peak of a mode caused by attenuation.



Lateral heterogeneity also complicates the measurement of viscoelastic attenuation of
surface waves. Heterogeneity introduces focusing, defocusing and multipathing, all of
which must be accurately modeled to understand the separate attenuative effects of
viscoelasticity.

The frequency band of free-oscillation and surface waves (0.001 to 0.1 Hz), however,
offers the best hope of obtaining radially symmetric whole-Earth models of viscoelastic
attenuation in this frequency band. This is because lateral variations in attenuation
structure are averaged by the gravest modes of oscillation and surface waves that make
multiple circuits around the Earth. Computational advances have made the division
between free-oscillation and surface wave studies fuzzier, with common approaches now
amounting to time-domain modeling of complete low frequency (<0.1 Hz) seismograms
for combined three-dimensional models of viscoelasticity and heterogeneity.

Numerical modeling

Fully numerical modeling of the seismic wavefield allows the combined effects of
heterogeneity and viscoelasticity in three-dimensions to be predicted.  If the numerical
technique is formulated in the frequency domain, substituting a complex velocity for an
assumed relaxation spectrum can incorporate viscoelastic attenuation.

 If the technique is formulated in the time domain by a finite difference approach, it is
neither simple or efficient to incorporate attenuation by convolution of the wavefield
calculated in a non-attenuating medium with an attenuation operator 
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A(t) for individual
waves propagating in the attenuating medium, where 
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A(t) is the Fourier transform of
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) 
A (ω) defined in eq. (9).  Instead, time-domain memory functions can be defined to
describe a viscoelastic relaxation (Robertsson et al., 1994; Blanch et al., 1995) that can be
integrated over time simultaneously with the equations describing particle velocity or
displacement and stress.  In practice, only three-memory functions, distributed evenly
over the logarithm of their characteristic times, are required to simulate a broad frequency
band in which Q-1 varies slowly.

Interpretation of attenuation measurements in the Earth

Shear versus bulk attenuation

In the most general theory of viscoleasticity, it is possible to have with energy loss to
occur during both a cycle of volumetric strain as well as shear strain.  Since the velocity
of a P wave depends on both the bulk and shear moduli, the attenuation 

€ 

QP
−1 of a P wave

can be written as a linear combination of the attenuations 
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QK
−1 and 
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QS
−1 defined from

complex shear and bulk moduli:

€ 

QP
−1 = LQS

−1 + (1− L)QK
−1                                       (13),

where 
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(4 /3)(VS /VP )
2  and 
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VP  and 
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VS  are the compressional and shear velocities
respectively (Anderson, 1989).   Although plausible mechanisms for defects in bulk



moduli have been found in both laboratory measurements and analytic models of specific
attenuation mechanisms, measurements on real data find that bulk dissipation in the earth
is small and, in most cases, can be neglected. One exception may occur when the pressure
and temperature state in a narrow depth regions of the earth are close those near a phase
transition, either solid-liquid or solid-solid. Except for these regions, intrinsic attenuation
occurs almost entirely in shear, associated with lateral movement of lattice defects, grain
boundaries and/or fluids rather than with changes in material volume.  Hence, for
viscoelastic attenuation purely in shear in Poisson solid, for which 
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VP = 3VS ,
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QP
−1=

4
9
Qs

−1                                                           (14),

and the parameter for path-integrated attenuation of S waves or 
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t *S   is approximately
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4 t *P .  Most experiments confirm these values.  There is a suggestion, however, that the
apparent 
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QP
−1 tends to approach 
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QS
−1 and 
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t *S < 4 t *P  at frequencies higher than 1 Hz.
These observations are like evidence of scattering rather than of bulk attenuation because
the effects of scattering increase at higher frequencies.  With scattering, the apparent 
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QS
−1

tends to approach the apparent 
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QP
−1 especially when they are measured from pulse widths

or spectra taken in a frequency band and medium for which wavelengths are on the order
of richest heterogeneity scale lengths of the medium. Thus, the assumption of viscoelastic
attenuation occurring mainly in shear can aid in separating the effects of scattering from
intrinsic attenuation in body wave pulses.

Frequency dependence

When the results of attenuation measurements determined from free oscillations and body
waves in the 0.0001 – 0.1 Hz band began to be compared with observations of body wave
spectra in the 1-10 Hz band, it became apparent that even under the assumption of a
white source spectrum that an increase in Q with frequency was necessary to explain the
amplitude of spectra in the 1 –10 Hz band.

Thermal activation

Frequency dependence of viscoleastic attenuation has been interpreted in terms of
physical mechanisms of attenuation that are thermally activated.  In these mechanisms,
the low frequency corner 
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fL  is tied to a relaxation time 
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τ L  , where
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fL =1/(2π τ L ) .  The
time 
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τ L  depends on temperature T and pressure P as follows:
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τ L = τ 0 exp
E *+PV *

RT
 

 
 

 

 
               (15),

where E* and V* are the activation energy and volume respectively. Both the low and
high frequency corners (
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fL , 

€ 

f H ) of an absorption band are assumed to be similarly



affected, temperature and pressure acting to slide the absorption band through a band of
frequencies.  A typical width to expect for the relaxation spectrum of the mantle is about
5 orders of magnitude in frequency, 

€ 

τ L /τ H = 105  (Minster and Anderson, 1981;
Anderson and Given, 1982).  A simplified model of an absorption band with depth in the
earth’s mantle is shown in Figure 7.  The movement of the absorption band toward lower
frequencies (longer periods in the mantle below 400 km depth is consistent with the type
of behavior show in Figure 8 for the 

€ 

t *S  measured from shear waves of an earthquake.
The difference in the location of the absorption band with respect to the band of seismic
frequencies is consistent with models of the temperature and pressure profiles of the
Earth’s mantle for specific values of E* and V*. Relaxation times are also affected by the
grain size of minerals, which may increase from mm to cm in the upper 400 km of the
mantle (Faul and Jackson, 2005).  A rapid increase in temperature with depth can rapidly
change the location of the absorption band with respect to the seismic band. Given a
specific temperature profile, estimated values of the activation energy and volume, and
grain size, a combined shear velocity and 
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QS  profile can be predicted and modified to fit
an observed shear velocity profile.

Regional variations

Romanowicz and Mitchell (2007) review and interpret both global and many regional
variations in intrinsic attenuation, including correlations with velocity perturbations.
Tomographic images of perturbations to seismic velocities and attenuations in the mantle
can qualitatively be interpreted as images of lateral temperature variations, leaving open
the possibility of additional contributions to the observed heterogeneity from chemical
variations. In the upper mantle, tectonically active regions overlain by radiogenically
younger crust are more attenuating than the mantle underlying inactive regions such as
continental shields (Figure 9). The shape of the frequency dependence across the seismic
band seems to remain similar in different regions, although the Q at a given frequency is
lower for a tectonically young region than for an older shield region.

Generally, perturbations in attenuation 

€ 

Q−1 inversely correlate with those in shear wave
velocity (Roth et al., 2000). The correlations between shear velocity and shear attenuation
appear to be consistent with thermal activation, in which the dispersive effect of
attenuation acts jointly with variations in the high-frequency corner of the mantle
relaxation spectrum to produce the observed variations in travel time and frequency
content.  Deep chemical differences between the upper mantle beneath shields and that
beneath young continents and oceans as well as in the deep mantle, however, have been
suggested by comparing anomalies in shear velocity versus bulk velocity 
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VK , where
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VK = VP
2 −(4 /3)VS

2 . Milder lateral temperature differences in the mid- and lower mantle
tend to make the relaxation spectrum more laterally stable in height, width and location
within a frequency band, reducing the observed lateral heterogeneity in velocity and
attenuation in these regions.

Global models of attenuation (e.g., Gung and Romanowicz, 2004) often do not have the
resolving power to detect spatially concentrated regions of high attenuation and sharp



spatial gradients found in regional studies beneath and near island arcs, mid-ocean
spreading ridges, and hot mantle plumes. The dense path coverage required of higher
frequency (0.1 to 2 Hz) body waves needed to resolve smaller spatial scales usually is
lacking except in regions containing dense seismic networks. Even larger scale, long
established lateral variations, such as high attenuation west of the Rocky Mountains in
North America and low attenuation east (Der et al., 1982), are not very apparent in some
global studies (Warren and Shearer, 2002).

Strain dependence.

Laboratory measurements of Q in rocks find dependence in strain beginning at strains of
about 10-6. The strain dependence decreases with confining pressure.  The Q is also
strongly dependent on moisture and interstitial fluids between cracks in rocks and grain
boundaries and soils.  These observations are consistent with a physical mechanism of
frictional sliding of cracks and cracks.  Unlike viscoelastic relaxations, which are
representative of all linear mechanisms, frictional sliding is an inherently nonlinear
mechanism, depending on strain amplitude.

Estimates where nonlinear effects occur in particular data may be made by calculating the
strain associated with the seismic wave being analyzed.  A rough estimate can be
obtained by assuming that the wavefront is a plane wave and dividing the particle
velocity by the propagation velocity.  For example, the particle velocity of body waves
observed in strong ground motion recordings from 0 km to 10 km from the hypocenter of
a magnitude 6 earthquake are typically 0.01m/sec.  If the body wave propagates at 3
km/sec, the strain observed at the strong ground motion site is roughly 0.01/ms/ec
divided by 3 x 103 m/sec or epsilon = 3.3 x 10-5.  This value is likely to be in the
nonlinear regime of surficial rocks having open cracks or pores.  In this strain regime it
becomes important to solve the elastic equation of motion with non-linear terms in its
rheology (Bonilla et al., 2005), including terms proportional to the square of strain.

Summary

The intrinsic attenuation of seismic waves in the earth has been found to be consistent
with loss mechanisms that are thermally activated.  The observed regional and frequency
dependences of seismic Q agree with the expected lateral variations in a geotherm having
a rapid temperature increase in the upper 400 km of the mantle, followed by a slower
vertical and lateral variation in the mid- and lower mantle.  High velocities correlate with
regions of low attenuation; low seismic velocities correlate with regions of high
attenuation.  Measurements are consistent with losses primarily in shear rather than bulk
deformations.

The existence of lateral heterogeneity in the elastic properties of the Earth complicates
the measurement of viscoelastic properties.  The longer scale lengths of heterogeneity can
split modes of free oscillation and focus and defocus body waves and surface waves.
Shorter scale lengths scatter seismic energy, broaden the waveforms of body waves, and
redistribute energy into different time and angular windows.  Observations that are useful



for discriminating between the effects of scattering attenuation versus viscoelastic
attenuation include the ratio of apparent P wave attenuation to apparent S wave
attenuation, the rate of velocity dispersion within a frequency band, and the apparent
viscoelastic modulus defect. The intensity of heterogeneity in percent fluctuation of
velocities and densities is higher at shorter scale lengths at shallower depths in the Earth’s
crust and upper mantle.  There is still a need for experiments that determine finer details
of how the distribution of heterogeneity changes with depth and lateral location in the
Earth and its anisotropy of scale lengths. Many, if not most experiments, have not
completely removed the effects of heterogeneity on the apparent attenuation, making
their results an upper bound on the viscoelastic Q-1.

Laboratory experiments find a transition from linear to non-linear rheology at strains on
the order of 10-6.  The observed strain dependence of Q and its dependence on pressure in
the shallow crust agree with a mechanism of frictional sliding of cracks.  It is still
unknown how and at what strain levels linear superposition begins to break down close to
a seismic source.

Although a consensus has been reached on the major features and thermal activation of
intrinsic attenuation in most of the Earth’s upper mantle, this is less true of other deep
regions of the Earth. Definitive experiments are still needed for the distribution of Q in
the lowermost 400 km of the mantle, where increased lateral heterogeneity exists across a
broad spatial spectrum complicating the separation of its effects from those of
viscoelasticity.  A concept unifying lateral variations in velocity, elastic anisotropy,
scattering, and apparent attenuation in the uppermost inner core is needed (e.g., Calvet
and Margerin, 2008).

Vernon F. Cormier
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Figure 1 Stress-strain hysteresis curve showing the behavior of strain due a cycle of
applied stress.



Figure 2 Viscoelastic dispersion of seismic velocity and attenuation showing a relaxation
spectrum constant with frequency between two corner frequencies.



Figure 3 Pulse distortion showing the effects of viscoelastic dispersion for variable low
frequency corner and peak attenuation.



Figure 4 Example types of small-scale heterogeneity in the Earth and the directional
dependance of attenuation due to forward scattering transferring high frequency from a
body wave pulse to its coda.



Figure 5 Pulse distortion showing the effects of scattering attenuation for variable scale
lengths and velocity perturbation calculated by Cormier and Li (2002) using the Dynamic
Composite Elastic Modulus (DYCEM) theory of Kaelin and Johnson (1998).



Figure 6 Measurement of the path integrated attenuation t* of P waves in the mantle
from a log-log plot of stacked PP and P spectra above the corner frequency of magnitude
5.5 to 6 earthquakes; adapted from figures in Warren and Shearer (2000).



Figure 7 A frequency and depth dependent model of shear attenuation in the Earth’s
mantle derived from modeling broadband shear waves. This model has been used by the
National Earthquake Information Center (NEIC) to correct for viscoelastic attenuation in
the reported radiated elastic energy from earthquakes (Boatwright and Choy 1986; Choy
and Boatwright, 1995).



Figure 8 Path integrated attenuation t* of S waves in the mantle as a function of
frequency determined from modeling broad band shear waves predicted from the
frequency and depth-dependent attenuation model shown in Figure 7 (Choy and Cormier,
1986).

Figure 9  Inverted upper mantle shear velocity perturbations and shear attenuation from
Dalton et al. (2009)


